Supporting Information

Triazine-wingtips accelerated NHC-Pd catalysed

carbonylative Sonogashira cross-coupling reaction

Kan Zhang,^a Yanxiu Yao,^a Wenjin Sun,^a Rui Wen,^a Yanyan Wang,^a Huaming Sun^a, Weiqiang Zhang,^{*a} Guofang Zhang^{*a} and Ziwei Gao^{*a,b}

^aKey Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China. ^bSchool of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054,

P.R. China.

E-mail: <u>zwgao@snnu.edu.cn;</u> <u>gfzhang@snnu.edu.cn;</u> <u>zwq@snnu.edu.cn</u>.

Table of Contents

S-1. General experimental	S3
S-2. Synthetic routes for T-NHCs (1-4)	S3
S-3. Synthetic routes for T-NHC-Pds (5-12)	S5
S-4. Single crystal X-ray analysis of T-NHC-Pds (5, 8, 9, 11 and 12)	S8
S-5. ¹ H NMR experiment	S13
S-6. Optimization of carbonylative Sonogashira coupling reaction between	1a and
2a	S22
S-7. NMR-Data of 1,3-ynone products	S29
S-8. NMR spectrum of products	S37
S-9. References	S77

S-1 General experimental

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by thin layer chromatography using silica gel. All the reactions dealing with air or moisture sensitive compounds were carried out in a dry reaction vessel under positive pressure of argon. Air- and moisture-sensitive liquids and solutions were transferred via a syringe or a stainless-steel cannula. The thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point was between 60-90 °C). Gradient flash chromatography was conducted eluting with a continuous gradient from petroleum to the indicated solvent, and they were listed as volume/volume ratios. ¹H NMR and ¹³C NMR were recorded on a Bruker-400 MHz, 600 MHz Spectrometer (¹H: 400 MHz, ¹³C: 101 MHz and ¹H: 600 MHz, ¹³C: 151 MHz), using CDCl₃, DMSO-*d*₆ and D₂O as the solvent at room temperature. The chemical shifts (δ) were expressed in ppm and the coupling constants (*J*) were expressed in Hz. High-resolution mass spectra (HRMS) were recorded on a Bruker MAXIS spectrometer.

Scheme S1. Synthetic routes of T-NHCs (1-4)

The synthetic procedures of T-NHC (1). Firstly, in a 50 mL round bottom flask, **S1** 1.84 g (10 mmol), methanol (20 mL) and sodium bicarbonate (30 mmol, 2.52 g) were added in batches. After reacting for 10 hours at 40 °C, a white solid **S2** 1.58 g (90% yield) was obtained by recrystallization in petroleum ether and ethyl acetate (v/v = 20/1). And then acetone (10 mL) as solvent and reactant 1-methylimidazole (10 mmol, 821 mg) were added to react with **S2** (5 mmol, 875 mg). A white solid T-NHC (1) 1.11 g (yield: 86%) was collected with high purity.

T-NHC (1) (White solid was obtained in 86% isolated yield, 221 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.33 (s, 1H), 8.45 (s, 1H), 8.00 (s, 1H), 4.09 (s, 6H), 3.99 (s, 3H). ¹³C NMR (101 MHz, D₂O) δ 174.7, 163.0, 138.3, 126.5, 120.6, 58.1, 38.3. HRMS(ESI) m/z: [M-CI]⁻ calcd for C₉H₁₂CIN₅O₂, 222.0986; found, 222.0986.

The synthetic procedures of T-NHCs (2, 3, 4) were similar and the preparation process for T-NHC (1) was taken as an example. Firstly, in a 50 mL round bottom flask, **S1** (10 mmol, 1.84 g), methanol 20 mL and sodium bicarbonate (30 mmol, 2.52 g) were added in batches. After reacting for 6 hours at 0 °C, a white solid **S3** 1.58 g (yield: 90%) was obtained by recrystallization in petroleum ether and ethyl acetate (v/v = 20/1). To a 150 mL round-bottom flask containing **S3** (6 mmol, 1104 mg), 4-methoxyphenylboronic acid (760 mg, 5 mmol), Pd(PPh₃)Cl₂ (17.5 mg, 0.025 mmol), K₂CO₃ (1380 mg, 2 mmol) suspended in 50 mL toluene was added under nitrogen at 60 °C. It was purified by flash chromatography with dichloromethane and petroleum ether (v/v = 1/2) as elute. A white solid **S4** 1004 mg (yield: 80%) was collected. And then acetone (10 mL) as solvent and reactant 1-methylimidazole (5 mmol, 410 mg) were added to react with **S3** (2.5 mmol, 627 mg). A white solid T-NHC (**2**) 741 mg (yield: 89%) was collected with high purity.

T-NHC (2) (White solid was obtained in 89% isolated yield, 1.49 g).¹H NMR (600 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 8.63 (s, 1H), 8.57 (d, *J* = 8.4 Hz, 2H), 8.06 (s, 1H), 7.15 (d, *J* = 8.5 Hz, 2H), 4.19 (s, 3H), 3.90 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.9, 171.8, 164.3, 160.7, 137.6, 131.5, 125.6, 125.3, 118.9, 114.4, 56.1, 55.7, 36.6. HRMS(ESI) m/z: [M-CI]⁻ calcd for C₁₅H₁₆CIN₅O₂, 298.1299; found, 298.1294.

T-NHC (3) (White solid was obtained in 90% isolated yield, 1.43 g).¹H NMR (600 MHz, DMSO-*d*₆) δ 10.54 (s, 1H), 8.65 (s, 1H), 8.51 (d, *J* = 8.2 Hz, 2H), 8.06 (d, *J* = 1.9 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 4.21 (s, 3H), 4.05 (s, 3H), 2.45 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 174.4, 172.0, 160.8, 145.0, 137.6, 130.7, 129.6, 129.3, 125.3, 118.9, 56.2, 36.7, 21.3. HRMS(ESI) m/z: [M-CI]⁻ calcd for C₁₅H₁₆CIN₅O, 282.1349; found, 282.1350.

T-NHC (4) (White solid was obtained in 91% isolated yield, 1.73 g).¹H NMR (600 MHz, DMSO- d_6) δ 10.69 (s, 1H), 8.79 (s, 1H), 8.67 (dd, J = 17.4, 8.2 Hz, 4H), 8.10 (s, 1H), 7.74 (t, J

= 7.2 Hz, 1H), 7.63 (t, J = 7.6 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 4.09 (s, 3H), 3.90 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 172.5, 172.4, 164.3, 159.9, 137.6, 134.1, 133.7, 131.5, 129.1, 129.0, 125.8, 125.3, 119.0, 114.4, 55.7, 36.7. HRMS(ESI) m/z: [M-CI]⁻ calcd for C₂₀H₁₈CIN₅O: 344.1506; found, 344.1509.

S-3. Synthetic routes for T-NHC-Pds (5-12) complexes:

Scheme S2. Synthetic routes of T-NHC-Pds (5-12) complexes

The synthetic procedures of T-NHC-Pds (**5-10**) were similar and the preparation process for T-NHC-Pd (**5**) was taken as an example. Complex T-NHC-Pd (**5**) 286 mg (yield: 60%) were prepared by the direct reaction of $PdCl_2$ (1 mmol, 177 mg), K_2CO_3 (2 mmol, 276 mg) and a triazine imidazolium salt T-NHC (**1**) (1 mmol, 257 mg) in pyridine at 45°C. The formed yellowish powder was filtered and the solution was evaporated to dryness and washed with ethyl ether.

T-NHC-Pd (5) (Yellow solid was obtained in 60% isolated yield, 286 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.09 (dt, *J* = 5.0, 1.6 Hz, 2H), 8.05 (d, *J* = 2.3 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.40 - 7.35 (m, 2H), 7.03 (d, *J* = 2.3 Hz, 1H), 4.38 (s, 3H), 4.21 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.1, 156.6, 150.6, 149.3, 138.2, 132.8, 125.0, 124.0, 120.9, 56.5, 39.5. HRMS(ESI) m/z: [M-Cl]⁺ calcd for C₁₄H₁₇Cl₂N₆O₂Pd, 441.0056; found, 441.0058.

