Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Organocatalytic Cascade Reactions to Multi-functionalized Chiral

Cyclic Ethers through Vinylidene ortho-Quinone Methides

Shiqi Jia,^a Yu Chang,^a Yuhong Tian,^a Hui Mao,^b Wenling Qin,^a Pengfei Wang,^{*a} Hailong Yan^{*a} *Corresponding author. Dr. Pengfei Wang, E-mail: wangpf@cqu.edu.cn; Prof. Hailong Yan, E-mail: yhl198151@cqu.edu.cn

I.	General information 2
II.	General procedure for the synthesis of substrate
III.	Optimization of the reaction conditions
IV.	General procedure for the asymmetric reaction
V.	Mechanistic studies
VI.	Synthetic transformation and continuous flow experiment:
VII.	¹ H, ¹³ C NMR and HRMS data of substrates (1a-1k, 3a-3h)16
VIII.	¹ H, ¹³ C NMR, HRMS and HPLC traces of products (2a-2w, 4a-4j, 5j-6j)26
IX.	¹ H and ¹³ C NMR spectra of substrates (1a-1k, 3a-3h)61
X.	¹ H and ¹³ C NMR spectra of substrates (2a-2w, 4a-4j, 5j-6j, M1)80
XI.	Crystallographic details of 4j 116

I. General information

¹H and ¹³C NMR spectra were recorded on Agilent 400MR DD2 (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and tetramethylsilane or the residual solvent peak was used as an internal reference: ¹H (tetramethylsilane δ 0.00 ppm, toluene δ 2.08 ppm), ¹³C (chloroform δ 77.00 ppm, acetone δ 29.70 ppm, toluene δ 137.48 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. Enantiomeric excesses (ee) were determined by HPLC analysis on Hitachi Chromaster using DAICEL CHIRALCEL AD-H, 4.6 mm $\phi \times 250$ mmL, DAICEL CHIRALCEL OD-H, 4.6 mm $\phi \times 250$ mmL, DAICEL CHIRALCEL IA-H, 4.6 mm $\phi \times 250$ mmL, DAICEL CHIRALCEL IB-H, 4.6 mm $\Phi \times 250$ mmL and DAICEL CHIRALCEL IC-H, 4.6 mm $\Phi \times 250$ mmL. High resolution mass spectra (HRMS) were performed on Bruker Solarix 7.0 T. X-ray crystallography analysis of single crystal was performed on an Agilent SuperNova-CCD X-Ray diffractometer. Optical rotations were measured on a Rudolph Autopol I polarimeter and are reported as follows: $\left[\alpha\right]_{D}^{20}$ (*c* in g per 100 mL solvent). Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification.

II. General procedure for the synthesis of substrate.

Ph₃)₂Cl₂, Cul *n-*BuLi OMON омом 80 °C омом THE OH сно **S1 S**2 p-TsOH or HCI Dess-Martin омом όн DCM, rt -.0 S3 S4

Method A:

Step1: 1-ethynyl-2-(methoxymethoxy)naphthalene (1.0 eq. 10 mmol) was dropwised to a solution of the 2-bromobenzaldehyde (1.0 eq. 10 mmol), $PdCl_2(PPh_3)_2$ (0.02 eq. 0.2mmol), CuI (0.04 eq. 0.4 mmol), and Et₃N (20 mL) in THF (20 mL) at 80 °C under N₂. The mixture was stirred for 2 h. Then the mixture was filtered through a pad of celite. Removal of the solvent under reduced pressure. The crude product was purified by column chromatography on silica gel (PE: EA = 10:1) to afford **S1**.

Step2: An oven-dried 100 mL three-neck round-bottom flask quipped with a 100 mL pressure-equalizing addition funnel, N₂ gas inlet adaptor, septum, and magnetic stir bar was charged with THF (20 mL) and corresponding alkynes (1.1 eq. 11 mmol). The solution was cooled to -78 °C under N₂ and 2.5 M *n*-BuLi in hexane (1.1 eq. 11 mmol,) was added dropwise over 30 min. After 2 h stirring at -78 °C, a solution of benzaldehyde (1.0 eq. 10 mmol) in 20 mL THF was added dropwise over 35 min to the cloudy white reaction mixture at -78 °C. After stirring for 2 h at -78 °C, the homogeneous reaction

mixture was quenched by dropwise addition of saturated NH₄Cl in methanol (20 mL) to the reaction mixture at -78 °C over 15 min. After stirring an additional 5 min at -78 °C, the cooling bath was removed, and the reaction mixture was allowed to warm to room temperature (ca. 1 h). Once at room temperature, diethyl ether (20 mL) and water (20 mL) were added to the reaction mixture. The mixture was shaken, and the layers were separated. The aqueous layer was extracted with diethyl ether (2 × 10 mL), and the combined organic layers were washed with saturated NaCl (aq) (2 × 10 mL) and water (2 × 25 mL), dried over anhydrous MgSO4, and filtered. The solvent was removed in vacuo to afford a pale yellow liquid. The crude product was purified by column chromatography on silica gel (SiO₂, PE: EA = 10:1) to afford **S2**

Step3: Dissolve the propargylic alcohol (10 mmol) in DCM (50 mL) and cool to 0 °C. Add Dess-Martin periodinane (1.1 eq. 11 mmol) and allow the mixture to warm to room temperature. Monitor the reaction mixture by TLC and add aq. NaOH (1.1 equiv, 1M solution). Separate the layers and extract the aqueous layer with DCM (3 x). Combine the organic layers and dry over Na₂SO₄. Evaporate the solvent. Purify the crude product by flash column chromatography (SiO₂, PE: EA = 10:1) to obtain the product **S3**.

Step4: Dissolve **S3** (1.0 eq. 10 mmol) in tetrahydrofuran (50 mL), then add *p*-toluenesulfonic acid (2.0 eq. 20 mmol) or Concentrated hydrochloric acid (HCl). Stir the reaction mixture at room temperature for 2 hours. Quench the reaction mixture with brine (10 mL), extract with diethyl ether (3 x 10 mL). Combine the organic portions and dry over anhydrous MgSO4. Remove the solvents in vacuo and purify the residue by flash chromatography on silica gel (SiO₂, PE: EA = 10:1) to obtain **S4** as yellow

amorphous solid.

Method B:

Step1: Cool a solution of NaOH (731 mg, 18.3 mmol) in H₂O (20.0 mL) and Et₂OH (20.0 mL) to 0 °C. Introduce 1-(2-iodophenyl)ethan-1-one (3.00 g) and benzaldehyde (1.20 mL, 12.2 mmol) slowly to the mixture. Allow the reaction mixture to warm to room temperature overnight. After 12 hours, dilute the reaction mixture with Et₂O. Separate the organic phase. Concentrate the organic layer in vacuo. Purify the residue by column chromatography (SiO₂, PE: DCM = 10:1) to obtain the product **S5** as yellow oil.

Step2: Ester-protected alkyne (1.0 eq. 10 mmol) was dropwised to a solution of the 2bromobenzaldehyde (1.0 eq. 10 mmol), $Pd(PPh_3)_2Cl_2$ (0.02 eq. 0.2mmol), CuI (0.04 eq. 0.4 mmol), and Et₃N (20 mL) in THF (20 mL) at 80 °C under N₂. The mixture was stirred for 1 h. Then the mixture was filtered through a pad of celite. Removal of solvent under reduced pressure. The crude product was purified by column chromatography on silica gel (PE: EA = 10:1) to afford **S6** as yellow solid. **Step3:** To a solution of the acetate (1.0 eq. 10 mmol) in MeOH at 0 °C was added anhydrous K_2CO_3 (1.1 eq. 11 mmol). After the solution was stirred for 0.5 h, the reaction was quenched with 1 M HCl and extracted with CH_2Cl_2 . The organic layer was washed with brine and dried over Na_2SO_4 , followed by filtration and concentration. The residue was chromatographed (SiO₂, PE: EA = 10:1) to yield **S7** as yellow solid.

III.Optimization of the reaction conditions

Entry	Catalyst	Solvent	<i>T</i> (°C)	Br ⁺	Yield (%) ^[a]	ee (%) ^[b]	d.r. ^[c]
1	Α	toluene	rt.	NBA	80	37	>20:1
2	В	toluene	rt.	NBA	82	-25	>20:1
3	С	toluene	rt.	NBA	72	59	>20:1
4	D	toluene	rt.	NBA	65	7	>20:1
5	Ε	toluene	rt.	NBA	78	74	>20:1
6	F	toluene	rt.	NBA	79	77	>20:1
7	G	toluene	rt.	NBA	78	74	>20:1
8	Н	toluene	rt.	NBA	88	91	>20:1
9	Н	o-xylene	rt.	NBA	86	90	>20:1
10	Н	<i>p</i> -xylene	rt.	NBA	89	84	>20:1
11	Н	<i>m</i> -xylene	rt.	NBA	87	90	>20:1
12	Н	mesitylene	rt.	NBA	84	90	>20:1
13	Н	DCE	rt.	NBA	70	70	>20:1
14	Н	DCM	rt.	NBA	68	74	>20:1
15	Н	CHCl ₃	rt.	NBA	72	79	>20:1
16	Н	toluene	0	NBA	85	91	>20:1
17	Н	toluene	-20	NBA	76	89	>20:1
18	Н	toluene	-40	NBA	30	78	>20:1
19	Н	toluene	rt.	NBS	80	5	>20:1
20	Н	toluene	rt.	NBP	82	33	>20:1
21	Н	toluene	rt.	DBDMH	89	65	>20:1
22 ^[d]	Н	toluene	rt.	NBA	81	83	>20:1
23 ^[e]	Н	toluene	rt.	NBA	89	90	>20:1

Reaction conditions: **1a** (0.05 mmol, 1.0 eq.), catalyst (10 mol%) and methanol (3.0 eq.) in solvent (1.0 mL) at corresponding temperature for 5 min, then brominating reagents (1.1 mmol, 2.2 eq.) were added at corresponding temperature. After the reaction was completed, monitored by TLC (about 3 min at rt, 30 min at 0 °C, 4 h at -20 °C, and 12 h at -40 °C). [a] Isolated yield. [b] Enantiomeric excess was (*ee*) determined by HPLC. [c] Diastereomeric ratio (d.r.) was determined by HPLC. [d] Reaction in toluene (0.5 mL). [e] Reaction in toluene (2.0 mL).

IV. General procedure for the asymmetric reaction

The substrate **1** (0.1 mmol), catalyst (10 mol%) were added to a 10 mL flame-dried schlenk tube (wrapped with aluminum foil) with a magnetic stirring bar. Toluene (2 mL) and alcohols (3 eq.) were injected into the tube. NBA was poured into reaction system, after stirring for 5 min, the mixture was evaporated and purified by flash column chromatography (SiO₂, PE: EA = 10:1) to afford the product. Racemic samples were prepared with Et₃N (1.0 eq.) as the additive base.

V. Mechanistic studies

The substrate 1 (0.1 mmol), catalyst (10 mol%) were added to a 10 mL flame-dried schlenk tube with a magnetic stirring bar. Toluene- d_8 (2 mL) and methanol (3 eq.) was injected into the tube at -10 °C. NBA (2.2 eq.) was poured into reaction system, The intermediate M1 were monitored by TLC, and detected by HRMS.

