1	Supporting Information
2	Cationic coordination polymer with thirteen-fold interpenetrating dia
3	network: selective coloration and ion-controlled photochromism
4	
5	Xin Li ^a , Yanger Li ^a , Xiaoman Yang ^a , Chaoyue Yan ^a , Kai Zhang ^a , Xiaoxiao Liang ^a , Jinli Zhang ^a ,
6	Yanli Gai*, ^a and Kecai Xiong*, ^{a,b}
7	
8	^a School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.
9	R. China
10	^b State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
11	Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
12	
13	
14	*Corresponding authors:
15	E-mail: <u>kcxiong@jsnu.edu.cn;</u>
16	ylgai@jsnu.edu.cn.

1 EXPERIMENTAL SECTION

2 Materials and Measurements. 1,1'-bis(4-carboxyphenyl)-(4,4'-bipyridinium) dichloride was prepared according to the literatures,^{S1} while other chemicals with reagent-grade quality were obtained 3 from commercial sources and used without further purification. The infrared spectra were recorded on a 4 Thermo Scientific Nicolet iS10 FT-IR spectrometer as KBr pellets in the range of 400-4000 cm⁻¹. The 5 solid UV-vis spectra were confirmed on a Perkin-Elmer Lambda 900 spectrometer. The powder X-ray 6 diffraction (PXRD) patterns were collected on a Bruker D8 Advance powder diffractometer with Cu 7 Ka radiation ($\lambda = 1.5406$ Å) at a scanning rate of 2°·min⁻¹ for 20 ranging from 3° to 50°. 8 9 Thermogravimetric analysis was carried out in the temperature range of 30-800 °C on a TA Q50 apparatus. Scanning electron microscopy (SEM) images were performed on a Hitachi SU8010 10 instrument equipped with an energy-dispersive spectroscopy (EDS) detector. EPR experiments were 11 recorded on a Bruker E-500 spectrometer working at X band (9.8 GHz). Raman spectra were carried 12 out on a B&W TEK BWS415-785S spectrometer, which was equipped with 100% laser power 13 irradiation in order to minimize the fluorescence interference. Laser: 785 nm, laser intensity: 10 mW. 14 15 Cyclic voltammetry (CV) was carried out on a CHI760E workstation (Shanghai CH Instrument Company, China) with a three-electrode system, where the counter, reference and working electrodes are a platinum 16 wire, an Ag/AgCl electrode and a modified glassy carbon electrode (GCE), respectively. For preparation of 17 the modified GCE, a bare GCE ($\Phi = 3$ mm) was polished with slurry alumina, sonicated and washed 18 thoroughly with ethanol and deionized water. 1 mg samples of Cd-CCP or Cd-CCP-X (X = F^- , Cl⁻, Br⁻ 19 20 and I^{-}) were dispersed in the mixture of 0.1mL deionized water and 10 µL Nafion (5%) by sonication to 21 form a suspension. Then 2.5 µL suspension was drop-coated onto the modified GCE, and the electrode was dried in air. 22

Synthesis of Cd-CCP. H₂bcbpCl₂ (19 mg, 0.04 mmol) and cadmium iodide (37 mg, 0.1 mmol) were added to a mixed solution of deionized water and acetonitrile (3/3 mL). The resulting solution was placed in a 23mL Teflon-lined stainless-steel autoclave and heated in an oven at 140 °C for five days. After cooling to room temperature, red block crystals (15 mg) were obtained in 24% yield based on H₂bcbpCl₂. FT-IR (KBr disk, v cm⁻¹): 3116 (w), 3051 (w), 1633 (s), 1611 (s), 1574 (m), 1535 (m),
 1486 (w), 1435 (m), 1389 (s), 1300 (w), 1248 (w), 1221 (w), 1039 (w), 1020 (w), 1006 (w), 852 (m),
 830 (m), 784 (s), 755 (w), 700 (w), 666 (w), 577 (w), 471 (w).

X-ray Data Collection and Structure Determination. Data collection for Cd-CCP was performed 4 on a Bruker APEXII diffractometer equipped with graphite monochromated Mo-K α radiation (λ = 5 0.71073 Å) by using the ω -scan mode at 293(2) K. The structure was solved by direct methods, the 6 metal atoms were located from the E-maps, and other non-hydrogen atoms were derived from the 7 successive difference Fourier peaks. The structure was refined on F^2 by full-matrix least-squares using 8 the SHELXTL-2014 program package.^{S2} All non-hydrogen atoms were refined anisotropically. 9 Hydrogen atoms of the organic ligands were generated theoretically onto the specific atoms and refined 10 with fixed thermal factors. Details of the structure solution and final refinement for Cd-CCP are given 11 in Table S1. CCDC-2040463 contains the supplementary crystallographic data. 12