T-NHC-Pd (6) (Yellow solid was obtained in 35% isolated yield, 194 mg).¹H NMR (600 MHz, CDCl₃) δ 9.11 – 9.03 (m, 2H), 8.77 (d, *J* = 9.0 Hz, 2H), 8.13 (d, *J* = 2.3 Hz, 1H), 7.84 - 7.76 (m, 1H), 7.38 - 7.31 (m, 2H), 7.06 (d, *J* = 2.2 Hz, 1H), 6.74 (d, *J* = 8.9 Hz, 2H), 4.40 (s, 3H), 4.25

(s, 3H), 3.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 171.0, 163.1, 162.4, 156.1, 150.7, 137.0, 131.0, 126.3, 123.5, 122.8, 119.8, 112.9, 55.1, 54.5, 38.5. [M-Cl]⁺ calcd for C₂₀H₂₁Cl₂N₆O₂Pd, 517.0371; found, 517.0368.

T-NHC-Pd (7) (Yellow solid was obtained in 47% isolated yield, 252 mg).¹H NMR (600 MHz, CDCl₃) δ 9.10 - 9.03 (m, 2H), 8.67 (d, *J* = 8.3 Hz, 2H), 8.14 (d, *J* = 2.2 Hz, 1H), 7.83 - 7.76 (m, 1H), 7.34 (m, 2H), 7.11 - 7.05 (m, 3H), 4.40 (s, 3H), 4.27 (s, 3H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.2, 172.1, 163.5,157.3, 151.6, 144.3, 138.1, 132.0, 129.9, 129.3, 124.4, 123.9, 120.8, 56.2, 39.5, 21.8. HRMS(ESI) m/z: [M-Cl]⁺ calcd for C₂₀H₂₁Cl₂N₆OPd, 501.0422; found, 501.0416.

T-NHC-Pd (8) (Yellow solid was obtained in 42% isolated yield, 248 mg).¹H NMR (400 MHz, CDCl₃) δ 9.11 - 9.02 (m, 2H), 8.90 - 8.79 (m, 4H), 8.27 (d, *J* = 2.2 Hz, 1H), 7.85 - 7.76 (m, 1H), 7.59 - 7.50 (m, 1H), 7.42 - 7.29 (m, 4H), 7.11 (d, *J* = 2.2 Hz, 1H), 6.91 - 6.81 (m, 2H), 4.42 (s, 3H), 3.85 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 175.2, 172.1, 163.5, 157.3, 151.6, 144.3, 138.1, 132.0, 129.9, 129.3, 124.4, 123.9, 120.8, 56.2, 39.5, 21.8. HRMS(ESI) m/z: [M-Cl]⁺ calcd for C₂₅H₂₃Cl₂N₆OPd, 563.0579; found, 563.0579.

T-NHC-Pd (9) (Yellow solid was obtained in 58% isolated yield, 296 mg). ¹H NMR (400 MHz, CDCl₃ δ 9.09 (dd, *J* = 6.4, 1.5 Hz, 2H), 8.05 (d, *J* = 2.3 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.40 - 7.35 (m, 2H), 7.03 (d, *J* = 2.3 Hz, 1H), 4.38 (s, 3H), 4.21 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.0, 156.5, 150.52, 149.27, 138.1, 132.7, 124.9, 123.8, 120.7, 39.5. HRMS(ESI) m/z: [M-Cl]⁺ calcd for C₁₄H₁₆Cl₃N₆O₂Pd, 474.9669; found: 474.9663.

T-NHC-Pd (10) (Yellow solid was obtained in 35% isolated yield, 173 mg).¹H NMR (400 MHz, CDCl₃) δ 9.09 (t, *J* = 2.9 Hz, 1H), 8.98 - 8.92 (m, 1H), 8.04 (d, *J* = 2.3 Hz, 1H), 7.55 (tdd, *J* = 7.4, 2.9, 1.4 Hz, 1H), 7.39 (dt, *J* = 8.6, 5.3 Hz, 1H), 7.04 (d, *J* = 2.3 Hz, 1H), 4.34 (s, 3H), 4.19 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 173.1, 164.1, 160.5(d, ¹ *J* = 254.52 Hz), 156.3, 147.5(d, ⁴ *J* = 4.04 Hz), 140.6, 140.3, 125.5 (d, ² *J* = 18.18 Hz), 125.2(d, ³ *J* = 6.06 Hz), 124.0, 120.9, 56.5, 39.5. ¹⁹F NMR (376 MHz, CDCl₃) δ 122.11. HRMS(ESI) m/z: [M-Cl]⁺ calcd for C₁₄H₁₆Cl₂FN₆O₂Pd, 458.9964; found, 458.9963.

The synthetic procedures of T-NHC-Pds (**11** and **12**) were similar and the preparation process for T-NHC-Pd (**11**) was taken as an example. To a dried Schlenk flask, T-NHC (**1**) (257 mg, 1 mmol) and Ag₂O (115 mg, 0.5 mmol) were added under nitrogen atmosphere. Subsequently, dried CH₃CN (3 mL) was added via syringe. The mixture was stirred at room temperature for 20 min. Then PdCl₂(CH₃CN)₂ (259 mg, 1 mmol) in anhydrous CH₃CN (3 mL) was added at the room temperature. The formed yellowish powder NHC-Pd (**11**) (242 mg, yield: 55%) was filtered and the solution was evaporated to dryness and recrystallized in CH₃CN and petroleum ether (v/v = 1/2).

T-NHC (1') (White solid was obtained in 86% isolated yield, 315.8 mg). ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 8.45 (t, *J* = 1.8 Hz, 1H), 7.99 - 7.87 (m, 1H), 4.11 (s, 6H), 3.99 (s, 3H).¹³C NMR (151 MHz, DMSO-*d*₆) δ 172.91, 161.41, 137.43, 125.27, 118.94, 56.30, 36.65. HRMS(ESI) m/z: [M-PF₆]⁻ calcd for C₉H₁₂F₆N₅O₂P, 222.0986; found, 222.0986.

T-NHC-Pd (11) (Yellow solid was obtained in 55% isolated yield, 241 mg). ¹H NMR (600 MHz, DMSO-d6) δ 8.22 (d, *J* = 2.1 Hz, 1H), 7.71 (d, *J* = 2.1 Hz, 1H), 4.21 (s, 3H), 4.16 (s, 1H).¹³C NMR (151 MHz, DMSO) δ 172.6, 163.4, 159.0, 125.4, 120.4, 99.5, 56.6, 38.9.

T-NHC-Pd (12) (Yellow solid was obtained in 60% isolated yield, 286 mg).¹H NMR (600 MHz, DMSO-*d*₆) δ 8.30 (d, *J* = 2.3 Hz, 1H), 7.77 (d, *J* = 2.3 Hz, 1H), 4.18 (s, 6H), 4.16 (s, 3H), 2.07 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 172.4, 163.1, 126.4, 120.8, 118.0, 56.5, 38.9, 1.1.

S-4. Single crystal X-ray analysis of T-NHC-Pds (5, 8, 9, 11 and 12).

Table S1. Summary of X-ray crystallographic data for T-NHC-Pd (5).