Acquisition Paramet	er				
Polarity	Negative	n/a	n/a	No. of Laser Shots	200
n/a	n/a	No. of Cell Fills	1	Laser Power	20.0 lp
Broadband Low Mass	200.7 m/z	n/a	n/a	n/a	n/a
Broadband High Mass	1000.0 m/z	n/a	n/a	n/a	n/a
Acquisition Mode	Single MS	n/a	n/a		
Pulse Program	basic	n/a	n/a	Calibration Date	Tue Apr 13 03:01:48 2021
Source Accumulation	0.500 sec	n/a	n/a	Data Acquisition Size	1048576
Ion Accumulation Time	0.100 sec	n/a	n/a	Apodization	Sine-Bell Multiplication
Flight Time to Acg. Cell	0.001 sec				•

Figure 1: HRMS of reaction system

Figure 2: ¹H NMR of standard substance 1a, M1, 2a

Time (min)	Ratio (1a)%	Ratio (M1)%	Ratio (2a)%
0	100	0	0
5	26	62	12
15	19	65	16
20	10	57	33
40	0.1	53	37
60	0	11	88
70	0	0	100

Figure 3: The reaction process is monitored by ¹H NMR every 5 minutes at -10 $^{\circ}$ C

Figure 4: Equilibration process of the reaction

<u>(S)-1-(4-bromo-1-(hex-1-yn-1-yl)-1-methoxy-1H-isochromen-3-yl)naphthalen-2-</u> <u>ol (M1)</u>

¹**H NMR** (400 MHz, Toluene- d_8): δ 7.80 (d, J = 8.3 Hz, 1H), 7.77 – 7.72 (m, 1H), 7.66 – 7.62 (m, 1H), 7.50 (dd, J = 8.2, 5.6 Hz, 2H), 7.15 (m, 5H), 6.82 (s, 1H), 3.24 (s, 3H), 1.93 (t, J = 6.8Hz, 2H), 1.23 (dd, J = 14.1, 6.5 Hz, 2H), 1.16 (dd, J = 14.6, 7.3 Hz, 2H), 0.69 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Toluene-

 d_8): δ 154.23, 144.51, 132.36, 132.14, 132.08, 130.30, 130.05, 129.36, 129.02, 128.48, 127.41, 127.38, 126.53, 125.76, 125.72, 124.82, 123.74, 118.55, 118.52, 114.76, 107.05, 99.14, 91.01, 74.93, 52.06, 30.49, 22.29, 18.38, 13.57. **HRMS (ESI)** m/z Calcd for [C₂₆H₂₂BrO₃, M-H]⁻: 461.0831, Found: 461.0758. **HPLC analysis**: Chiralcel AD-H (Hexane/*i*-PrOH) =90:10, flow rate = 1.0 mL/min, wave length = 254 nm, t_R = 4.563 min (minor), t_R = 10.507 min (major); **Physical properties:** yellow foam. (**Note:** The compound **M1** is unstable in silica gel column, which need scraper detection at -20 °C)

VI. Synthetic transformation and continuous flow experiment:

To a Pyrex Schlenk tube was added 2j (100 mg) in dry THF (3 mL) under an argon atmosphere. To the mixture was added methylmagnesium bromide (0.3 ml, 1M in THF) by syringe at -78°C, This mixture was stirred at that temperature for 2h. The resulting mixture was quenched by H₂O (3 mL) and extract by Et₂O (3×3 mL). The combined extracts were dried over MgSO4. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by neutral silica gel column chromatography (eluent: hexane/EtOAc, 20:1) to give the desired product **5j** as yellow oil.

A round bottom flask was charged with the 2j (100 mg) and dissolved with DCM (5 mL). Triethylamine (0.3 mL) were subsequently added to the reaction vessel at 20 °C after stirred 30 min, the acetyl chloride (0.1 mL) was added and stirred for 1 hours. The mixture was then quenched with 5% aq. HCl and extracted several times with CH₂Cl₂. The combined organic layers were washed with brine, dried over MgSO4, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (hexanes/AcOEt 9/1) to give the desired product 7j as yellow foam.

The microreactor system was placed in room temperature. A solution of CF_3CH_2OH (3.0 eq.), catalyst (0.1 eq.) and **1a** (10 g, 0.05 M in toluene) in toluene was carefully prepared and homogenized (flow rate: 1.0 mL/min). The solution of NBA (0.1 M in toluene/acetone=10:1) were introduced to coiled tube reactor by syringe pumps (flow rate: 2.0 mL/min). When finished, column chromatographic purification was carried out on silica gel (SiO₂) with mixtures of PE/EA=10:1 as eluent (Fast process). The reaction in flow at 20 °C provides the product with a good yield and enantioselectivity. (65%, 93% *ee*).

VII. ¹H, ¹³C NMR and HRMS data of substrates (1a-1k, 3a-3h)

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)hept-2-yn-1-one (1a)

¹H NMR (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.36 (d, J = 7.8 Hz, 1H), 8.22 (d, J = 8.3 Hz, 1H), 7.77 (t, J = 7.7 Hz, 3H), 7.57 (m, 2H), 7.45 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 14.8 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 2.50 (t, J = 7.0 Hz, 2H), 1.65 (p, J = 7.3 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 2.50 (t, J = 7.0 Hz, 2H), 1.65 (p, J = 7.3 Hz)

2H), 1.49 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 177.34, 159.61, 135.47, 134.11, 133.50, 133.42, 133.15, 131.46, 128.23, 128.04, 127.54, 127.21, 124.66, 123.72, 122.95, 117.41, 102.38, 100.66, 98.11, 89.75, 80.12, 29.71, 22.06, 18.95, 13.50. **HRMS (ESI)** m/z Calcd for [C₂₅H₁₉O₂, M - H]⁻: 351.1463, Found: 351.1391.

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)hex-2-yn-1-one (1b)

¹**H NMR** (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.37 (d, *J* = 7.9 Hz, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 8.3 Hz, 3H), 7.62 – 7.52 (m, 2H), 7.47 – 7.42 (m, 1H), 7.39 – 7.33 (m, 1H), 7.28 (d, *J* = 9.0 Hz, 1H), 2.48 (t, *J* = 7.0 Hz, 2H), 1.70 (m, 2H), 1.07 (t, *J*

= 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.34, 159.61, 135.45, 134.11, 133.49, 133.42, 133.16, 131.46, 128.23, 128.04, 127.55, 127.21, 124.66, 123.72, 122.95, 117.41, 102.38, 100.66, 97.93, 89.75, 80.24, 21.28, 21.18, 13.61. HRMS (ESI) m/z Calcd for [C₂₄H₁₇O₂, M - H]⁻: 337.1307, Found: 337.1287.

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)oct-2-yn-1-one (1c)

¹**H NMR** (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.38 (d, *J* = 7.7 Hz, 1H), 8.23 (d, *J* = 8.3 Hz, 1H), 7.82 – 7.75 (m, 3H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 2.50 (t, *J* = 7.1 Hz, 2H),

1.68 (p, *J* = 7.2 Hz, 2H), 1.40 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 177.37, 159.63, 135.50, 134.14, 133.51, 133.44, 133.17, 131.48, 128.24, 128.05, 127.55, 127.22, 124.67, 123.73, 122.99, 117.43, 102.38, 100.66, 98.18, 89.77, 80.14, 31.10, 27.41, 22.10, 19.24, 13.91. **HRMS (ESI)** m/z Calcd for [C₂₆H₂₁O₂, M - H]⁻: 365.1620, Found: 365.1610.

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)undec-2-yn-1-one (1d)

¹H NMR (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.38 (d, J = 7.9 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 7.78 (t, J = 7.6 Hz, 3H), 7.61 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 8.1 Hz, 1H), 2.50 (t, J = 7.1

Hz, 2H), 1.67 (p, J = 7.2 Hz, 2H), 1.53 – 1.22 (m, 10H), 0.89 (t, J = 6.3 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 177.37, 159.64, 135.53, 134.14, 133.52, 133.45, 133.17, 131.48, 128.25, 128.06, 127.54, 127.22, 124.68, 123.73, 123.00, 117.44, 102.38, 100.66, 98.21, 89.79, 80.16, 31.63, 28.93, 28.70, 27.72, 22.59, 19.28, 14.07. **HRMS** (**ESI**) m/z Calcd for [C₂₉H₂₇O₂, M - H]⁻: 407.2089, Found: 407.2073.

1-(2-((2-hydroxynaphthalen-1-yl)ethyn yl)phenyl)-4,4-dimethylpent-2-yn-1-one

<u>(1e)</u>

¹**H NMR** (400 MHz, CDCl₃): δ 8.84 (s, 1H), 8.34 (d, *J* = 7.9 Hz, 1H), 8.22 (d, *J* = 8.3 Hz, 1H), 7.82 – 7.74 (m, 3H), 7.62 – 7.52 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 14.9 Hz, 1H), 7.28

(d, *J* = 8.9 Hz, 1H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 177.48, 159.63, 135.60, 134.00, 133.49, 133.42, 133.12, 131.46, 128.23, 128.05, 127.55, 127.21, 124.67, 123.72, 122.96, 117.41, 105.03, 102.39, 100.69, 89.71, 78.66, 30.05, 28.09. HRMS (ESI) m/z Calcd for [C₂₅H₁₉O₂, M - H]⁻: 351.1463, Found: 351.1442.

<u>3-cyclopropyl-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)prop-2-yn-1-one</u> (1f)

¹H NMR (400 MHz, CDCl₃): δ 8.80 (s, 1H), 8.32 (d, J = 7.8 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.81 – 7.74 (m, 3H), 7.57 (m, 2H), 7.45 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 9.0 Hz, 1H), 1.54 (p, J = 7.5 Hz, 1H), 1.05 (d, J = 8.0 Hz, 4H). ¹³C

NMR (100 MHz, CDCl₃): δ 177.04, 159.64, 135.61, 133.97, 133.52, 133.40, 133.05, 131.45, 128.24, 128.06, 127.52, 127.21, 124.68, 123.72, 122.89, 117.44, 102.47, 102.40, 100.64, 89.73, 76.13, 10.06, 0.12. **HRMS (ESI)** m/z Calcd for [C₂₄H₁₅O₂, M - H]⁻: 335.1150, Found: 335.1123.

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3-phenylprop-2-yn-1-one (1g)

¹H NMR (400 MHz, CDCl₃): δ 8.87 (s, 1H), 8.42 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 8.3 Hz, 1H), 7.76 (t, J = 8.1 Hz, 3H), 7.65 (d, J = 7.9 Hz, 2H), 7.56 (dt, J = 15.3, 7.7 Hz, 2H), 7.45 (t, J = 7.4 Hz, 2H), 7.37 (dd, J = 13.7, 6.9 Hz, 3H), 7.28 (d, J = 9.0 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃): δ 177.02, 159.62, 135.28, 134.00, 133.50, 133.47, 133.36, 133.06, 131.53, 130.92, 128.62, 128.22, 128.02, 127.61, 127.24, 124.66, 123.74, 123.03, 119.79, 117.37, 102.39, 100.72, 94.17, 89.96, 87.34. **HRMS (ESI)** m/z Calcd for [C₂₇H₁₅O₂, M - H]⁻: 371.1150, Found: 371.1123.