1 Table S1 . Crystal Data and Data Collection and Refinement Parameters for Cd-CC	1	Table S1.	Crystal Data and	Data Collection	and Refinement	Parameters for	Cd-CCP.
--	---	-----------	------------------	-----------------	----------------	----------------	---------

Compound	Cd-CCP
formula	$C_{48}H_{38}N_4O_{11}I_4Cd_2\\$
formula weight	1579.22
temperature (K)	293 (2)
wavelength (Å)	0.71073
crystal system	monoclinic
space group	<i>P</i> 2 ₁ /c
<i>a</i> (Å)	10.9067(3)
<i>b</i> (Å)	33.3651(10)
<i>c</i> (Å)	14.2180(5)
α (°)	90
β(°)	96.6610(10)
γ(°)	90
volume (Å ³)	5139.0(3)
Ζ	4
D_c (Mg/m ³)	2.041
μ (mm ⁻¹)	3.292
data collected	79202
unique data (R_{int})	10508
parameters	626
GOF on F^2	1.059
$R_1 = [I > 2\sigma(I)]$	0.0742
wR ₂ ^b	0.2197

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$. ^b $wR_2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$

1 Table S2. The comparison of the structures and properties between Cd-CCP and the viologen-

2 based CCPs reported in the literatures.

Coordination Polymers	Structure	Properties	References
$[Cu_2L(H_2O)_2] \cdot (NO_3)_2 \cdot 5.5H_2O$	3D cationic framework; nbo-type topology	dye capture and Cr ₂ O ₇ ²⁻ removal	S3
${[Cd(Bpybc)_2] \cdot 2ClO_4 \cdot 7H_2O_n}$	1D double helical cationic chains	photochromism	S4
${[Ln_3(bcbp)_3(NO_3)_7] \cdot NO_3 \cdot ClO_4}_n$	3D cationic framework;	$Cr_2O_7^{2-}$ and ammonia sensing	S5
$\{[Zn_3(L)_2(H_2O)_8] \cdot 2(SO_4) \cdot 2(H_2O)\}_n$	four-fold interpenetrating 2D cationic layer	photochromism	
$\{[Zn(L)(H_2O)_2]\cdot NO_3\cdot H_2O\}_n$	3D cationic two-fold interpenetrating framework	photochromism	S6
${[Eu(\mu_2-OH)(L)(H_2O)] \cdot NO_3 \cdot H_2O}_n$	1D cationic rod-like infinite chain	photochromism, photo- modulated luminescence, photoswitchable NLO and piezoelectric properties	S7
$ \{ [Tb_4(\mu_3 - OH)_4L_3 \cdot (H_2O)_7] Cl_{0.63} \\ \cdot (NO_3)_{4.37} \cdot 3H_2O \}_n $	3D cationic framework;	photochromism, photomodulated fluorescence, and luminescent pH Sensing	S8
$[Cd_4(pc_1)_3Cl_6]$ ·CdCl ₄ ·guest	3D cationic framework;	ammonia uptake	S9
Zn(bcbp)(PO ₃ F)	2D cationic layer	photochromism	S10
$\{ [Cu_2(bdcbp)(H_2O)_2] \cdot 2NO_3 \cdot 2H_2O \}_n$	3D cationic framework	Cr ₂ O ₇ ^{2–} adsorption and dye separation	S11
Eu(bcbpy) ₃ (H ₂ O) ₃ ·3NO ₃	3D cationic framework;	colorimetric and thermochromic responses	S12
$\{ [Cd(bcbp)_2(CdI_4)] \cdot 3H_2O \}_n$	3D cationic framework; thirteen-fold interpenetrating dia network	selective coloration and ion- controlled photochromism	This work