	· · ·		
CCDC number	2005203		
Empirical formula	$C_{14}H_{16}Cl_2N_6O_2Pd$		
Formula weight	477.63		
Temperature/K	152.99		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.6642(6)		
b/Å	10.2036(8)		
c/Å	10.5774(8)		
a/°	80.779(2)		
β/°	73.728(2)		
γ/°	84.359(2)		
Volume/Å ³	884.64(11)		
Z	2		
<i>ρ</i> calcg/cm³	1.793		
µ/mm−1	11.439		
F(000)	476.0		
Crystal size/mm ³	0.5 × 0.4 × 0.3		
Radiation	CuKα (λ = 1.54178)		
2O range for data collection/°	8.794 to 136.414		
Index ranges	-9 ≤ h ≤ 10, -12 ≤ k ≤ 12, -12 ≤ l ≤ 12		
Reflections collected	8178		
Independent reflections	3158[R _{int} =0.0538, R _{sigma} =0.0559]		
Data/restraints/parameters	3158/0/229		
Goodness-of-fit on F ²	1.083		
Final R indexes [$l \ge 2\sigma$ (l)]	$R_1 = 0.0573, wR_2 = 0.1518$		
Final R indexes [all data] $R_1 = 0.0577, wR_2 = 0.15$			
Largest diff. peak/hole / e Å-3	3.30/-1.34		

Figure S1. Single-crystal structure of T-NHC-Pd (**5**) (thermal ellipsoids set at 50% probability; hydrogen atoms have been omitted for clarity).

CCDC number	2039570		
Empirical formula	C ₂₅ H ₂₂ Cl ₂ N ₆ OPd		
Formula weight	599.78		
Temperature/K	152.99		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.7459(5)		
b/Å	12.3604(6)		
c/Å	12.4452(7)		
$lpha/^{\circ}$	75.518(2)		
β/°	70.882(2)		
γ/°	89.938(2)		
Volume/Å ³	1225.96(12)		
Z	2		
<i>p</i> calcg/cm³	1.625		
<i>μ</i> /mm−1	8.366		
<i>F</i> (000)	604		
Crystal size/mm ³	$0.5 \times 0.4 \times 0.3$		
Radiation	CuKα (λ = 1.54178)		
2O range for data collection/°	7.416 to 136.608		
Index ranges	-10 ≤ h ≤ 9, -14 ≤ k ≤ 14, -14 ≤ l ≤ 14		
Reflections collected	19809		
Independent reflections	4485[Rint=0.0354, R _{sigma} = 0.0255]		
Data/restraints/parameters	4485/0/318		
Goodness-of-fit on F ²	1.090		
Final R indexes [$l \ge 2\sigma(l)$]	<i>R1</i> = 0.0281, <i>wR2</i> = 0.0794		
Final R indexes [all data]	<i>R1</i> = 0.0284, <i>wR2</i> = 0.0797		
Largest diff. peak/hole / e Å ⁻³	1.53/-0.44		

Table S2.	Summary	/ of X-rav	crystallogra	aphic data fo	or T-NHC-Pd ((8)
14510 02.	Carrinary	, 01 / 103	oryotanogra	aprillo dalla h		(-)

Figure S2. Single-crystal structure of T-NHC-Pd (**8**) (thermal ellipsoids set at 50% probability; hydrogen atoms have been omitted for clarity).

CCDC number	2005204		
Empirical formula	$C_{14}H_{15}CI_3N_6O_2Pd$		
Formula weight	512.07		
Temperature/K	152.99		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.6323(4)		
b/Å	10.3450(5)		
c/Å	10.7361(5)		
α/°	77.526(2)		
β/°	78.814(2)		
γ/°	83.699(2)		
Volume/Å ³	916.02(8)		
Z	2		
hocalcg/cm ³	1.857		
μ/mm-1	12.409		
<i>F</i> (000)	508.0		
Crystal size/mm ³	$0.5 \times 0.4 \times 0.3$		
Radiation	CuKα (λ = 1.54178)		
2O range for data collection/°	8.776 to 136.524		
Index ranges	$-10 \le h \le 10, -10 \le k \le 12, -12 \le l \le 12$		
Reflections collected	14017		
Independent reflections	3344[R _{int} =0.0420, R _{sigma} = 0.0309]		
Data/restraints/parameters	3344/0/238		
Goodness-of-fit on F ²	1.089		
Final R indexes [$l \ge 2\sigma(l)$]	$R_1 = 0.0322, wR_2 = 0.0840$		
Final R indexes [all data]	$R_1 = 0.0328, wR_2 = 0.0845$		
Largest diff. peak/hole / e Å ⁻³	2.55/-0.42		

 Table S3.
 Summary of X-ray crystallographic data for T-NHC-Pd (9).

Figure S3. Single-crystal structure of T-NHC-Pd (**9**) (thermal ellipsoids set at 50% probability; hydrogen atoms have been omitted for clarity).

CCDC number	2005201	
Empirical formula	$C_{11}H_{14}Cl_2N_6O_2Pd$	
Formula weight	439.58	
Temperature/K	152.99	
Crystal system	triclinic	
Space group	P-1	
a/Å	7.3845(4)	
b/Å	10.3301(6)	
c/Å	10.8624(6)	
α/°	75.1030(10)	
β/°	86.4900(10)	
γ/°	88.6250(10)	
Volume/Å3	799.23(8)	
Z	2	
pcalcg/cm3	1.827	
µ/mm-1	12.593	
F(000)	436.0	
Crystal size/mm3	$0.5 \times 0.4 \times 0.3$	
Radiation	CuKα (λ = 1.54178)	
2Θ range for data collection/°	8.436 to 136.49	
Index ranges	-8 ≤ h ≤ 8, -12 ≤ k ≤ 12, -13 ≤ l ≤ 13	
Reflections collected	18183	
Independent reflections	2888[Rint = 0.0340, Rsigma = 0.0245]	
Data/restraints/parameters	2888/0/203	
Goodness-of-fit on F2	1.124	
Final R indexes [I >= 2σ (I)]	R1 = 0.0242, wR2 = 0.0629	
Final R indexes [all data] R1 = 0.0242, wR2 = 0.0629		
Largest diff. peak/hole / e Å-3	0.43/-0.92	

Table S4.	Summar	v of X-rav	crystallo	praphic data	for T-	-NHC-Pd	(11)
	Gammar	y 01 / 10y	oryotano	grupino dala			

Figure S4. Single-crystal structure of T-NHC-Pd (**11**) (thermal ellipsoids set at 50% probability; hydrogen atoms have been omitted for clarity).

CCDC number	2005202		
Empirical formula	$C_{11}H_{14}CIF_6N_6O_2PPd$		
Formula weight	549.10		
Temperature/K	153.0		
Crystal system	monoclinic		
Space group	P21/n		
a/Å	7.8588(10)		
b/Å	23.213(3)		
c/Å	10.2891(13)		
<i>α</i> /°	90		
β/°	103.435(4)		
γ/°	90		
Volume/Å ³	1825.6(4)		
Z	4		
ρcalcg/cm ³	1.998		
μ/mm−1	1.331		
<i>F</i> (000)	1080.0		
Crystal size/mm ³	$0.5 \times 0.4 \times 0.3$		
Radiation	ΜοΚα (λ = 0.71073)		
2O range for data collection/°	5.374 to 52.846		
Index ranges	-9 ≤ h ≤ 9, -29 ≤ k ≤ 29, -11 ≤ l ≤ 12		
Reflections collected	21945		
Independent reflections	3718 [R _{int} = 0.0253, R _{sigma} = 0.0166]		
Data/restraints/parameters	3718/0/257		
Goodness-of-fit on F ²	1.112		
Final R indexes [I >= 2σ (I)]	R ₁ = 0.0381, wR ₂ = 0.0918		
Final R indexes [all data]	R ₁ = 0.0397, wR ₂ = 0.0927		
Largest diff. peak/hole / e Å-3	1.70/-0.88		

 Table S5.
 Summary of X-ray crystallographic data for T-NHC-Pd (12).

S-5. ¹H NMR experiment

The reaction procedures of ¹H NMR experiment (**S-5-1**, **S-5-3**, **S-5-4**) were similar and the preparation process for (**S-5-1**) was taken as an example. To a solution of complex T-NHC-Pd (**8**) (0.025 mmol) and the internal standard 4-phenyltoluene (0.025 mmol) in 5 mL CDCl₃, 4- ethynyltoluene (0.025 mmol) and then Et_3N (0.025 mmol) and were added. And then the ¹H NMR spectra of the reaction solution at different time were recorded.

S-5-1. ¹H NMR experiment of complex T-NHC-Pd (5) with *4*-ethynyltoluene and Et₃N.