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3-(p-tolyl)prop-2-yn-1-one (1h)

¹**H NMR** (400 MHz, CDCl₃): δ 8.87 (s, 1H), 8.46 (d, *J* = 7.7 Hz, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 7.78 (t, *J* = 8.4 Hz, 3H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 8.4 Hz, 3H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 8.9 Hz, 1H), 7.20 (d, *J* = 7.5

Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.15, 159.70, 141.79, 135.56, 134.00, 133.52, 133.28, 133.16, 131.52, 129.48, 128.26, 128.08, 127.64, 127.25, 124.70, 123.75, 123.08, 117.44, 116.76, 102.43, 100.73, 94.99, 89.94, 87.37, 21.78. HRMS (ESI) m/z Calcd for [C₂₈H₁₇O₂, M - H]⁻: 385.1307, Found: 385.1286

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)-4-methylphenyl)hept-2-yn-1-one (1i)

¹H NMR (400 MHz, CDCl₃): δ 8.89 (s, 1H), 8.23 (dd, J = 8.1, 3.8 Hz, 2H), 7.77 (dd, J = 8.2, 5.5 Hz, 2H), 7.55 (d, J = 5.8 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H), 7.23 (d, J = 9.6 Hz, 1H), 2.49 (t, J = 7.1 Hz, 2H), 2.44 (s, 3H), 1.65 (p, J = 7.1 Hz, 2H), 2.44 (s, 3H), 3.14 (s, 3H), 3.14

7.0 Hz, 2H), 1.49 (h, *J* = 7.2 Hz, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.99, 159.66, 144.35, 134.36, 133.88, 133.52, 133.21, 131.35, 128.53, 128.21, 128.03, 127.15, 124.70, 123.67, 122.91, 117.45, 102.45, 100.84, 97.43, 89.29, 80.15, 29.75, 22.06, 21.47, 18.94, 13.52. **HRMS (ESI)** m/z Calcd for [C₂₆H₂₁O₂, M - H]⁻: 365.1620, Found: 365.1598

1-(2-fluoro-6-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)hept-2-yn-1-one (1j)

¹**H NMR** (400 MHz, CDCl₃): δ 8.63 (s, 1H), 8.16 (d, *J* = 8.3 Hz, 1H), 7.99 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.80 – 7.69 (m, 3H), 7.56 – 7.49 (m, 1H), 7.37 – 7.32 (m, 1H), 7.31 – 7.23 (m, 2H), 2.50 (t, *J* = 7.1 Hz, 2H), 1.70 – 1.61 (m, 2H), 1.49 (dq, *J* = 14.4, 7.3 Hz,

2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 175.94 (d, J = 2.0 Hz), 161.07 (d, J = 249.0 Hz), 159.42, 137.08 (d, J = 6.0 Hz), 135.22 (d, J = 8.0 Hz), 133.41, 131.47, 128.24, 128.04, 127.23, 124.59, 123.75, 120.75 (d, J = 23.0 Hz), 120.39 (d, J = 24.0 Hz), 119.10 (d, J = 4.0 Hz), 117.35, 102.23, 99.63, 98.87, 89.38, 79.74, 29.63, 22.07, 18.95, 13.48. **HRMS (ESI)** m/z Calcd for [C₂₅H₁₈FO₂, M - H]⁻: 369.1369, Found: 369.1341

1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)ethan-1-one (1k)

¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.77 (dd, J = 7.8, 5.1 Hz, 3H), 7.55 (t, J = 7.5 Hz, 2H), 7.42 – 7.33 (m, 2H), 7.28 (d, J = 8.9 Hz, 1H), 2.68 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 198.40, 159.50,

135.94, 133.74, 133.47, 132.49, 131.28, 130.92, 128.22, 128.05, 127.63, 127.18, 124.69, 123.71, 122.43, 117.34, 102.51, 101.04, 88.61, 28.18. **HRMS (ESI)** m/z Calcd for [C₂₀H₁₂O₂, M - H]⁻: 286.0994, Found: 285.0972.

(E)-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3-phenylprop-2-en-1-one (3a)

¹**H NMR** (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.21 (d, *J* = 8.3 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 15.7 Hz, 1H), 7.80 – 7.73 (m, 3H), 7.62 – 7.56 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.47 – 7.39 (m, 2H), 7.39 – 7.32 (m, 4H), 7.28 (d, *J* = 8.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 190.84, 159.29, 146.20, 138.01, 134.49, 133.44, 133.41, 131.89, 131.17, 130.76, 129.68, 128.90, 128.56, 128.19, 128.08, 127.56, 127.17, 124.75, 123.72, 123.28, 122.92, 117.32, 102.54, 100.34, 88.56. HRMS (ESI) m/z Calcd for [C₂₇H₁₇O₂, M - H]⁻: 373.1307, Found: 373.1297

(E)-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3-(p-tolyl)prop-2-en-1-one (3b)

¹**H NMR** (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 7.7 Hz, 1H), 7.87 – 7.73 (m, 4H), 7.53 (dt, *J* = 14.4, 7.6 Hz, 4H), 7.42 (dd, *J* = 15.6, 9.6 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 8.9 Hz, 1H), 7.19 (d, *J* = 7.8 Hz, 2H),

2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 191.05, 159.32, 146.43, 141.44, 138.29, 133.45, 133.38, 131.80, 131.14, 129.69, 129.65, 128.64, 128.20, 128.09, 127.57, 127.16, 124.78, 123.72, 122.90, 122.34, 117.36, 102.56, 100.33, 88.50, 21.53. HRMS (ESI) m/z Calcd for [C₂₈H₁₉O₂, M - H]⁻: 387.1463, Found: 387.1441 (E)-3-(4-fluorophenyl)-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)prop-2en-1-one (3c)

¹**H NMR** (400 MHz, CDCl₃): δ 8.71 (s, 1H), 8.20 (d, *J* = 8.3 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.81 – 7.71 (m, 4H), 7.59 – 7.49 (m, 4H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 5.2 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 8.9 Hz, 1H), 7.04 (t, *J* = 8.5 Hz,

2H). ¹³C NMR (100 MHz, CDCl₃): δ 190.54, 164.10 (d, *J* = 251.0 Hz), 159.26, 144.77, 137.90, 133.42, 131.93, 131.20, 130.77 (d, *J* = 3.0 Hz), 130.53, 130.45, 129.63, 128.21, 128.09, 127.57, 127.19, 124.72, 123.75, 122.91, 117.29, 116.18, 115.96, 102.51, 100.34, 88.59. HRMS (ESI) m/z Calcd for [C₂₇H₁₆FO₂, M - H]⁻: 391.1213, Found: 391.1210

(E)-3-(4-chlorophenyl)-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)prop-2en-1-one (3d)

¹**H NMR** (400 MHz, CDCl₃): δ 8.71 (s, 1H), 8.19 (d, *J* = 8.3 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.79 – 7.71 (m, 4H), 7.52 (m, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.37 (m, 3H), 7.31 (d, *J* = 8.5 Hz, 2H),

7.27 (d, J = 8.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 190.34, 159.26, 144.50, 137.71, 136.60, 133.45, 133.42, 132.97, 132.01, 131.23, 129.66, 129.15, 128.21, 128.08, 127.56, 127.20, 124.71, 123.75, 123.52, 122.95, 117.28, 102.50, 100.37, 88.66.
HRMS (ESI) m/z Calcd for [C₂₇H₁₆ClO₂, M - H]⁻: 407.0917, Found: 407.0911

(E)-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3-(4-

(trifluoromethyl)phenyl)prop-2-en-1-one (3e)

¹H NMR (400 MHz, CDCl₃): δ 8.63 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.88 – 7.74 (m, 4H), 7.69 (d, J = 8.1 Hz, 2H), 7.66 – 7.49 (m, 5H), 7.45 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H). ¹³C NMR (100 MHz, 100 MHz)

CDCl₃): δ 190.31, 159.29, 143.97, 137.75 (d, *J* = 34.0 Hz), 133.62, 133.48, 132.51, 132.28, 132.03 (d, *J* = 33.0 Hz), 131.54, 131.36, 129.81, 128.61, 128.27, 128.16, 127.67, 127.27, 125.89, 125.85, 125.46, 123.76 (q, *J* = 270.0 Hz), 124.73, 123.83, 123.17, 117.30, 102.47, 100.29, 88.88. **HRMS (ESI)** m/z Calcd for [C₂₈H₁₆F₃O₂, M - H]⁻: 441.1181, Found: 441.1167

(E)-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3-(naphthalen-1-yl)prop-2en-1-one (3f)

¹H NMR (400 MHz, CDCl₃): δ 8.81 – 8.66 (m, 2H), 8.24 (d, J = 8.2 Hz, 2H), 8.00 (d, J = 6.8 Hz, 1H), 7.88 (dd, J = 15.5, 7.4 Hz, 4H), 7.81 – 7.74 (m, 2H), 7.62 – 7.42 (m, 7H), 7.35 (t, J = 7.4 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃):

δ 190.69, 159.35, 143.07, 138.12, 133.69, 133.55, 133.52, 132.01, 131.70, 131.24, 131.10, 129.84, 128.73, 128.23, 128.16, 127.65, 127.22, 127.05, 126.33, 125.96, 125.38, 125.31, 124.80, 123.76, 123.48, 123.12, 117.37, 102.58, 100.38, 88.74. **HRMS** (ESI) m/z Calcd for [C₃₁H₁₉O₂, M - H]⁻: 423.1463, Found: 423.1441 (E)-1-(2-((2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3-(thiophen-2-yl)prop-2en-1-one (3g)

¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 15.3 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.81 – 7.72 (m, 3H), 7.53 (t, J = 7.5 Hz, 2H), 7.45 – 7.31 (m, 4H), 7.31 – 7.20 (m, 2H), 7.04 (t, J = 4.3 Hz, 1H). ¹³C NMR (100 MHz,

CDCl₃): δ 190.13, 159.32, 140.04, 138.56, 137.97, 133.44, 133.39, 132.57, 131.88, 131.15, 129.52, 129.40, 128.41, 128.18, 128.07, 127.59, 127.16, 124.76, 123.71, 122.90, 121.87, 117.33, 102.56, 100.38, 88.58. **HRMS (ESI)** m/z Calcd for [C₂₅H₁₅O₂S, M - H]⁻: 379.0871, Found: 379.0851

(E)-1-(2-((6-(3,5-dimethylphenyl)-2-hydroxynaphthalen-1-yl)ethynyl)phenyl)-3phenylprop-2-en-1-one (3h)

¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.24 (d, J = 8.6 Hz, 1H), 7.97 – 7.73 (m, 6H), 7.63 – 7.51 (m, 3H), 7.48 – 7.35 (m, 5H), 7.29 (d, J = 8.0 Hz, 3H), 6.99 (s, 1H), 2.40 (s, 6H).