Table S3. EDS results for **Cd-CCP-X**.^{S13}

Cd-CCP-F: ${[Cd(bcbp)_2(CdI_4)_{0.65}F_{0.70}] \cdot 3H_2O}_n$							
Point 1		Point 2		Point 3		Average	
Element	Weight%	Element	Weight%	Element	Weight%	Element	Weight%
С	41.6	С	41.2	С	42.4	С	41.7
N	4.5	N	4.7	N	3.8	N	4.3
F	1.2	F	1.0	F	1.1	F	1.1
Cd-CCP-CI	: {[Cd(bcbp	$)_2(CdI_4)_{0.54}C$	$l_{0.92}] \cdot 3H_2O$	n			
Point 1		Point 2		Point 3	No No No No F 1.1 F 1.1 Point 3 Average Element Weight% Element Weight% C 43.1 C 43.6 N 4.3 N 4.2 Cl 3.0 Cl 2.7 Point 3 Average Element Weight% Element Weight% Cl 3.0 Cl 2.7 Point 3 Average 44.6 45.2 C 45.2 C 44.6 N 4.4 N 4.2 Br 7.8 Br 7.4		
Element	Weight%	Element	Weight%	Element	Weight%	Element	Weight%
С	44.2	С	43.4	С	43.1	С	43.6
N	4.3	N	4.0	N	4.3	N	4.2
Cl	2.8	Cl	2.3	Cl	3.0	Cl	2.7
Cd-CCP-Br	:: {[Cd(bcbp	$)_2(CdI_4)_{0.39}B$	$r_{1.23}].3H_2O\}$	n	1	1	I
Point 1		Point 2		Point 3		Average	
Element	Weight%	Element	Weight%	Element	Weight%	Element	Weight%
С	43.3	С	45.3	С	45.2	С	44.6
N	3.9	N	4.2	N	4.4	N	4.2
Br	7.7	Br	6.8	Br	7.8	Br	7.4
Cd-CCP-I: ${[Cd(bcbp)_2(CdI_4)_{0.34}I_{1.32}] \cdot 3H_2O}_n$							
Point 1		Point 2		Point 3		Average	
Element	Weight%	Element	Weight%	Element	Weight%	Element	Weight%
С	42.8	С	42.7	C	43.4	С	43.0
N	4.6	N	3.8	N	3.6	N	4.0
I	25.7	I	26.0	I	256.2	I	25.6

Table S4 Formal potentials, onset potentials of the first reduction peaks, HOMO and LUMO
 energies and band gaps of Cd-CCP and Cd-CCP-X.^a

	E ₁	E ₂	E ^{Red} Onset	Eg	LUMO	НОМО
	(V)	(V)	(V)	(eV) ^b	(eV)°	(eV) ^d
Cd-CCP	-0.242	-0.843	-0.202	2.000	-4.498	-6.498
Cd-CCP-F	-0.258	-0.849	-0.210	2.200	-4.490	-6.690
Cd-CCP-Cl	-0.262	-0.875	-0.218	2.175	-4.482	-6.657
Cd-CCP-Br	-0.282	-0.936	-0.239	1.990	-4.461	-6.451
Cd-CCP-I	-0.311	-0.967	-0.257	1.959	-4.443	-6.402

3

4

⁵ ^aPotentials are reported vs Ag/AgCl. ^bBand gap calculated from the onset wavelength (λ_{onset} , nm) of 6 the UV-vis spectrum using $E_g = 1240/\lambda_{onset}$. ^cCalculated using $E_{LUMO} = -(E^{Red}_{onset} + 4.70)(eV)$.^{S14} 7 ^dHOMO = LUMO - E_g .

Band (cm ⁻¹)	Assignment		
3116 (w)	O–H stretching in water		
3051 (w)	C–H stretching from pyridinium rings		
1633 (s)	pyridinium ring stretching		
1611 (s)	C=N/C=C stretching from pyridinium rings		
1574 (m)	Asymmetric stretching vibration of the carboxylate group		
1535 (m)	Aromatic C–C ring stretching		
1486 (w)	Aromatic C–C ring stretching		
1435 (m)	Aromatic C–C ring stretching		
1389 (s)	Symmetric stretching vibration of the carboxylate group		
1300 (w)	Aromatic ring stretching		
1248 (w)	C–C stretching		
1221 (w)	C–pyridinium ring breathing		
1039 (w)	C–pyridinium ring breathing		
1020 (w)	Aromatic C–H in plane bending		
1006 (w)	Aromatic ring stretching		
852 (m)	Aromatic ring stretching		
830 (m)	Aromatic C–H pyridinium ring substitution bands		
784 (s)	Aromatic ring stretching		

Table S5. FT-IR spectrum signals and assignment for Cd-CCP.^{S15}

2 Figure S1 Asymmetric unit of Cd-CCP (all atoms with displacement ellipsoids at the 30% probability level;

3 symmetry codes: A, 2+x, 3/2-y, 1/2+z). Hydrogen atoms are omitted for clarity.

4

1

5 Figure S2 Coordination mode of Harris notation $[2.1_11_11_21_2]$ for the deprotonated bcbp ligand in Cd-CCP.

6

7 Figure S3 (a) View of the coordination mode of Cd(II) ion in Cd-CCP. (b) Representation of the diamondoid cage in

8 Cd-CCP.

Figure S4 (a) Single topological 3D dia net of Cd-CCP viewed from b axis; (b) Thirteen-fold interpenetrated
network of Cd-CCP viewed from b axis.

Figure S5 Presentation of 3D cationic framework of Cd-CCP viewing along a axis, with triangular channels occupied with [CdI₄]²⁻ anions.

Figure S6 TGA curve of Cd-CCP. The thermogravimetric analysis indicates three lattice water molecules were gradually released during 30-105 °C with 3.64% weight loss (calcd 3.42%). And its framework is stable up to 348 °C, after which the framework begins to collapse.