To shed light on the activation of the alkynyl groups by T-NHC-Pd complexes, the interaction between complex T-NHC-Pd (**5**), 4-ethynyltoluene and Et₃N were studied by ¹H NMR experiment, which was considered as a powerful technique to investigate reaction process of an catalytic system. The broadened peak at δ 2.56 ppm was ascribed to the Et₃N-CH₂ resonance, which indicated that probably the presence of active H led to the broadening of the peak in **Figure S6 (a, b)**. The -CH₃ signal of Et₃N appeared at δ 1.05 ppm. With the procedding of the reaction, the chemical shifts of the two signals move to the lower field, from the initial δ 2.56 and 1.05 ppm to 2.89 and 1.25 ppm, respectively and then the movement almost ceased. And the peaks were sharpened gradually to the standard quartet shape of triethylamine, which is due to the protonation of triethylamine and finally generates Et₃N·HCI. There is an alkynyl H signal at δ 3.02 ppm. Its chemical shift remained unchanged with extension of the reaction time. However, the peak intensity was getting weaker, which is due to the consumption of 4-ethynyltoluene in the reaction system when its alkynyl group is coordinated with the palladium center. In addition, no evident chemical shifts in other places of the NMR spectra have been found.

In the process of ¹H NMR experiment, the color of the reaction is also visible to the naked eye, which changed gradually from the initial bright yellow to darker and finally to brown-black, as shown in **Figure S7**.

Figure S6. 600 MHz ¹H NMR spectra for a complex T-NHC-Pd (**5**) solution with the addition of 4-ethynyltoluene and Et₃N in CDCl₃.

Figure S7. Reaction time dependence of the color of the complex T-NHC-Pd (**5**) solution with the addition of 4-ethynyltoluene and Et₃N in CDCl₃.

S-5-2. HR-ESI-MS detection of intermediates in the reaction system in S-5-1.

The ¹H NMR titration experiment was also investigated by ESI-MS analysis, in which the ion peak at m/z 521.0921 is corresponding to $C_{23}H_{23}N_6O_2Pd^+$

Figure S8. ESI(+)-MS spectrum of the organometallic Pd complex.

S-5-3. ¹H NMR experiment of PdCl₂(PPh₃) with 4-ethynyltoluene and Et₃N.

Additionally, we also examined the reaction with the classic PdCl₂(PPh₃) palladium complex as catalyst under the same condition. As displayed in **Figure S9**, the chemical shifts and peak shapes of the two protons in triethylamine almost retained with the reaction time consumed. The peak integration values of the protons in 4-ethynyltoluene changed hardly with the reaction proceeding as we observed in the catalytic system of PdCl₂(PPh₃). The solution color also remained its initial bright yellow as shown in **Figure S10**.

f1 (ppm)


```
3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 f1 (ppm)
```

Figure S9. 600 MHz ¹H NMR spectra for a PdCl₂(PPh₃) solution with the addition of 4ethynyltoluene and Et₃N in CDCl₃.

Figure S10. Reaction time dependence of the color of the complex $PdCl_2(PPh_3)$ solution with the addition of 4-ethynyltoluene and Et_3N in $CDCl_3$.

S-5-4. ¹H NMR titration experiment of NHC-Pd with *4*-ethynyltoluene and Et₃N.

Next, in order to further prove that the addition of the triazine ring promotes the deprotonation process, we compared complex T-NHC-Pd (5) with other well-known palladium complexes. Firstly, the NHC-Pd complex reported by the Orpen group was employed for ¹H NMR investigation under same condition. It was found that there is no obvious chemical shift movement and peak broadening for the protons in triethylamine and 4-ethynyltolueneas shown in **Figure S11**, and the color of the reaction solution kept the initial bright yellow and no obvious change was observed with reaction proceeding (**Figure S12**).

3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 f1 (ppm)

Figure S11. 600 MHz ¹H NMR spectra for a NHC-Pd solution with the addition of 4ethynyltoluene and Et₃N in CDCl₃.

Figure S12. Reaction time dependence of the color of the complex NHC-Pd solution with the addition of 4-ethynyltoluene and Et₃N in CDCl₃.

S-5-5. Comparison of the catalytic performance

In order to be able to clearly observe the speed of the reaction of the three different palladium complexes with 4-ethynyltoluene, we made a broken line statistics chart, the horizontal coordinate is the reaction time, and the vertical coordinate is the concentration of 4-ethynyltoluene. It can be seen from the **Figure S13** that at a same reaction time, the palladium complex T-NHC-Pd (**5**) containing the triazine-based NHC ligand has the highest rate for consumption of 4-ethynyltoluene.

The ¹H NMR experiment procedures of T-NHC-Pd (**5**), NHC-Pd and PdCl₂(PPh₃) were similar and the preparation process for T-NHC-Pd (**5**) was taken as an example. To a solution of complex T-NHC-Pd (**5**) (0.025 mmol) and the internal standard 4-phenyltoluene (0.025 mmol) in 5 mL CDCl₃, 4-ethynyltoluene (0.025 mmol) and Et₃N (0.025 mmol) were added.

The initial concentration of 4-ethynyltoluene: c=n/v=0.025 mmol/5 mL=5*10⁻³ mmol/mL= 5*10⁻³ mmo

And then the ¹H NMR spectra of the reaction solution at different time were recorded. Using the internal standard 4-phenyltoluene as a reference, the ethynyl hydrogen signals of compound 4-ethynyltoluene were integrated at different time. The integrated value of the ethynyl hydrogen signals of the 4-ethynyltoluene corresponds to the 4-ethynyltoluene concentration in the solution (horizontal coordinate was the reaction time). And we displayed the dependence of 4-ethynyltoluene concentration on the reaction time in **Figure S13** based on the data in **Table S6**, **S7**, **S8**. At the same time, we also calculated the average reaction rates of the reactions and they were shown in **Figure S14**.

Time (min)		4-ethynyltoluene (mol/L)
	Integrated value of alkynyl hydrogen	
0	1.00	5.00*10 ⁻³
4	0.91	4.55*10 ⁻³
8	0.83	4.15*10 ⁻³
12	0.75	3.75*10 ⁻³
16	0.68	3.40*10 ⁻³
28	0.62	3.10*10 ⁻³
40	0.53	2.65*10 ⁻³
52	0.48	2.40*10 ⁻³
60	0.42	2.10*10 ⁻³

Table S6. Calculated 4-ethynyltoluene concentrations at different reaction time with T-NHC-Pd (5) as precatalyst in the ¹H NMR experiments.

[a] Reaction conditions: T-NHC-Pd (5) (0.025 mmol), 4-ethynyltoluene (0.025 mmol), Et₃N (0.025 mmol), CDCl₃ (5 mL), internal standard 4-phenyltoluene (0.025 mmol), RT, 60 min.

Table S7. Calculated 4-ethynyltoluene concentrations at different reaction time with PdCl₂(PPh₃) as precatalyst in the ¹H NMR experiments.

Time (min)		4-ethynyltoluene (mol/L)
	Integrated value of alkynyl hydrogen	
0	1.00	5.00*10 ⁻³
4	0.98	4.90*10 ⁻³
8	0.96	4.80*10 ⁻³
20	0.93	4.65*10 ⁻³
32	0.92	4.60*10 ⁻³
40	0.92	4.60*10 ⁻³
52	0.92	4.60*10 ⁻³
60	0.92	4.60*10 ⁻³

[a] Reaction conditions: PdCl₂(PPh₃) (0.025 mmol), 4-ethynyltoluene (0.025 mmol), Et₃N (0.025 mmol), CDCl₃ (5 mL), internal standard 4-phenyltoluene (0.025 mmol), RT, 60 min.

Table S8. Calculated 4-ethynyltoluene concentrations at different reaction time with NHC-Pd as precatalyst in the ¹H NMR experiments.