190.88, 159.31, 146.22, 140.89, 138.27, 138.11, 136.75, 134.56, 133.45, 132.59, 131.89, 131.42, 130.77, 129.68, 128.93, 128.79, 128.59, 128.36, 127.58, 126.91, 126.06, 125.18, 125.09, 123.36, 122.95, 117.67, 102.48, 100.31, 88.61, 21.42. **HRMS** (ESI) m/z Calcd for [C₃₅H₂₅O₂, M - H]⁻: 477.1933, Found: 477.1910

VIII. ¹H, ¹³C NMR, HRMS data and HPLC traces of products (2a-2w, 4a-4j, 5j, 6j)

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(hex-1-yn-1-yl)-1-methoxy-1H-isochromen-3yl)naphthalen-2(1*H*)-one (2a)

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.87 (d, *J* = 7.5 Hz, 1H),
7.33 (t, *J* = 7.1 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.78 (m, 4H), 6.22 (d, *J* = 10.0 Hz, 1H), 3.95 (s, 3H),
2.08 (t, *J* = 6.8 Hz, 2H), 1.32 (m, 4H), 0.78 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, Toluene-*d*₈): δ 188.99, 146.64, 142.76, 142.70, 131.09, 130.73, 129.86, 129.70, 129.49, 128.76, 128.71, 128.52, 128.43, 125.91, 124.50, 124.30, 102.55, 99.99, 89.93, 76.01, 63.28, 53.42, 30.68, 22.37, 18.54, 13.69. HRMS (ESI) m/z Calcd for [C₂₆H₂₂Br₂NaO₃, M+ Na]⁺: 562.9936, Found: 562.9828. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) =80:20, flow rate = 1.0 mL/min, wave length = 254 nm, *t*_R = 4.811 min (major), *t*_R = 5.939 min (minor). Optical Rotation: $[\alpha]_D^{20} = 95^\circ$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 88%, 47.4 mg.

(R)-1-bromo-1-((S)-4-bromo-1-ethoxy-1-(hex-1-yn-1-yl)-1H-isochromen-3yl)naphthalen-2(1H)-one (2b)

¹H NMR (400 MHz, (CD₃)₂CO): δ 7.76 – 7.72 (m, 2H), 7.61 –
7.58 (m, 1H), 7.51 – 7.39 (m, 6H), 6.44 (d, J = 10.0 Hz, 1H),
4.23 – 4.10 (m, 2H), 2.52 (t, J = 7.0 Hz, 2H), 1.71 – 1.63 (m,
2H), 1.59 – 1.50 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 0.97 (t, J =
7.3 Hz, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO): δ 189.80, 147.05,

144.21, 142.83, 131.69, 131.33, 130.63, 130.61, 130.07, 129.62, 129.37, 129.13, 128.85, 126.29, 124.59, 124.48, 102.16, 99.43, 90.76, 76.23, 63.56, 62.02, 31.06, 22.62, 18.66, 15.06, 13.85. **HRMS (ESI)** m/z Calcd for $[C_{27}H_{24}Br_2NaO_3, M + Na]^+$: 577.0092, Found: 577.0010. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm, t_R = 6.968 min (major), t_R = 7.569 min (minor). **Optical Rotation:** $[\alpha]_D^{20} = 99^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 75%, 41.6 mg.

<u>(R)-1-bromo-1-((S)-4-bromo-1-(hex-1-yn-1-yl)-1-propoxy-1H-isochromen-3-yl)naphthalen-2(1H)-one (2c)</u>

¹**H NMR** (400 MHz, CDCl₃): δ 7.74 – 7.68 (m, 1H), 7.46 (m, 2H), 7.40 – 7.28 (m, 6H), 6.43 (d, J = 9.9 Hz, 1H), 4.12 – 4.01 (m, 2H), 2.44 (t, J = 6.9 Hz, 2H), 1.82 – 1.60 (m, 4H), 1.53 (dt, J = 14.4, 6.9 Hz, 2H), 0.97 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 189.50, 145.73, 142.96, 141.98, 130.69,

130.36, 129.46, 129.34, 128.91, 128.65, 128.38, 128.36, 127.88, 125.44, 124.14, 123.94, 101.71, 98.70, 89.55, 75.83, 67.75, 62.56, 30.31, 22.52, 22.02, 18.47, 13.59, 10.60. **HRMS (ESI)** m/z Calcd for $[C_{28}H_{26}Br_2NaO_3, M+ Na]^+$: 591.0249, Found: 591.0195. **HPLC analysis**: Chiralcel IC-H (Hexane/*i*-PrOH) = 90:10, flow rate = 1.0 mL/min, wave length = 254 nm, t_R = 5.601 min (major), t_R = 6.384 min (minor). **Optical Rotation:** $[\alpha]_D^{20} = 103^\circ$ (c = 1.0, CHCl₃); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 77%, 43.7 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(cyclobutylmethoxy)-1-(hex-1-yn-1-yl)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2d)

¹**H NMR** (400 MHz, Toluene- d_8): δ 8.01 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.15 – 7.10 (m, 1H), 6.97 – 6.91 (m, 1H), 6.91 – 6.81 (m, 3H), 6.32 (d, J = 10.0 Hz, 1H), 4.64 (dd, J = 9.1, 6.5 Hz, 1H), 4.59 – 4.53 (m, 1H), 3.00 (m, 1H), 2.26 – 2.15 (m,

5H), 2.12 – 1.97 (m, 2H), 1.97 – 1.89 (m, 1H), 1.56 – 1.38 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Toluene- d_8): δ 188.83, 146.76, 142.71, 142.63, 131.20, 130.70, 129.78, 129.64, 129.45, 128.76, 128.73, 128.54, 128.40, 126.01, 124.51, 124.37, 102.30, 99.65, 89.68, 77.01, 70.80, 63.47, 35.37, 30.73, 25.69, 25.21, 22.38, 19.12, 18.60, 13.67. HRMS (ESI) m/z Calcd for [C₃₀H₂₈Br₂NaO₃, M + Na]⁺: 617.0405, Found: 617.0428. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 90:10), flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 4.783$ min (major), $t_R = 5.333$ (minor). Optical Rotation: $[\alpha]_D^{20} = 122^\circ$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 75%, 44.6 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(cyclohexylmethoxy)-1-(hex-1-yn-1-yl)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2e)

¹**H NMR** (400 MHz, Toluene- d_8): δ 7.91 (d, J = 7.5 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.13 (d, J = 7.5 Hz, 1H), 7.04 (d, J = 7.7 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.80 - 6.71 (m, 3H), 6.21 (d, J = 10.0 Hz, 1H), 4.38 (dd, J = 8.9, 5.2 Hz, 1H), 4.27 - 4.20 (m, 1H), 2.12 (t, J = 6.9 Hz, 2H), 2.02 (d, J = 11.5 Hz, 1H), 1.93 (d, J = 8.7 Hz, 2H), 1.67 (t, J = 12.1 Hz,

2H), 1.58 (d, J = 10.1 Hz, 1H), 1.37 (m, 4H), 1.16 (m, 5H), 0.80 (t, J = 7.0 Hz, 3H). ¹³C **NMR** (100 MHz, Toluene- d_8): δ 188.77, 146.82, 142.76, 142.56, 131.33, 130.68, 129.75, 129.69, 129.41, 128.75, 128.74, 128.56, 128.39, 125.97, 125.38, 125.13, 124.89, 124.52, 124.39, 102.25, 99.69, 89.59, 77.08, 72.22, 63.46, 38.12, 30.87, 30.74, 30.38, 27.13, 26.46, 26.31, 22.37, 18.61, 13.67. **HRMS** (**ESI**) m/z Calcd for [C₃₂H₃₂Br₂NaO₃, M + Na]⁺: 645.0718, Found: 645.0695. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 90:10), flow rate = 1.0 mL/min, wave length = 254 nm, t_R = 4.670 min (major), t_R =5.110 (minor). **Optical Rotation**: $[\alpha]_D^{20} = 112^\circ$ (c = 1.0, CH₃OH); **Physical properties**: yellow foam; **Yield**: (SiO₂, PE:EA= 10:1) 75% 46.5 mg.

S30

(*R*)-1-((*S*)-1-(benzyloxy)-4-bromo-1-(hex-1-yn-1-yl)-1H-isochromen-3-yl)-1bromonaphthalen-2(1*H*)-one (2f)

¹**H NMR** (400 MHz, (CD₃)₂CO): δ 7.80 (dd, J = 6.1, 2.7 Hz, 1H), 7.77 (d, J = 10.0 Hz, 1H), 7.61 (dd, J = 6.2, 3.0 Hz, 1H), 7.53 (d, J = 7.2 Hz, 2H), 7.50 – 7.40 (m, 6H), 7.34 (t, J = 7.3 Hz, 2H), 7.31 – 7.25 (m, 1H), 6.48 (d, J = 10.0 Hz, 1H), 5.24 (d, J = 10.7 Hz, 1H), 5.14 (d, J = 10.7 Hz, 1H), 2.56 (t, J = 7.0 Hz, 2H), 1.69 (p, J = 6.9 Hz, 2H), 1.56 (dq, J = 14.2, 7.1 Hz,

2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO): δ 190.03, 146.90, 144.41, 142.76, 138.47, 131.79, 130.94, 130.80, 130.70, 130.15, 129.60, 129.57, 129.51, 129.15, 128.94, 128.88, 128.46, 126.49, 124.70, 124.46, 102.37, 99.67, 91.35, 76.25, 69.00, 63.59, 31.03, 22.66, 18.71, 13.87. HRMS (ESI) m/z Calcd for [C₃₂H₂₆Br₂NaO₃, M+ Na]⁺: 639.0249, Found: 639.0149. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 90:10, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 5.368$ min (minor), $t_R = 6.212$ min (major). Optical Rotation: $[\alpha]_D^{20} = 144^\circ$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 76%, 46.8mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(hex-1-yn-1-yl)-1-(thiophen-2-ylmethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2g)

¹**H** NMR (400 MHz, Toluene- d_8): δ 7.89 – 7.85 (m, 1H), 7.36 – 7.31 (m, 2H), 7.27 (d, J = 7.6 Hz, 1H), 7.06 – 7.02 (m, 1H), 7.00 – 6.95 (m, 1H), 6.86 – 6.82 (m, 1H), 6.82 – 6.78 (m, 1H), 6.76 (d, J = 3.3 Hz, 1H), 6.75 – 6.68 (m, 3H), 6.23 (d, J = 10.0Hz, 1H), 5.71 (s, 2H), 2.11 (t, J = 6.9 Hz, 2H), 1.40 (m, 2H),

1.35 – 1.28 (m, 2H), 0.79 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Toluene- d_8): δ 189.19, 146.40, 142.94, 142.61, 140.41, 130.78, 130.69, 129.94, 129.56, 129.52, 128.80, 128.73, 128.57, 128.49, 128.30, 126.88, 126.12, 125.97, 124.53, 124.23, 102.80, 99.32, 90.29, 76.41, 63.48, 63.30, 30.64, 22.41, 18.61, 13.72. HRMS (ESI) m/z Calcd for [C₃₀H₂₄Br₂O₃NaS, M+ Na]⁺: 644.9813, Found: 644.9780. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 7.202$ min (minor), $t_R = 10.800$ min (major). Optical Rotation: $[\alpha]_D^{20} =$ 99° (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 71%, 44.1 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(2-fluoroethoxy)-1-(hex-1-yn-1-yl)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2h)

¹**H NMR** (400 MHz, CDCl₃): δ 7.78 – 7.72 (m, 1H), 7.49 – 7.42 (m, 2H), 7.42 – 7.23 (m, 6H), 6.42 (d, *J* = 10.0 Hz, 1H), 4.92 – 4.58 (m, 2H), 4.48 – 4.21 (m, 2H), 2.45 (t, *J* = 7.1 Hz, 2H), 1.67 (p, *J* = 7.1 Hz, 2H), 1.52 (dq, *J* = 14.4, 7.2 Hz, 2H), 0.98 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, (CD₃)₂CO): δ 190.18,

146.70, 144.55, 142.71, 131.83, 130.91, 130.78, 130.74, 130.17, 129.60, 129.54, 129.13, 128.89, 126.49, 124.75, 124.38, 102.60, 99.46, 91.46, 83.00 (d, J = 166.0 Hz), 75.58, 65.74 (d, J = 20.0 Hz), 63.43, 31.00, 22.64, 18.66, 13.85. **HRMS (ESI)** m/z Calcd for $[C_{27}H_{23}Br_2NaFO_3, M+ Na]^+$: 594.9998, Found: 594.9908. **HPLC analysis**: Chiralcel IC-H (Hexane/*i*-PrOH) =95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 13.610$ min (major), $t_R = 15.453$ min (minor). **Optical Rotation:** $[\alpha]_D^{20} = 99^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 74%, 42.3 mg.