2 Figure S7 SEM images and EDS mappings of Cd-CCP-F (a), Cd-CCP-Cl (b), Cd-CCP-Br (c), and Cd-CCP-I (d).

- 4
- 5

7 Figure S8 Cyclic voltammograms of Cd-CCP and Cd-CCP-X with the corresponding sodium salts as supporting 8 electrolytes (1 M, NaF, NaF, NaCl, NaBr, and NaI). Scan rate v = 50 mV s⁻¹.

Figure S11 FT-IR spectrum of Cd-CCP (green), Raman spectra of Cd-CCP (black), Cd-CCP-F (red) and Cd-CCP-

Figure S12 FT-IR spectrum of Cd-CCP (green), Raman spectra of Cd-CCP (black), Cd-CCP-Cl (red) and Cd-CCP-Cl-Xe (blue).

2 Figure S13 FT-IR spectrum of Cd-CCP (green), Raman spectra of Cd-CCP (black), Cd-CCP-Br (red) and Cd-

- 6 Figure S14 FT-IR spectrum of Cd-CCP (green), Raman spectra of Cd-CCP (black), Cd-CCP-I (red) and Cd-CCP-
- **I-Xe** (blue).

Magnetic Field/Gauss
Figure S15 EPR spectra of Cd-CCP-Xe (a), Cd-CCP-F-Xe (b), Cd-CCP-Cl-Xe (c), Cd-CCP-Br-Xe (d) and CdCCP-I-Xe (e).

5 References:

6 S1. (a) M. Leroux, N. Mercier, M. Allain, M. C. Dul, J. Dittmer, A. H. Kassiba, J. P. Bellat, G. Weber and I.

7 Bezverkhyy, Inorg. Chem., 2016, 55, 8587; (b) Z. Y. Li, W. Y. Cai, X. M. Yang, A. L. Zhou, Y. Zhu, H. Wang, X.

8 Zhou, K. C. Xiong, Q. F. Zhang and Y. L. Gai, Cryst. Growth Des., 2020, 20, 3466.

- 9 S2. G. M. Sheldrick, Acta Crystallogr. Sect. C-Struct. Chem., 2015, 71, 3.
- 10 S3 C. Zhang, Y. Liu, L. Sun, H. Shi, C. Shi, Z. Liang and J. Li, *Chem. Eur. J.*, 2018, 24, 2718.
- 11 S4 J. K. Sun, P. Wang, Q. X. Yao, Y. J. Chen, Z. H. Li, Y. F. Zhang, L. M. Wu and J. Zhang, J. Mater. Chem.,
- 12 2012, **22**, 12212.

- S5 Z. Li, W. Cai, X. Yang, A. Zhou, Y. Zhu, H. Wang, X. Zhou, K. Xiong, Q. Zhang and Y. Gai, *Cryst. Growth Des.*, 2020, 20, 3466.
- 3 S6 H. Y. Li, J. Xu, L. K. Li, X. S. Du, F. A. Li, H. Xu and S. Q. Zang, Cryst. Growth Des., 2017, 17, 6311.
- 4 S7 H. Y. Li, H. Xu, S. Q. Zang and T. C. W. Mak, *Chem. Commun.*, 2016, **52**, 525.
- 5 S8 H. Y. Li, Y. L. Wei, X. Y. Dong, S. Q. Zang and T. C. W. Mak, *Chem. Mater.*, 2015, **27**, 1327.
- 6 S9 M. Leroux, N. Mercier, M. Allain, M. C. Dul, J. Dittmer, A. H. Kassiba, J. P. Bellat, G. Weber and I.
- 7 Bezverkhyy, Inorg. Chem., 2016, 55, 8587.
- 8 S10 J. J. Liu, Y. F. Guan, M. J. Lin, C. C. Huang and W. X. Dai, *Cryst. Growth Des.*, 2016, 16, 2836.
- 9 S11 X. Yang, C. Yan, Z. Li, X. Li, Q. Yu, T. Sang, Y. Gai, Q. Zhang and K. Xiong, *Inorg. Chem.*, 2021, **60**, 5988.
- 10 S12 Y. Q. Sun, F. Wan, X. X. Li, J. Lin, T. Wu, S. T. Zheng and X. Bu, *Chem. Commun.*, 2016, **52**, 10125.
- 11 S13 (a) P. Yu, L. M. Wu, L. J. Zhou and L. Chen, J. Am. Chem. Soc., 2014, 136, 480; (b) P. Yu, L. J. Zhou and L.
- 12 Chen, J. Am. Chem. Soc., 2012, 134, 2227.
- 13 S14 C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, *Adv. Mater.*, 2011, 23, 2367.
- S15 H. L. Nguyen, F. Gandara, H. Furukawa, T. L. H. Doan, K. E. Cordova and O. M. Yaghi, *J. Am. Chem. Soc.*,
 2016, 138, 4330.