Time (min)		4-ethynyltoluene (mol/L)
	Integrated value of alkynyl hydrogen	
0	1.00	5.00*10 ⁻³
4	0.98	4.90*10 ⁻³
8	0.97	4.85*10 ⁻³
20	0.97	4.85*10 ⁻³
32	0.97	4.85*10 ⁻³
40	0.96	4.80*10 ⁻³
52	0.96	4.80*10 ⁻³
60	0.95	4.80*10 ⁻³

[a] Reaction conditions: NHC-Pd (0.025 mmol), 4-ethynyltoluene (0.025 mmol), Et₃N (0.025 mmol), CDCl₃ (5 mL), internal standard 4-phenyltoluene (0.025 mmol), RT, 60 min.

Figure S13. Comparison of the catalytic performance of complex T-NHC-Pd (5) with other catalyst precursors of NHC-Pd and PdCl₂(PPh₃).

Figure S14. Catalyst T-NHC-Pd (5) promoted the deprotonation of terminal alkyne.

The average reaction rates of the reactions were calculated as follows:

(1) for precatalyst T-NHC-Pd (5):

Concentration of 4-ethynyltoluene after 60 minutes reaction is:

c=n/v=0.025*(1.00-0.42) mmol/5 mL=2.9*10⁻³ mmol/mL=2.9*10⁻³ mol/L

the average reaction rate is:

 \bar{v} =c/t=2.9*10⁻³ mol/L/60min=4.8*10⁻⁵ mol/L/min

(2) for precatalyst PdCl₂(PPh₃):

c=n/v=0.025*(1.00-0.92) mmol/5 mL=4*10⁻⁴ mmol/mL=4*10⁻⁴ mol/L

 \bar{v} =c/t=4*10⁻⁴ mol/L/60 min=6.7*10⁻⁶ mol/L/min

(3) for precatalyst NHC-Pd:

c=n/v=0.025*(1.00-0.95) mmol/5 mL=2.5*10⁻⁴ mmol/mL=2.5*10⁻⁴ mol/L

```
\bar{v}=c/t=2.5*10<sup>-4</sup> mol/L/60min=4.2*10<sup>-6</sup> mol/L/min
```

S-6 Optimization of Sonogashira carbonylation coupling reaction between1a and 2a

S-6.1 Optimization of solvents in the titled reaction between 1a and 2a

Table S9. Optimization of solvents in the titled reaction between 1a and 2a

Entry	[Pd]	[L]	Solvent	Base	Yield(%)
1	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	DMF	Et₃N	trace
2	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	CH₃CN	Et₃N	42
3	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	DMSO	Et₃N	trace
4	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	Toluene	Et₃N	79
5	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	1,4-dioxane	Et₃N	45
6	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	H ₂ O	Et₃N	25
7	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	PEG-400	Et₃N	trace

[a] Reaction conditions: 4-iodoanisole (1 mmol), phenylacetylene (1.2 mmol), toluene (1 mL), Et₃N (1.4 mmol, 1.4 equiv.), PdCl₂(CH₃CN)₂ (1 mol%), T-NHC (1) (2 mol%), CO (5 atm), 100 °C, 8 h. [b] Determined by GC analysis of the reaction mixture using biphenyl as an internal standard.

The Pd catalysed carbonylation was carried out using a high-pressure steel autoclave with heating jacket (from WATTCAS, **Figure S15**). For each carbonylation procedure, seven reactions were carried out in a parallel reaction modulor, a spare vial was used to monitor the reaction temperature. The pressure of CO can be adjusted (1-20 atm).

Figure S15. High-pressure steel autoclave and parallel reaction modulor.

S-6.2 Optimization of bases in the titled reaction of 1a and 2a

Tempreture Yield(%) Entry [Pd] Solve [L] Base (°C) 1 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene 100 47 Cs_2CO_3 2 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene CH₃COOCs 100 53 3 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene K₂CO₃ 100 43 4 PdCl₂(CH₃CN)₂ T-NHC (**1**) Toluene Li₂CO₃ 100 trace PdCl₂(CH₃CN)₂ KOH 41 5 T-NHC (1) Toluene 100 6 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene DIPEA 100 46 7 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene 79 Et₃N 100 PdCl₂(CH₃CN)₂ DBU 8 T-NHC (1) Toluene 100 17 9 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene DBN 100 10 10 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene ^tBuOK 100 5 11 PdCl₂(CH₃CN)₂ T-NHC (1) Toluene aniline 100 40 12 PdCl₂(CH₃CN)₂ Toluene benzamide 100 12 T-NHC (1)

Table S10. Optimization of different bases in the titiled reaction between 1a and 2a

[a] Reaction conditions: 4-iodoanisole (1 mmol), phenylacetylene (1.2 mmol), Et₃N (1.4 mmol, 1.4 equiv.), toluene (1 mL), PdCl₂(CH₃CN)₂ (1 mol%), T-NHC (1) (2 mol%), CO (5 atm), 100 °C, 8 h. [b] Determined by GC analysis of the reaction mixture using biphenyl as an internal standard.

S-6.3 Optimization of palladium sources and ligands in the titled reaction of 1a and 2a

Table S11. Optimization of palladium to ligand ratio in the titled reaction between 1a and 2a

Entry	PdCl ₂ (CH ₃ CN) ₂	T-NHC (1)	Yield
Enuy	(mol%)	(mol%)	(%)
1	2	2	52
2	2	4	68
3	4	2	52
4	6	2	60
5	2	6	55
6	0.5	1	53
7	1	2	79
8	3	6	67
9	/	2	trace
10	1	/	58

[a] Reaction conditions: **1a** 4-iodoanisole (1 mmol), **2a** phenylacetylene (1.2 mmol), toluene (1 mL), Et₃N (1.4 mmol, 1.4 equiv.), $PdCl_2(CH_3CN)_2$ (0.5-6 mol%), T-NHC (**1**) (1-6 mol%), CO (5 atm), 100 °C, 8 h. [b] Conversion and yield were determined by GC-MS using 1,1'-biphenyl as internal standard.

S-6.4 Optimization of palladium sources and ligands in the titled reaction of 1a and 2a

Yield (%) L Entry [Pd] 3aa 4aa 1 PdCl₂(CH₃CN)₂ T-NHC (1) 79 1 2 Pd(OAc)₂ T-NHC (1) 71 1 3 Pd₂(DBA)₃ T-NHC (1) 86 6 4 Pd(PPh₃)₄ T-NHC (1) 30 3 5 PdCl₂(PPh₃)₂ T-NHC (1) 24 13 6 PdCl₂(dppf) T-NHC (1) 75 <1 7 PdCl₂ T-NHC (1) 93 <1 8 PdCl₂ PPh₃ 52 18 9 PdCl₂ **Xantphos** 77 5 PdCl₂ 75 7 10 dppf 1 11 PdCl₂ 65 dppp **IPr**•HCI 12 PdCl₂ 86 5 13 PdCl₂ T-NHC (2) 92 <1 14 PdCl₂ T-NHC (3) 94 <1 15 T-NHC (4) PdCl₂ 95 <1

 Table S12. Optimization of Pd sources and ligands in the titled reaction between 1a and 2a

[a] Reaction conditions: **1a** 4-iodoanisole (1 mmol), **2a** phenylacetylene (1.2 mmol), toluene (1 mL), Et₃N (1.4 mmol, 1.4 equiv.) [Pd] (1 mol%), L (2 mol%), CO (5 atm), 100 °C, 8 h. [b] Conversion and yield were determined by GC-MS using 1,1'-biphenyl as internal standard.