(R)-1-bromo-1-((S)-4-bromo-1-(3-bromopropoxy)-1-(hex-1-yn-1-yl)-1Hisochromen-3-yl)naphthalen-2(1H)-one (2i)

¹**H NMR** (400 MHz, (CD₃)₂CO) δ 7.79 – 7.74 (m, 1H), 7.70 (d, *J* = 10.1 Hz, 1H), 7.55 (m, 1H), 7.49 – 7.36 (m, 6H), 6.43 (d, *J* = 10.0 Hz, 1H), 4.30 (td, *J* = 8.7, 7.9, 5.1 Hz, 1H), 4.23 (dt, *J* = 9.6, 5.5 Hz, 1H), 3.55 (tt, *J* = 9.9, 5.4 Hz, 2H), 2.50 (t, *J* = 7.0 Hz, 2H), 2.35 – 2.26 (m, 1H), 2.25 – 2.15 (m, 1H), 1.66

(dt, J = 14.4, 6.9 Hz, 2H), 1.53 (dq, J = 14.1, 7.1 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, (CD₃)₂CO): δ 189.90, 146.83, 144.31, 142.66, 131.70, 130.94, 130.74, 130.63, 130.07, 129.48, 129.43, 129.04, 128.79, 126.35, 124.65, 124.38, 102.25, 99.46, 91.24, 75.96, 64.44, 63.44, 33.35, 31.48, 30.97, 22.63, 18.71, 13.89. HRMS (ESI) m/z Calcd for [C₂₈H₂₅Br₃NaO₃, M+ Na]⁺: 668.9354, Found: 668.9274. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R} = 7.870$ min (major), $t_{\rm R} = 9.170$ min (minor). Optical Rotation: $[\alpha]_D^{20} = 102^{\circ}$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 77 %, 49.7 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(hex-1-yn-1-yl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2j)

¹**H NMR** (400 MHz, CDCl₃): δ 7.79 – 7.74 (m, 1H), 7.47 (d, J = 10.0 Hz, 1H), 7.42 (m, 4H), 7.38 – 7.28 (m, 3H), 6.44 (d, J = 10.0 Hz, 1H), 4.69 – 4.58 (m, 1H), 4.45 – 4.34 (m, 1H), 2.46 (t, J = 7.1 Hz, 2H), 1.67 (p, J = 7.1 Hz, 2H), 1.52 (dq, J = 14.3, 7.2 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃):

δ 189.75, 144.80, 143.43, 141.69, 130.85, 130.19, 129.54, 129.11, 128.78, 128.53, 128.37, 127.92, 125.89, 124.41, 123.84 (q, J = 276.0 Hz), 123.76, 102.72, 98.70, 91.01, 74.01, 63.43 (q, J = 35.0 Hz), 62.16, 30.12, 22.00, 18.40, 13.54. **HRMS (ESI)** m/z Calcd for $[C_{27}H_{21}Br_2F_3NaO_3, M+ Na]^+$: 630.9810, Found: 630.9710. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 5.736$ min (major), $t_R = 6.352$ min (minor). **Optical Rotation:** $[\alpha]_D^{20} = 160^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 72%, 43.8 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(cinnamyloxy)-1-(hex-1-yn-1-yl)-1H-isochromen-3-yl)naphthalen-2(1*H*)-one (2k)

¹**H NMR** (400 MHz, Toluene- d_8): δ 7.94 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 8.2 Hz, 2H), 7.22 (d, J = 7.3 Hz, 2H), 7.12 (d, J =7.5 Hz, 1H), 7.04 (t, J = 7.4 Hz, 3H), 6.97 (s, 1H), 6.80 (t, J =7.3 Hz, 1H), 6.72 (td, J = 10.3, 9.4, 4.0 Hz, 5H), 6.23 (d, J =10.0 Hz, 1H), 5.26 (dd, J = 11.6, 4.8 Hz, 1H), 5.07 (dd, J = 11.5,

5.9 Hz, 1H), 2.13 (t, J = 7.0 Hz, 2H), 1.45 – 1.36 (m, 2H), 1.36 – 1.29 (m, 2H), 0.79 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Toluene- d_8): δ 189.18, 146.66, 142.88, 142.65, 137.60, 133.33, 131.04, 130.77, 129.94, 129.69, 129.51, 128.80, 128.74, 128.60, 128.52, 128.51, 127.53, 127.06, 126.38, 126.04, 124.60, 124.28, 102.71, 99.40, 90.00, 76.44, 67.64, 63.39, 30.72, 22.43, 18.64, 13.71. HRMS (ESI) m/z Calcd for [C₃₄H₂₈Br₂NaO₃, M+ Na]⁺: 665.0405, Found: 665.0385. HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH) = 95:5, wave length = 254 nm, $t_R = 10.400$ min (major), $t_R = 12.807$ min (minor). Optical Rotation: $[\alpha]_D^{20} = 95^\circ$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 60%, 38.5 mg.

S36
(*R*)-1-bromo-1-((*S*)-4-bromo-1-(hex-1-yn-1-yl)-1-((3-phenylprop-2-yn-1-yl)oxy)-1H-isochromen-3-yl)naphthalen-2(1*H*)-one (2l)

¹**H NMR** (400 MHz, Toluene- d_8): δ 7.92 (d, J = 7.4 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.13 (d, J = 6.9 Hz, 1H), 7.09 – 7.04 (m, 1H), 6.99 – 6.92 (m, 3H), 6.90 – 6.81 (m, 3H), 6.77 (t, J = 7.4Hz, 1H), 6.26 (d, J = 10.0 Hz, 1H), 5.54 (d, J = 15.2 Hz, 1H), 5.41 (d, J = 15.2 Hz, 1H), 2.13 (t, J = 6.9 Hz, 2H), 1.42 (dt, J =14.3, 7.0 Hz, 2H), 1.33 (dt, J = 14.1, 7.0 Hz, 2H), 0.80 (t, J =

7.1 Hz, 3H). ¹³C NMR (100 MHz, Toluene-*d*₈): δ 189.07, 146.25, 142.96, 142.54, 132.13, 130.75, 130.49, 130.10, 129.62, 129.59, 128.69, 128.55, 128.30, 126.20, 124.59, 124.24, 123.81, 102.94, 99.21, 90.73, 86.57, 86.36, 75.83, 63.19, 55.63, 30.60, 22.41, 18.63, 13.68. HRMS (ESI) m/z Calcd for [C₃₄H₂₆Br₂NaO₃, M+ Na]⁺: 663.0249, Found: 663.0149. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm, *t*_R = 12.778 min (minor), *t*_R = 14.712 min (major). Optical Rotation: $[\alpha]_D^{20} = 105^\circ$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 60%, 38.4 mg.

(R)-1-bromo-1-((S)-4-bromo-1-(hex-1-yn-1-yl)-1-propoxy-1H-isochromen-3yl)naphthalen-2(1H)-one (2m)

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.80 (d, *J* = 7.7 Hz, 1H),
7.58 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 6.99 - 6.95 (m, 1H), 6.84 (t, *J* = 7.8 Hz, 1H),
6.80 - 6.72 (m, 3H), 6.21 (d, *J* = 10.0 Hz, 1H), 5.09 (p, *J* = 6.2 Hz, 1H), 2.05 (t, *J* = 7.0 Hz, 2H), 1.60 (d, *J* = 6.2 Hz, 3H),

1.46 (d, J = 6.1 Hz, 3H), 1.36 (m, 2H), 1.31 – 1.23 (m, 2H), 0.77 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Toluene- d_8) δ 188.31, 147.05, 142.64, 142.39, 131.25, 130.54, 129.57, 129.42, 129.24, 128.53, 128.31, 125.93, 124.44, 101.45, 98.96, 89.50, 78.13, 70.08, 63.67, 30.55, 23.96, 23.84, 22.32, 18.55, 13.62. HRMS (ESI) m/z Calcd for [C₂₈H₂₆Br₂NaO₃, M+ Na]⁺: 591.0249, Found: 591.0121. HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH) =95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 10.223$ min (major), $t_R = 11.257$ min (minor). Optical Rotation: $[\alpha]_D^{20} = 170$ ° (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 78%, 44.3 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(pent-1-yn-1-yl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2n)

¹H NMR (400 MHz, Toluene-*d*₈): δ 7.85 – 7.81 (m, 1H), 7.24
(d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 1H), 7.07 – 7.02 (m, 1H), 7.02 – 6.97 (m, 1H), 6.83 (t, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 9.4 Hz, 2H), 6.72 (t, *J* = 7.5 Hz, 1H), 6.16 (d, *J* = 10.0 Hz, 1H), 4.97 (dt, *J* = 11.8, 8.8 Hz, 1H), 4.92 – 4.82 (m, 1H), 2.01 (t, *J* =

7.0 Hz, 2H), 1.37 (h, J = 7.2 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Toluene- d_8): δ 189.32, 145.69, 143.25, 142.24, 130.86, 130.49, 129.67, 129.46, 129.31, 128.95, 128.92, 128.59, 128.45, 126.21, 124.84 (q, J = 276.0 Hz), 124.73, 124.01, 103.27, 99.48, 91.10, 75.03, 64.25 (q, J = 35.0 Hz), 62.88, 21.90, 20.56, 13.48. HRMS (ESI) m/z Calcd for [C₂₆H₁₉Br₂F₃NaO₃, M+ Na]⁺: 616.9653, Found: 616.9583. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:2, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 5.073$ min (major), $t_R = 5.657$ min (minor). Optical Rotation: $[\alpha]_D^{20} =$ 134° (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 75%, 44.6 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(hept-1-yn-1-yl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (20)

¹H NMR (400 MHz, Toluene-*d*₈) : δ 7.88 – 7.82 (m, 1H), 7.27
– 7.23 (m, 1H), 7.20 (d, *J* = 7.7 Hz, 1H), 7.03 (td, *J* = 7.5, 1.3
Hz, 1H), 6.98 (dd, *J* = 7.7, 1.5 Hz, 1H), 6.80 (td, *J* = 7.5, 1.2
Hz, 1H), 6.74 – 6.67 (m, 3H), 6.15 (d, *J* = 10.0 Hz, 1H), 4.99
(dq, *J* = 11.9, 8.8 Hz, 1H), 4.93 – 4.84 (dq, *J* = 11.9, 8.8 Hz,

1H), 2.08 – 2.04 (m, 2H), 1.39 (dt, J = 14.4, 6.7 Hz, 2H), 1.25 (m, 2H), 1.16 (m, 2H), 0.82 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.74, 144.81, 143.41, 141.72, 130.85, 130.19, 129.54, 129.11, 128.82, 128.77, 128.56, 128.40, 127.94, 125.91, 123.84 (q, J = 276.0 Hz), 124.42, 123.80, 102.72, 98.71, 91.07, 74.07, 63.44 (q, J =35.0 Hz), 62.16, 31.05, 27.76, 22.13, 18.68, 13.96. **HRMS (ESI)** m/z Calcd for [C₂₈H₂₃Br₂F₃NaO₃, M+ Na]⁺: 644.9966, Found: 644.9876. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R} =$ 4.687 min (major), $t_{\rm R} = 5.220$ min (minor). **Optical Rotation**: $[\alpha]_D^{20} = 211^{\circ}$ (c = 1.0, CHCl₃); **Physical properties**: yellow foam; **Yield**: (SiO₂, PE:EA=10:1) 83%, 51.6 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(dec-1-yn-1-yl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2p)

¹**H NMR** (400 MHz, Toluene- d_8) δ : 7.68 – 7.63 (m, 1H), 7.03 (d, J = 7.7 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H), 6.87 – 6.82 (m, 1H), 6.80 – 6.77 (m, 1H), 6.63 – 6.58 (m, 1H), 6.56 – 6.46 (m, 3H), 5.96 – 5.93 (d, 1H), 4.86 – 4.73 (m, 1H), 4.68 (dt, J =

11.8, 8.9 Hz, 1H), 1.88 (t, J = 7.0 Hz, 2H), 1.20 (dt, J = 14.2,

6.9 Hz, 2H), 1.13 – 0.89 (m, 10H), 0.66 (t, J = 7.0 Hz, 3H). ¹³C NMR (100MHz, Toluene- d_8): δ 189.31, 145.70, 143.21, 142.27, 130.85, 130.49, 129.64, 129.48, 129.34, 128.45, 126.24, 124.86 (q, J = 275.0 Hz), 124.75, 124.02, 103.30, 99.51, 91.25, 74.95, 64.29 (q, J = 35.0 Hz), 62.87, 32.14, 29.19, 29.13, 28.47, 23.03, 18.72, 14.33. HRMS (ESI) m/z Calcd for [C₃₁H₂₉Br₂F₃NaO₃, M + Na]⁺: 687.0436, Found: 687.0386. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 4.477$ min (major), $t_R = 4.897$ min (minor). Optical Rotation: $[\alpha]_D^{20} =$ 200° (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (SiO₂, PE:EA= 10:1) 87%, 57.7 mg.

(R)-1-bromo-1-((S)-4-bromo-1-(3,3-dimethylbut-1-yn-1-yl)-1-(2,2,2-

trifluoroethoxy)-1H-isochromen-3-yl)naphthalen-2(1H)-one (2q)

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.88 – 7.83 (m, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.07 – 7.02 (m, 1H), 7.00 – 6.96 (m, 1H), 6.79 (t, J = 7.2 Hz, 1H), 6.74 – 6.64 (m, 3H), 6.14 (d, J = 10.0 Hz, 1H), 4.99 (dq, J = 12.0, 8.9 Hz, 1H), 4.93 – 4.82 (m, 1H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃):

δ 189.78, 144.84, 143.40, 141.76, 130.85, 130.17, 129.53, 129.10, 128.88, 128.78, 128.59, 128.43, 127.94, 125.87, 124.42, 123.81, 123.86 (q, J = 276.0 Hz), 102.74, 98.72, 98.59, 72.67, 63.43 (q, J = 35.0 Hz), 62.11, 30.47, 27.69. **HRMS (ESI)** m/z Calcd for [C₂₇H₂₁Br₂F₃NaO₃, M+ Na]⁺: 630.9810, Found: 630.9750. **HPLC analysis**: Chiralcel IA -H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R} = 4.427$ min (major), $t_{\rm R} = 4.793$ min (minor). **Optical Rotation:** $[\alpha]_D^{20} = 166^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 86%, 52.3 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(cyclopropylethynyl)-1-(2,2,2-trifluoroethoxy)-1H-isochromen-3-yl)naphthalen-2(1*H*)-one (2*r*)

¹**H NMR** (400 MHz, Toluene- d_8): δ 7.80 – 7.75 (m, 1H), 7.25 – 7.20 (m, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.04 – 6.96 (m, 2H), 6.83 (t, J = 7.2 Hz, 1H), 6.77 (d, J = 9.8 Hz, 2H), 6.74 – 6.67 (m, 1H), 6.15 (d, J = 10.0 Hz, 1H), 4.99 – 4.77 (m, 2H), 1.05 (m, 1H), 0.68 – 0.62 (m, 2H), 0.44 (dq, J = 6.3, 3.4 Hz, 2H). ¹³**C NMR**

(100 MHz, Toluene- d_8): δ 189.34, 145.67, 143.27, 142.18, 137.48, 130.87, 130.48, 129.67, 129.43, 129.25, 128.94, 128.56, 128.40, 124.81 (q, J = 276.0 Hz), 124.70, 123.97, 103.27, 99.45, 94.14, 69.67, 64.17 (q, J = 36.0 Hz), 62.81, 8.77, 8.68, -0.45. **HRMS (ESI)** m/z Calcd for [C₂₆H₁₇Br₂F₃NaO₃, M + Na]⁺: 614.9497, Found: 614.9428. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 85:15), flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 6.150$ min (major), $t_R = 8.397$ (minor). **Optical Rotation**: $[\alpha]_D^{20} = 84^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 72%, 42.6 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(phenylethynyl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2s)

¹**H NMR** (400 MHz, Toluene- d_8): δ 7.88 – 7.84 (m, 1H), 7.44 – 7.38 (m, 2H), 7.29 – 7.20 (m, 2H), 7.05 – 6.98 (m, 3H), 6.96 (d, J = 7.7 Hz, 2H), 6.85 – 6.80 (m, 1H), 6.73 (dd, J = 15.5, 8.8 Hz, 3H), 6.17 (d, J = 10.0 Hz, 1H), 5.06 (dq, J = 11.9, 8.7 Hz, 1H), 5.00 – 4.89 (m, 1H). ¹³**C NMR** (100 MHz,

CDCl₃): δ 189.75, 144.76, 143.51, 141.64, 132.13, 130.91, 130.42, 129.80, 129.59, 129.15, 128.96, 128.56, 128.53, 128.48, 128.37, 127.92, 125.89, 124.56, 123.82 (q, *J* = 276.0 Hz), 123.73, 120.57, 102.89, 99.08, 89.04, 82.28, 63.68 (q, *J* = 35.0 Hz), 62.11. **HRMS (ESI)** m/z Calcd for [C₂₉H₁₇Br₂F₃NaO₃, M + Na]⁺: 650.9497, Found: 650.9397. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R}$ = 5.643 min (major), $t_{\rm R}$ = 6.553 (minor). **Optical Rotation**: [α]²⁰_D = 170° (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 72 %, 45.2 mg.

S44

(*R*)-1-bromo-1-((*S*)-4-bromo-1-(p-tolylethynyl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (2t)

¹H NMR (400 MHz, Toluene-*d*₈): δ 7.92 – 7.87 (m, 1H),
7.38 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.21 (m, 2H), 7.02 – 6.97 (m, 2H), 6.78 (t, *J* = 7.9 Hz, 3H), 6.75 – 6.68 (m, 3H), 6.16 (d, *J* = 10.0 Hz, 1H), 5.08 (dq, *J* = 11.9, 8.7 Hz, 1H), 5.00 – 4.89 (m, 1H), 1.98 (s, 3H). ¹³C NMR (100 MHz, Toluene-

 d_8): δ 189.23, 145.69, 143.08, 142.36, 140.17, 132.37, 130.85, 130.56, 129.58, 129.39, 129.37, 128.69, 128.49, 126.30, 124.86 (q, *J* =276.0 Hz), 124.83, 124.11, 118.13, 103.49, 100.00, 89.86, 82.62, 64.53 (q, *J* =35.0 Hz), 62.75, 21.30. **HRMS (ESI)** m/z Calcd for [C₃₀H₁₉Br₂F₃NaO₃, M + Na]⁺: 664.9653, Found: 664.9547. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, t_R = 5.767 min (major), t_R = 6.780 (minor). **Optical Rotation**: $[\alpha]_D^{20} = 171^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 79 %, 50.7 mg.

(R)-1-bromo-1-((S)-4-bromo-1-(hex-1-yn-1-yl)-6-methyl-1-(2,2,2-

trifluoroethoxy)-1H-isochromen-3-yl)naphthalen-2(1H)-one (2u)

¹H NMR (400 MHz, Toluene-*d*₈): δ 7.78 (d, *J* = 7.8 Hz, 1H),
7.24 (d, *J* = 7.7 Hz, 1H), 7.13 (s, 1H), 6.86 (d, *J* = 7.8 Hz, 1H),
6.84 - 6.79 (m, 1H), 6.72 (m, 3H), 6.16 (d, *J* = 10.0 Hz, 1H),
5.06 - 4.86 (m, 2H), 2.05 (d, *J* = 7.0 Hz, 2H), 1.95 (s, 3H),
1.40 - 1.26 (m, 4H), 0.79 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100

MHz, Toluene- d_8): δ 189.34, 145.65, 143.21, 142.36, 140.64, 130.81, 129.70, 129.66, 129.18, 128.90, 128.61, 128.48, 127.03, 126.31, 125.22, 124.91 (q, J = 275.0 Hz), 124.04, 103.40, 99.55, 90.93, 75.03, 64.24 (q, J = 35.0 Hz), 62.94, 30.47, 22.30, 21.14, 18.40, 13.60. **HRMS (ESI)** m/z Calcd for [C₂₈H₂₃Br₂F₃NaO₃, M + Na]⁺: 644.9966, Found: 644.9866. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 5.377$ min (major), $t_R = 5.680$ (minor). **Optical Rotation**: $[\alpha]_D^{20} = 160^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 74%, 46.0mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-8-fluoro-1-(hex-1-yn-1-yl)-1-(2,2,2-trifluoroethoxy)-1H-isochromen-3-yl)naphthalen-2(1*H*)-one (2v)

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.64 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.19 (d, *J* = 7.7 Hz, 1H), 7.06 (dd, *J* = 8.5, 5.1 Hz, 1H), 6.84 (d, *J* = 7.4 Hz, 1H), 6.76 (m, 3H), 6.62 (t, *J* = 8.4 Hz, 1H), 6.16 (d, *J* = 10.0 Hz, 1H), 4.87 (m, 2H), 2.00 (t, *J* = 6.8 Hz, 2H),

1.27 (m, 4H), 0.76 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz,

Toluene- d_8) δ : 189.28, 163.02 (d, J = 248.0 Hz), 145.20 (d, J = 2.0 Hz), 143.28, 142.15, 131.32 (d, J = 8.0 Hz), 131.28, 130.87, 129.71, 129.04, 128.54, 128.44, 127.07 (d, J = 8.0 Hz), 125.68 (d, J = 2.0 Hz), 124.71 (q, J = 276.0 Hz), 123.98, 117.46 (d, J = 22.0 Hz), 113.06 (d, J = 25.0 Hz), 102.36, 98.84, 91.82, 74.26, 64.31 (q, J = 36.0 Hz), 62.65, 30.30, 22.25, 18.25, 13.49. **HRMS (ESI)** m/z Calcd for [C₂₇H₂₀Br₂F₄NaO₃, M + Na]⁺: 648.9715, Found: 648.9621. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 4.970 \text{ min (major)}$, $t_R = 5.660$ (minor). **Optical Rotation**: $[\alpha]_D^{20} = 236^\circ$ (c = 1.0, CH₂Cl₂); **Physical properties**: yellow foam; **Yield**: (SiO₂, PE:EA= 10:1) 79%, 49.4 mg.