In the Pd(CH₃CN)₂Cl₂ / T-NHC (**1**) catalytic system, toluene and Et₃N were screened as the optimized solvent and base, respectively, giving a yield of 79% for 1,3-ynone (**Table S12**, entry 1). Moreover, other palladium sources, including Pd(OAc)₂, Pd₂(DBA)₃, Pd(PPh₃)₄, PdCl₂(PPh₃)₂, PdCl₂(dppf) and PdCl₂, can also promote the reaction in such catalytic system, but it is more inclined to have no carbonylation product 4aa (**Table S12**, entries 2-7). And the results showed that the highest yield of **3aa** (93%) was obtained with good regioselectivity when PdCl₂ was used as the Pd source. We then turned our attention to investigate the effect of various ligands with PdCl₂ as the Pd precursor (entries 8-15). It was obvious that when P-containing ligands PPh₃, Xantphos, dppf, dppp were added in the catalytic system, only 52% 77%, 75% and 65% yields of **3aa** were obtained, respectively (**Table S12**, entries 8-11). Comparingly, the N-containing ligands IPr·HCl, T-NHC (**2**), T-NHC (**3**) and T-NHC (**4**) were

added in the catalytic system, which gave yields of 86%, 92%, 94% and 95%, respectively (**Table S12**, entries 12-15).

The stock solutions prepared by the step-wise diluting Pd precatalyst with toluene. For instance, T-NHC-Pd (**5**) (4.7mg, 0.01mmol) was dissolved in 100 mL of toluene solution, and 100 ppm of T-NHC-Pd (**5**) in toluene was prepared. Then, 1 ml of 100ppm T-NHC-Pd (**5**) solution was diluted with 9 mL toluene, and 10 ppm T-NHC-Pd (**5**) solution was prepared. In the reaction, 1mL of 10 ppm stock solution was added to the mixture of 1mmol of aryl iodides, 1.2 mmol of alkynes and 1.4 mmol of triethylamine in reaction vials. No special precautions for the preparation of the catalyst stock solutions were not taken, and the catalysts were handled in air. In order to avoid the contamination of residue Pd in each experiment, the following general procedure was used: A test glass tube and a stirrer bar coated with PTFE were treated with aqua regia (1:3 concd aq HCI–concd aq HNO₃) for 30 min and then washed sequentially with pure water and acetone, and dried with heating.

S-6.5 Optimization of Pd sources in the titled reaction of 1a and 2a

 Table S13. Optimization of the amount of Pd sources in the titled reaction of 1a and 2a

Entry	Catalyst	Pd (mol%)	Yield (%)	TON	TOF(h ⁻¹)
1	T-NHC-Pd (5)	1	97	/	/
2	T-NHC-Pd (5)	0.1	97	/	/
3	T-NHC-Pd (5)	0.01	95	9.5*10 ³	1188
4	T-NHC-Pd (5)	0.001	83	7.0*10 ⁴	10375
5	T-NHC-Pd (6)	1	90	/	/
6	T-NHC-Pd (6)	0.1	89	/	/
7	T-NHC-Pd (6)	0.01	86	8.9*10 ³	1113
8	T-NHC-Pd (6)	0.001	86	8.6*10 ⁴	10750
9	T-NHC-Pd (7)	1	97	/	/
10	T-NHC-Pd (7)	0.1	96	/	/
11	T-NHC-Pd (7)	0.01	96	9.6*10 ³	1200
12	T-NHC-Pd (7)	0.001	90	9.0*10 ⁴	11250
13	T-NHC-Pd (8)	1	98	/	/
14	T-NHC-Pd (8)	0.1	96	/	/
15	T-NHC-Pd (8)	0.01	95	9.5*10 ³	1188
16	T-NHC-Pd (8)	0.001	95	9.5*10 ⁴	11875
17	T-NHC-Pd (8)	0.0001	60	6.0*10 ⁻⁵	75000
18	T-NHC-Pd (9)	1	98	/	/
19	T-NHC-Pd (9)	0.1	96	/	/
20	T-NHC-Pd (9)	0.01	96	9.6*10 ³	1200
21	T-NHC-Pd (9)	0.001	85	8.5*10 ⁴	10625
22	T-NHC-Pd (10)	1	96	/	/
23	T-NHC-Pd (10)	0.1	96	/	/
24	T-NHC-Pd (10)	0.01	96	9.6*10 ³	1200
25	T-NHC-Pd (10)	0.001	89	8.9*10 ⁴	11125
26	T-NHC-Pd (11)	1	80	/	/
27	T-NHC-Pd (11)	0.001	70	7.0*10 ⁴	8750
28	T-NHC-Pd (12)	1	78	/	/
29	T-NHC-Pd (12)	0.001	65	6.5*10 ⁴	8125
30	PdCl ₂ +T-NHC (4)	0.001	35	3.5*10 ⁴	4375
31	NHC-Pd	0.001	65	6.5*10 ⁴	8125

[a] Reaction conditions: 4-iodoanisole (1 mmol), phenylacetylene (1.2 mmol), toluene (1 mL), [Pd] T-NHC-Pd (**5-12**) (1-0.001 mol%), PdCl₂, NHC-Pd (0.001 mol%), T-NHC (**4**) (0.002 mol%), CO (5 atm), 100 °C, 8 h. [b] Determined by GC analysis of the reaction mixture using biphenyl as an internal standard.

S-6.6 Optimization of the reaction time in combination with the catalyst loading in the titled reaction of 1a and 2a

 Table S14. Optimization of the reaction time in combination with the catalyst loading in the titled reaction of 1a and 2a

Entry	Catalyst	Pd (mol%)	Time (h)	Yield (%)
1	T-NHC-Pd (8)	1	4	80
2	T-NHC-Pd (8)	1	6	96
3	T-NHC-Pd (8)	1	8	98
4	T-NHC-Pd (8)	0.1	4	80
5	T-NHC-Pd (8)	0.1	6	92
6	T-NHC-Pd (8)	0.1	8	98
7	T-NHC-Pd (8)	0.01	4	75
8	T-NHC-Pd (8)	0.01	6	90
9	T-NHC-Pd (8)	0.01	8	95
10	T-NHC-Pd (8)	0.001	4	68
11	T-NHC-Pd (8)	0.001	6	85
12	T-NHC-Pd (8)	0.001	8	95
13	T-NHC-Pd (8)	0.001	10	95
14	T-NHC-Pd (8)	0.001	12	96
15	T-NHC-Pd (8)	0.0001	8	60
16	T-NHC-Pd (8)	0.0001	12	60
17	T-NHC-Pd (8)	0.0001	16	62

[a] Reaction conditions: 4-iodoanisole (1 mmol), phenylacetylene (1.2 mmol), toluene (1 mL), T-NHC-Pd (8) (1-0.0001 mol%), CO (5 atm), 100 °C, 4-16 h. [b] Determined by GC analysis of the reaction mixture using biphenyl as an internal standard.

S-6.7 The scale-up reaction of 1a and 2a

The large-scale reaction was performed using 5.0 mmol of starting materials, affording 1.01g of 1-(4-methoxy)-3-ynone with 86% yield. The gram-scale experimental procedure was as follows: In 25 mL reaction tube, 4-iodoanisole (5.0 mmol), phenylacetylene (6.0 mmol) and Et₃N (7.0 mmol) were added. Then, 5 mL stock solution containing 10 ppm T-NHC-Pd (**8**) was added. The reaction tube was loaded in autoclave. After being charged, released and refilled CO (5 atm) for three times, the reaction was stirred at 100 °C for 12 hours. The reaction was cool down to room temperature. The solvents were evaporated completely. The residue was separated by flash chromatography with dichloromethane and petroleum ether (v/v = 1/2) as elute. A yellow solid 3aa 1.01 g (yield: 86%) was collected.

S-7 NMR-Data of 1,3-ynone products

1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one (3aa).¹ (Yellow solid was obtained in 95% isolated yield, 224 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 8.5 Hz, 2H), 7.71 - 7.64 (m, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 2H), 3.91 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 176.6, 164.5, 132.9, 132.0, 130.6, 130.3, 128.6, 120.4, 113.9, 92.3, 86.9, 55.6.

1-(3-methoxyphenyl)-3-phenylprop-2-yn-1-one (3ba).¹ (Yellow solid was obtained in 81% isolated yield, 191 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.81 - 7.74 (m, 3H), 7.59 - 7.55 (m, 1H), 7.51 (q, *J* = 7.3 Hz, 3H), 7.29 - 7.24 (m, 1H), 3.96 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 177.7, 159.8, 138.2, 133.1, 130.8, 129.7, 128.7, 122.8, 120.9, 120.1, 112.8, 93.0, 87.0, 55.5.