(R)-1-bromo-1-((S)-4-bromo-1-methyl-1-(2,2,2-trifluoroethoxy)-1H-isochromen-

3-yl)naphthalen-2(1*H*)-one (2w)

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.30 – 7.24 (m, 2H), 7.08 –
7.04 (m, 1H), 6.98 – 6.93 (m, 2H), 6.88 – 6.80 (m, 2H), 6.80 –
6.73 (m, 2H), 6.17 (d, *J* = 9.9 Hz, 1H), 4.50 (dq, *J* = 12.0, 8.8 Hz, 1H), 4.10 (dq, *J* = 12.0, 8.9 Hz, 1H), 1.92 (s, 3H).¹³C NMR

(100 MHz, Toluene- d_8) δ 189.03, 146.98, 143.05, 142.27, 130.72, 129.91, 129.78, 129.74, 128.95, 128.50, 124.76, 124.74 (q, J = 275.0 Hz), 124.58, 124.13, 103.92, 101.39, 63.23, 62.36 (q, J = 35.0 Hz), 48.07, 25.37. **HRMS (ESI)** m/z Calcd for $[C_{22}H_{15}Br_2F_3NaO_3, M+ Na]^+$: 564.9340, Found: 564.9295. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 5.640$ min (major), $t_R = 7.810$ min (minor). **Optical Rotation:** $[\alpha]_D^{20} = 109^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA= 10:1) 86%, 46.5

(R)-1-bromo-1-((S)-4-bromo-1-((E)-styryl)-1-(2,2,2-trifluoroethoxy)-1H-

isochromen-3-yl)naphthalen-2(1H)-one (4a)

¹H NMR (400 MHz, Toluene-*d*₈) δ: 7.37 (d, *J* = 7.5 Hz, 1H),
7.33 (dd, *J* = 7.1, 1.5 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.26 – 7.21 (m, 2H), 7.14 (d, *J* = 16.1 Hz, 1H), 7.12 – 7.05 (m, 3H), 7.01 –
6.96 (m, 2H), 6.83 (t, *J* = 7.4 Hz, 1H), 6.79 – 6.69 (m, 4H), 6.19 (d, *J* = 10.0 Hz, 1H), 4.59 – 4.49 (m, 1H), 4.44 (dq, *J* = 11.9,

8.8 Hz, 1H). ¹³C NMR (100 MHz, Toluene- d_8) δ : 189.09, 146.28, 143.10, 142.39, 136.18, 135.65, 130.79, 130.31, 130.14, 129.76, 129.26, 129.05, 128.97, 128.58, 128.36, 127.55, 125.85, 125.55, 124.91 (q, J = 276.0 Hz), 124.13, 104.17, 102.47, 63.30, 63.07 (q, J = 36.0 Hz). HRMS (ESI) m/z Calcd for [C₂₉H₁₉Br₂F₃NaO₃, M + Na]⁺: 652.9653, Found: 652.9543. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 6.090$ min (major), $t_R = 7.367$ (minor). Optical Rotation: $[\alpha]_D^{20} = 57^\circ$ (c = 1.0, CH₂Cl₂); Physical properties: yellow foam; Yield: (Alumina N-neutral, PE:EA= 10:1) 85 %, 53.4 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-((*E*)-4-methylstyryl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (4b)

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.38 (d, *J* = 7.5 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 16.1 Hz, 1H), 6.97 (d, *J* = 5.4 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.85 – 6.79 (m, 1H), 6.79 – 6.70 (m, 4H), 6.18 (d, *J* = 10.0 Hz, 1H), 4.61 – 4.50 (m, 1H), 4.50 – 4.39

(m, 1H), 2.11 (s, 3H). ¹³C NMR (100 MHz, Toluene- d_8): δ 189.07, 146.32, 143.03, 142.45, 138.95, 136.13, 133.01, 130.78, 130.36, 130.08, 129.80, 129.72, 129.41, 128.93, 128.40, 127.55, 125.89, 124.95 (q, J = 275.0 Hz), 124.82, 124.56, 124.17, 104.33, 102.46, 63.30, 63.07 (q, J = 34.0 Hz), 21.18. **HRMS (ESI)** m/z Calcd for $[C_{30}H_{21}Br_2F_3NaO_3, M + Na]^+$: 666.9810, Found: 666.9710. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 6.723$ min (major), $t_R = 8.487$ (minor). **Optical Rotation**: $[\alpha]_D^{20} = 83^\circ$ (c = 1.0, CH₃OH); **Physical properties**: yellow foam; **Yield**: (Alumina N-neutral, PE:EA= 10:1) 86%, 55.3 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-((*E*)-4-fluorostyryl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (4c)

¹**H NMR** (400 MHz, Toluene- d_8): δ 7.40 – 7.31 (m, 2H), 7.26 (dd, J = 6.1, 2.7 Hz, 1H), 6.98 (m, 5H), 6.85 – 6.80 (m, 1H), 6.74 (m, 5H), 6.57 (d, J = 16.1 Hz, 1H), 6.18 (d, J =10.0 Hz, 1H), 4.52 (dq, J = 11.6, 8.7 Hz, 1H), 4.45 – 4.35 (m, 1H). ¹³**C NMR** (100 MHz, Toluene- d_8) δ : 189.00, 163.44

(d, J = 248.0 Hz), 146.34, 143.03, 142.41, 134.74, 131.81, 131.78 (d, J = 3.0 Hz), 130.71, 130.39, 130.20, 129.78, 129.26, 129.18, 128.97, 128.95, 128.31, 125.83, 125.55, 124.88 (q, J = 275.0 Hz), 124.19, 116.04, 115.82, 104.17, 102.37, 63.28, 63.06 (q, J = 35.0 Hz). **HRMS (ESI)** m/z Calcd for [C₂₉H₁₈Br₂F₄NaO₃, M + Na]⁺: 670.9559, Found: 670.9478. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R} = 7.940$ min (major), $t_{\rm R} = 8.897$ (minor). **Optical Rotation**: $\left[\alpha\right]_{D}^{20} = 300^{\circ}$ (c = 1.0, CH₃OH). **Physical properties:** yellow foam; **Yield:** (Alumina N-neutral, PE:EA= 10:1) 90 %, 58.3 mg.

S51

(*R*)-1-bromo-1-((*S*)-4-bromo-1-((*E*)-4-chlorostyryl)-1-(2,2,2-trifluoroethoxy)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (4d)

¹**H NMR** (400 MHz, Toluene- d_8) δ 7.38 – 7.32 (m, 2H), 7.27 – 7.24 (m, 1H), 7.05 – 6.97 (m, 5H), 6.94 (d, J = 8.5Hz, 2H), 6.88 – 6.83 (m, 1H), 6.82 – 6.76 (m, 3H), 6.63 (d, J = 16.1 Hz, 1H), 6.19 (d, J = 10.0 Hz, 1H), 4.52 (dq, J =11.8, 8.7 Hz, 1H), 4.46 – 4.35 (m, 1H). ¹³**C NMR** (100

MHz, Toluene- d_8) δ 189.10, 146.27, 143.18, 142.30, 134.87, 134.66, 134.05, 130.77, 130.29, 129.85, 129.22, 129.01, 128.95, 128.71, 128.27, 126.33, 125.81, 124.92, 124.85 (q, J = 276.0 Hz), 124.11, 104.02, 102.40, 63.30, 63.04 (q, J = 35.0 Hz). **HRMS** (ESI) m/z Calcd for [C₂₉H₁₈Br₂ClF₃NaO₃, M+ Na]⁺: 686.9263, Found: 686.9185. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) =90:10, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 6.377$ min (major), $t_R = 6.873$ min (minor). **Optical Rotation**: $[\alpha]_D^{20} = 110^\circ$ (c = 1.0, CH₂Cl₂); **Physical properties**: (Alumina N-neutral, PE:EA= 10:1) yellow foam; **Yield**: 81%, 53.7 mg.

(R)-1-bromo-1-((S)-4-bromo-1-(2,2,2-trifluoroethoxy)-1-((E)-4-

(trifluoromethyl)styryl)-1H-isochromen-3-yl)naphthalen-2(1H)-one (4e)

¹**H NMR** (400 MHz, Toluene-*d*₈): δ 7.39 – 7.33 (m, 2H), 7.32 – 7.24 (m, 3H), 7.10 – 7.01 (m, 5H), 6.86 – 6.82 (m, 1H), 6.81 – 6.68 (m, 4H), 6.20 (d, J = 10.0 Hz, 1H), 4.60 – 4.49 (m, 1H), 4.48 – 4.37 (m, 1H). ¹³**C NMR** (100 MHz, Toluene-*d*₈): δ 189.10, 146.25, 143.21, 142.27, 138.94,

134.38, 130.76, 130.67 (q, J = 32.0 Hz), 130.39, 130.26, 129.89, 128.85, 128.73, 128.35, 126.19, 126.12, 125.88, 124.81 (q, J = 276.0 Hz), 125.87, 125.81, 125.00, 124.10, 123.43, 120.67, 103.77, 102.43, 63.30, 63.10 (q, J = 35.0 Hz). **HRMS (ESI)** m/z Calcd for $[C_{30}H_{18}Br_{2}F_{6}NaO_{3}, M+Na]^{+}$: 720.9527, Found: 720.9487. **HPLC analysis**: Chiralcel OD-H (Hexane/*i*-PrOH) =95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{R} = 9.313$ min (major), $t_{R} = 23.133$ min (minor). **Optical Rotation**: $[\alpha]_{D}^{20} = 83^{\circ}$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (Alumina N-neutral, PE:EA= 10:1) 84%, 58.6 mg.