1-(2-methoxyphenyl)-3-phenylprop-2-yn-1-one(3ca).¹ (Yellow solid was obtained in 86% isolated yield, 203 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.65 - 7.60 (m, 2H), 7.56 - 7.51 (m, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.04 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 159.8, 135.1, 133.0, 132.6, 130.5, 128.6, 126.8, 120.7, 120.3, 112.3, 91.6, 89.3, 56.0.

1,3-diphenylprop-2-yn-1-one(3da).² (Yellow solid was obtained in 90% isolated yield, 185 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 7.5 Hz, 2H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.51 (dt, *J* = 21.1, 7.5 Hz, 3H), 7.43 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 178.1, 137.0, 134.2, 133.2, 130.9, 129.7, 128.8, 128.7, 120.2, 100.1, 93.2, 87.0.

3-phenyl-1-(*p*-tolyl)prop-2-yn-1-one(3ea).² (Yellow solid was obtained in 91% isolated yield, 200 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.15 - 8.09 (m, 2H), 7.71 - 7.65 (m, 2H), 7.51 - 7.45 (m, 1H), 7.42 (dd, *J* = 8.2, 6.7 Hz, 2H), 7.32 (s, 2H), 2.44 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 176.6, 144.2, 133.5, 132.0, 129.6, 128.6, 128.3, 127.6, 119.2, 91.5, 85.9, 20.8.

ethyl 4-(3-phenylpropioloyl)benzoate (3fa).³ (Yellow solid was obtained in 80% isolated yield, 223 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, *J* = 8.4 Hz, 2H), 8.18 (d, *J* = 8.4 Hz, 2H), 7.73 - 7.67 (m, 2H), 7.50 (d, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 4.42 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.3, 165.7, 139.9, 135.1, 133.3, 131.2, 129.9, 129.5, 128.8, 119.9, 94.2, 86.9, 61.6, 14.4.

3-phenyl-1-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (3ga).⁴ (Yellow solid was obtained in 48% isolated yield, 132 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, *J* = 8.1 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.73 - 7.67 (m, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 139.4, 135.3(q, ² *J* = 33.2 Hz), 133.2, 131.2, 129.8, 128.8, 125.7(q, ³ *J* = 4.53 Hz), 124.4(q, ¹ *J* = 271.8 Hz), 119.6, 94.5, 86.6.

1-(4-fluorophenyl)-3-phenylprop-2-yn-1-one (3ha).⁴ (Yellow solid was obtained in 79% isolated yield, 177.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.29 - 8.22 (m, 2H), 7.72 - 7.65 (m, 2H), 7.50 (m, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.22 - 7.16 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3, 167.3(d, ¹ *J* = 256.7 Hz), 133.4(d, ⁴ *J* = 1.51 Hz), 133.0, 132.2(d, ³ *J* = 10.6 Hz),130.9, 128.7, 120.0, 115.9 (d, ² *J* = 21.1 Hz), 93.3, 86.6.

1-(4-chlorophenyl)-3-phenylprop-2-yn-1-one (3ia).⁴ (Yellow solid was obtained in 78% isolated yield, 187 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.20 - 8.12 (m, 2H), 7.72 - 7.65 (m, 2H), 7.49 (d, *J* = 8.5 Hz, 3H), 7.43 (t, *J* = 7.6 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 176.6, 140.7, 135.3, 133.13, 131.0, 130.9, 129.0, 128.7, 119.9, 93.6, 86.6.

1-(4-bromophenyl)-3-phenylprop-2-yn-1-one (3ja).⁴ (White solid was obtained in 74% isolated yield, 187 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.10 - 8.05 (m, 2H), 7.71 - 7.64 (m, 4H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 176.8, 135.7, 133.1, 132.0, 131.0, 130.9, 129.5, 128.7, 119.9, 99.9, 93.7, 86.5.

1-(naphthalen-1-yl)-3-phenylprop-2-yn-1-one (3ka).² (Yellow solid was obtained in 94% isolated yield, 241 mg). ¹H NMR (600 MHz, CDCl₃) δ 9.26 (d, *J* = 8.7 Hz, 1H), 8.66 (dd, *J* = 7.2, 1.1 Hz, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.69 (td, *J* = 8.6, 7.8, 3.5 Hz, 3H), 7.64 - 7.55 (m, 2H), 7.52 - 7.46 (m, 1H), 7.43 (t, *J* = 7.4 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 179.8, 135.2, 134.6, 133.9, 133.0, 130.8, 130.7, 129.0, 128.7, 128.6, 126.8, 126.1, 124.5, 120.4, 91.8, 88.6.

3-phenyl-1-(thiophen-2-yl)prop-2-yn-1-one (3la).² (Yellow solid was obtained in 74% isolated yield, 157 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.01 (dd, *J* = 3.8, 1.0 Hz, 1H), 7.73 (dd, *J* = 4.9, 1.0 Hz, 1H), 7.69 - 7.63 (m, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.19 (dd, *J* = 4.7, 4.0 Hz, 1H).¹³C NMR (151 MHz, CDCl₃) δ 169.8, 144.9, 135.2, 135.1, 133.0, 130.8, 128.7, 128.3, 119.9, 91.7, 86.5.

6-(3-phenylpropioloyl)-2,3-dihydro-1H-inden-1-one (3ma). (Yellow solid was obtained in 60% isolated yield, 156 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.59 (d, *J* = 1.6 Hz, 1H), 8.39 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.74 - 7.67 (m, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.53 - 7.47 (m, 1H), 7.46 - 7.40 (m, 2H), 3.28 - 3.19 (m, 2H), 2.82 - 2.74 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 205.7, 177.0, 160.8, 137.6, 136.6, 134.4, 133.3, 131.1, 128.8, 127.2, 126.0, 119.9, 94.0, 86.7, 36.6, 26.3. HRMS(ESI) m/z: [M+Na]⁺ calcd for C₁₈H₁₂NaO₂: 283.0735. Found: 283.0736.

1,3-bis(4-methoxyphenyl)prop-2-yn-1-one (3ab).⁵ (Yellow solid was obtained in 99% isolated yield, 263 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 8.9 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H), 3.84 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 164.3, 161.5, 134.9, 131.8, 130.4, 114.4, 113.8, 112.1, 93.4, 86.8, 55.5, 55.4.

3-(4-methoxyphenyl)-1-phenylprop-2-yn-1-one (3db).⁶ (Yellow solid was obtained in 94% isolated yield, 222 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.25 - 8.19 (m, 2H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.62 (d, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³C

NMR (151 MHz, CDCl₃) δ 177.0, 160.7, 136.0, 134.1, 132.8, 128.4, 127.5, 113.4, 110.8, 93.3, 85.8, 54.4.

3-(3-methoxyphenyl)-1-phenylprop-2-yn-1-one (3dc).⁷ (Yellow solid was obtained in 94% isolated yield, 222 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.22 (d, *J* = 7.3 Hz, 2H), 7.63 (d, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.19 (s, 1H), 7.06 - 7.01 (m, 1H), 3.84 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 178.0, 159.4, 136.8, 134.1, 129.8, 129.6, 128.6, 125.6, 121.0, 117.6, 93.0, 86.6, 55.4.

3-(2-methoxyphenyl)-1-phenylprop-2-yn-1-one (3dd).⁸ (Yellow solid was obtained in 97% isolated yield, 228 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.32 (d, *J* = 7.3 Hz, 2H), 7.61 (td, *J* = 6.0, 2.9 Hz, 2H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.47 - 7.42 (m, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 178.1, 161.9, 137.1, 135.0, 133.8, 132.6, 129.7, 128.5, 120.7, 110.8, 109.4, 91.2, 90.5, 55.9.

1-(4-methoxyphenyl)-3-(*p***-tolyl)prop-2-yn-1-one (3ae).⁹** (Yellow solid was obtained in 94% isolated yield, 235 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.89 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 164.4, 141.3, 133.0, 131.9, 130.4, 129.4, 117.2, 113.8, 92.9, 86.7, 55.6, 21.7.

4-(3-(4-methoxyphenyl)-3-oxoprop-1-yn-1-yl)benzaldehyde (3af). Reaction was carried out at 120 °C. (Yellow solid was obtained in 44% isolated yield, 101 mg). ¹H NMR (600 MHz, CDCl₃)

δ 10.05 (s, 1H), 8.17 (d, *J* = 8.8 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.80 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.2, 176.2, 164.9, 137.1, 133.4, 132.1, 130.1, 129.7, 126.4, 114.1, 90.1, 89.4, 55.7. HRMS(ESI) m/z: [M+Na]⁺calcd for C₁₇H₁₂NaO₃: 287.0684. Found: 287.0680.

3-(4-fluorophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (3ag).¹⁰ (Yellow solid was obtained in 79% isolated yield, 107 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 8.9 Hz, 2H), 7.71 - 7.63 (m, 2H), 7.11 (t, *J* = 8.6 Hz, 2H), 7.01 - 6.94 (m, 2H), 3.90 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.5, 164.5 (d, ¹ *J* = 253.7 Hz), 135.25 (d, ³ *J* = 9.1 Hz), 131.9, 130.2, 116.5 (d, ⁴ *J* = 3.0 Hz), 116.2 (d, ² *J* = 22.7 Hz), 113.9, 91.2, 86.8, 55.6.

3-(4-chlorophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (3ah).¹¹ (Yellow solid was obtained in 80% isolated yield, 216 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (dd, *J* = 9.3, 2.2 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 6.98 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 164.6, 136.9, 134.1, 132.0, 130.1, 129.1, 118.8, 113.9, 90.8, 87.6, 55.6.

3-(4-bromophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (3ai).¹² (Yellow solid was obtained in 75% isolated yield, 236 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.19 - 8.12 (m, 2H), 7.59 - 7.53 (m, 2H), 7.53 - 7.49 (m, 2H), 7.02 - 6.95 (m, 2H), 3.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.43, 164.62, 134.2, 132.0, 130.1, 125.3, 119.3, 113.7, 90.8, 87.7, 55.6.

S34/ S77

3-([1,1'-biphenyl]-4-yl)-1-(4-methoxyphenyl)prop-2-yn-1-one (3aj). (Yellow solid was obtained in 56% isolated yield, 175 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.22 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 7.0 Hz, 2H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.41 (d, *J* = 7.4 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 164.6, 143.5, 139.9, 133.6, 132.1, 130.5, 129.1, 128.2, 127.4, 127.2, 119.2, 114.0, 92.5, 87.7, 55.7. HRMS(ESI) m/z: [M+H]⁺calcd for C₂₂H₁₇O₂: 313.1223. Found: 313.1223.

1-(4-methoxyphenyl)-3-(thiophen-2-yl)prop-2-yn-1-one (3ak).¹² Reaction was carried out at 120 °C. (Brown solid was obtained in 75% isolated yield, 181 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 3.6 Hz, 1H), 7.49 (d, *J* = 5.1 Hz, 1H), 7.08 (dd, *J* = 5.0, 3.8 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 164.5, 136.4, 131.8, 131.3, 130.1, 127.7, 120.1, 113.9, 91.6, 86.2, 55.6.

3-cyclopropyl-1-(4-methoxyphenyl)prop-2-yn-1-one (3al).¹³ (Yellow liquid was obtained in 75% isolated yield, 150 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.01 (t, *J* = 8.8 Hz, 2H), 6.88 (t, *J* = 8.7 Hz, 2H), 4.05 - 3.57 (m, 3H), 1.04 - 0.86 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 176.6, 164.2, 131.7, 130.3, 113.7, 100.0, 75.4, 55.5, 9.8.

1-(4-methoxyphenyl)hept-2-yn-1-one (3am).⁷ (Yellow liquid was obtained in 75% isolated yield, 107 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.13 - 8.02 (m, 2H), 6.97 - 6.87 (m, 2H), 3.85 (t, *J* = 2.1 Hz, 3H), 2.46 (t, *J* = 7.1 Hz, 2H), 1.68 - 1.57 (m, 2H), 1.47 (q, *J* = 7.5 Hz, 2H), 1.01 - 0.86 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.9, 164.2, 131.8, 130.3, 113.7, 95.9, 79.6, 55.5, 29.9, 22.0, 18.8, 13.5.

4-cyclohexyl-1-(4-methoxyphenyl)but-2-yn-1-one (3an). (Yellow liquid was obtained in 76% isolated yield, 190 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 2.37 (d, J = 6.7 Hz, 2H), 1.91 - 1.82 (m, 2H), 1.74 (m, 2H), 1.69 - 1.59 (m, 2H), 1.32 - 1.22 (m, 2H), 1.21 - 1.13 (m, 1H), 1.11 - 1.03 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 177.0, 164.3, 131.9, 130.4, 113.8, 95.0, 80.6, 55.6, 37.0, 32.9, 27.0, 26.1, 26.1. HRMS(ESI) m/z: [M+H]⁺calcd for C₁₇H₂₁O₂: 257.1536. Found: 257.1541.
S-8 NMR spectrum of products

S-8-1 NMR Spectrum of T-NHCs and T-NHC-Pds

¹³C NMR of compound T-NHC (2)

¹H NMR of compound T-NHC (3)

¹H NMR of complex T-NHC-Pd (**6**)

S48/ S77

S49/S77

¹H NMR of compound **3ca**

¹H NMR of compound **3ga**

S56/ S77

¹H NMR of compound 3ha

¹H NMR of compound 3ka

¹³C NMR of compound 3ka

179.83	135.22 134.65 133.97 133.05 133.05 133.05 133.05 133.05 128.76 128.76 128.76 128.76 128.59 120.44 91.81 88.60
1	

S65/ S77

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S-9 References

- 1. C. Zhang, J. Liu and C. Xia, *Org. Biomol. Chem.*, 2014, **12**, 9702-9706.
- 2. X.-F. Wu, B. Sundararaju, H. Neumann, P. H. Dixneuf and M. Beller, *Chem. Eur. J.*, 2011, **17**, 106-110.
- 3. M. lizuka and Y. Kondo, *Eur. J. Org. Chem.*, 2007, 5180-5182.
- 4. M. Cui, H. Wu, J. Jian, H. Wang, C. Liu, S. Daniel and Z. Zeng, *Chem. Commun.*, 2016, **52**, 12076-12079.
- 5. W. Kim, K. Park, A. Park, J. Choe and S. Lee, *Org. Lett.*, 2013, **15**, 1654-1657.
- 6. C. Bai, S. Jian, X. Yao and Y. Li, *Catal. Sci. Technol.*, 2014, **4**, 3261-3267.
- 7. J.-Y. Chen, T.-C. Lin, S.-C. Chen, A.-J. Chen, C.-Y. Mou and F.-Y. Tsai, *Tetrahedron*, 2009, **65**, 10134-10141.
- 8. A. Dasgupta, V. Ramkumar and S. Sankararaman, *Eur. J. Org. Chem.*, 2016, 4817-4823
- 9. H. Zhao, M. Cheng, J. Zhang and M. Cai, *Green Chem.*, 2014, **16**, 2515-2522.
- 10. R. K. Sharma, M. Yadav, R. Gaur, R. Gupta, A. Adholeya and M. B. Gawande, *ChemPlusChem*, 2016, **81**, 1312-1319.
- 11. H. Tan, H. Li, W. Ji and L. Wang, *Angew. Chem. Int. Ed.*, 2015, **54**, 8374-8377.
- 12. B. Yu, H. Sun, Z. Xie, G. Zhang, L. Xu, W. Zhang and Z. Gao, *Org. Lett*, 2015, **17**, 3298-3301.
- 13. M. Ibrahim, I. Malik, W. Mansour, M. Sharif, M. Fettouhi, B. El. Ali, *Appl. Organomet. Chem.*, 2018, **32**, 4280-4290.