(R)-1-bromo-1-((S)-4-bromo-1-((E)-2-(naphthalen-1-yl)vinyl)-1-(2,2,2-

trifluoroethoxy)-1H-isochromen-3-yl)naphthalen-2(1H)-one (4f)

¹H NMR (400 MHz, Toluene-*d*₈) δ 8.15 – 8.10 (m, 1H), 8.02
(d, *J* = 15.8 Hz, 1H), 7.59 (dd, *J* = 9.3, 4.9 Hz, 3H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.35 (ddt, *J* = 9.6, 6.8, 3.5 Hz, 2H), 7.27 –
7.22 (m, 1H), 7.22 – 7.17 (m, 2H), 7.02 – 6.98 (m, 2H), 6.83
– 6.68 (m, 5H), 6.19 (d, *J* = 10.0 Hz, 1H), 4.65 (dq, *J* = 11.8,

8.7 Hz, 1H), 4.59 – 4.48 (m, 1H). ¹³C NMR (100 MHz, Toluene- d_8): δ 189.12, 146.24, 143.12, 142.39, 134.24, 133.53, 133.36, 131.98, 130.84, 130.35, 130.18, 129.75, 129.53, 129.29, 129.03, 128.98, 128.94, 128.58, 128.37, 126.89, 126.25, 125.87, 125.84, 124.96 (q, J = 276.0 Hz), 124.91, 124.64, 124.13, 123.70, 104.07, 102.48, 63.39, 63.15 (q, J = 34.0 Hz). HRMS (ESI) m/z Calcd for [C₃₃H₂₁Br₂F₃NaO₃, M+ Na]⁺: 702.9810, Found: 702.9759. HPLC analysis: Chiralcel IA-H (Hexane/*i*-PrOH) =95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R} = 6.780$ min (major), $t_{\rm R} = 7.907$ min (minor). Optical Rotation: $[\alpha]_D^{20} = 126^\circ$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (Alumina N-neutral, PE:EA= 10:1) 90%, 61.2 mg.

(R)-1-bromo-1-((S)-4-bromo-1-((E)-2-(thiophen-2-yl)vinyl)-1-(2,2,2-

trifluoroethoxy)-1H-isochromen-3-yl)naphthalen-2(1H)-one (4g)

¹H NMR (400 MHz, Toluene- d_8): δ 7.36 – 7.23 (m, 4H), 6.96 – 6.89 (m, 2H), 6.85 – 6.80 (m, 1H), 6.79 – 6.65 (m, 6H), 6.64 – 6.59 (m, 1H), 6.16 (d, J = 10.0 Hz, 1H), 4.59 – 4.48 (m, 1H), 4.47 – 4.36 (m, 1H). ¹³C NMR (100 MHz, Toluene- d_8): δ

189.05, 146.22, 143.04, 142.38, 140.44, 130.80, 130.23,

130.12, 129.71, 129.19, 129.02, 128.38, 127.86, 126.25, 125.80, 124.76 (q, J = 255.0 Hz), 124.71, 124.14, 123.48, 103.86, 102.51, 63.26, 63.06 (q, J = 29.0 Hz). **HRMS** (ESI) m/z Calcd for $[C_{27}H_{17}Br_2F_3O_3NaS, M+Na]^+$: 658.9217, Found: 658.9177. **HPLC analysis**: Chiralcel AD-H (Hexane/*i*-PrOH) =80:20, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 11.130$ min (major), $t_R = 14.220$ min (minor). **Optical Rotation**: $[\alpha]_D^{20} = 126^\circ$ (c = 1.0, CH₃OH); **Physical properties:** yellow foam; **Yield:** (Alumina N-neutral, PE:EA= 10:1) 75%, 47.7 mg.

(R)-1-bromo-1-((S)-4-bromo-1-((E)-styryl)-1-(2,2,2-trifluoroethoxy)-1H-

isochromen-3-yl)-6-(3,5-dimethylphenyl)naphthalen-2(1H)-one (4h)

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.47 (d, *J* = 8.1 Hz, 1H),
7.39 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.32 – 7.26 (m, 3H), 7.22 (d, *J* = 16.1 Hz, 1H), 7.18 (d, *J* = 1.6 Hz, 1H), 7.13 – 7.06 (m,
4H), 7.00 (td, *J* = 6.8, 1.4 Hz, 2H), 6.97 (s, 2H), 6.87 (d, *J* = 10.1 Hz, 1H), 6.81 – 6.75 (m, 2H), 6.26 (d, *J* = 10.0 Hz, 1H),
4.58 (dq, *J* = 10.2, 7.9, 7.3 Hz, 1H), 4.49 (dq, *J* = 11.9, 8.9,

7.9 Hz, 1H), 2.19 (s, 6H). ¹³C NMR (100 MHz, Toluene-*d*₈): δ 189.10, 146.30, 143.28, 142.65, 140.75, 139.70, 138.40, 136.22, 135.72, 130.36, 130.16, 130.00, 129.60, 129.35, 128.97, 128.50, 128.48, 127.59, 125.90, 125.58, 125.36, 125.12, 124.95 (q, *J* = 276.0 Hz), 124.88, 124.42, 104.17, 102.53, 63.58, 63.15 (q, *J* = 35.0 Hz), 21.37. HRMS (ESI) m/z Calcd for [C₃₇H₂₇Br₂F₃NaO₃, M+ Na]⁺: 757.0279, Found: 757.0189. HPLC analysis: Chiralcel AD-H (Hexane/*i*-PrOH) =95:5, flow rate = 1.0 mL/min, wave length = 254 nm, *t*_R = 4.647 min (major), *t*_R = 6.050 min (minor). Optical Rotation: $[\alpha]_D^{20} = 11^\circ$ (c = 1.0, CH₃OH); Physical properties: yellow foam; Yield: (Alumina N-neutral, PE:EA= 10:1) 70%, 51.4 mg.

(R)-1-((S)-1-(benzyloxy)-4-bromo-1-((E)-2-(naphthalen-1-yl)vinyl)-1H-

isochromen-3-yl)-1-bromonaphthalen-2(1H)-one (4i)

¹H NMR (400 MHz, Toluene-*d*₈): δ 7.99 (d, *J* = 8.2 Hz, 1H),
7.92 (d, *J* = 15.8 Hz, 1H), 7.58 (dd, *J* = 8.2, 3.6 Hz, 2H), 7.55
- 7.50 (m, 3H), 7.45 - 7.38 (m, 2H), 7.22 (dd, *J* = 15.1, 7.4
Hz, 2H), 7.18 - 7.12 (m, 3H), 7.06 (d, *J* = 2.8 Hz, 1H), 7.05
- 7.00 (m, 2H), 6.97 (s, 1H), 6.85 (d, *J* = 15.8 Hz, 1H), 6.82

- 6.72 (m, 3H), 6.69 (td, J = 8.7, 7.9, 1.5 Hz, 1H), 6.24 (d, J = 10.0 Hz, 1H), 5.27 (d, J = 11.5 Hz, 1H), 5.11 (d, J = 11.5 Hz, 1H). ¹³C NMR (100 MHz, Toluene- d_8): δ 188.98, 147.36, 142.88, 142.70, 138.75, 134.22, 133.85, 132.31, 132.00, 130.86, 130.80, 130.44, 129.74, 129.68, 129.17, 128.77, 128.51, 128.45, 127.88, 127.65, 126.72, 126.15, 126.08, 125.85, 125.74, 124.69, 124.56, 124.33, 123.96, 105.13, 101.58, 67.80, 63.94. HRMS (ESI) m/z Calcd for [C₃₈H₂₆Br₂NaO₃, M+ Na]⁺: 711.0249, Found: 711.0139. HPLC analysis: Chiralcel OD-H (Hexane/*i*-PrOH) =80:20, flow rate = 1.0 mL/min, wave length = 254 nm, $t_R = 9.927$ min (major), $t_R = 12.963$ min (minor). Optical Rotation: $[\alpha]_D^{20} = 25^\circ$ (c = 1.0, CH₂Cl₂); Physical properties: white solid; Yield: (Alumina N-neutral, PE:EA= 10:1) 83%, 57.1 mg.

(*R*)-1-bromo-1-((*S*)-4-bromo-1-methoxy-1-((*E*)-2-(naphthalen-1-yl)vinyl)-1Hisochromen-3-yl)naphthalen-2(1*H*)-one (4j)

¹H NMR (400 MHz, CDCl₃): δ 8.13 – 8.06 (m, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.78 (dd, J = 11.3, 3.5 Hz, 2H), 7.56 – 7.44 (m, 7H), 7.38 (dt, J = 14.2, 7.4 Hz, 3H), 7.30 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 7.3 Hz, 1H), 6.75 (d, J = 15.8 Hz, 1H), 6.47 (d, J = 9.9 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃): δ 189.61, 146.25, 143.17, 142.05, 133.61, 133.57, 132.30, 131.29, 130.84, 129.92, 129.75, 129.51, 129.46, 128.96, 128.82, 128.59, 128.43, 128.15, 128.01, 126.44, 125.97, 125.57, 125.39, 124.42, 124.18, 123.96, 123.64, 104.11, 101.02, 63.04, 52.42. **HRMS (ESI)** m/z Calcd for [C₃₂H₂₂Br₂NaO₃, M+ Na]⁺: 634.9936, Found: 634.9857. **HPLC analysis**: Chiralcel IA-H (Hexane/*i*-PrOH) =95:5, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R}$ = 10.910 min (major), $t_{\rm R}$ = 12.800 min (minor). **Optical Rotation**: $[\alpha]_D^{20} = 141^{\circ}$ (c = 1, CH₂Cl₂); **Physical properties:** (Alumina N-neutral, PE:EA= 10:1) yellow solid; **Yield:** 88%, 53.8 mg.

2-(2-(hept-2-ynoyl)phenyl)naphtho[2,1-b]furan-1(2H)-one (5j)

¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (d, J = 8.2 Hz, 1H), 8.37 - 8.31 (m, 1H), 8.12 (d, J = 9.0 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.52 - 7.44 (m, 3H), 7.38 (d, J= 9.0 Hz, 2H), 7.15 (s, 1H), 2.52 (t, J = 7.1 Hz, 2H), 1.73 -1.63 (m, 2H), 1.52 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ¹³**C NMR**

(100 MHz, CDCl₃) δ 197.68, 179.77, 175.23, 139.87, 135.43, 134.42, 133.63, 133.06, 129.82, 129.45, 129.42, 128.47, 128.41, 126.06, 125.40, 123.13, 113.76, 112.21, 96.97, 83.58, 80.90, 29.75, 22.09, 18.99, 13.52. **HRMS (ESI)** m/z Calcd for [C₂₅H₂₀NaO₃, M+ Na]⁺: 391.1412, Found: 391.1285. **HPLC analysis**: Chiralcel OD-H (Hexane/*i*-PrOH) = 90:10, flow rate = 1.0 mL/min, wave length = 254 nm, t_R = 12.927 min (minor), t_R = 14.083 min (major). **Physical properties:** yellow oil; **Yield:** (SiO₂, PE:EA=10:1) 90%.

1-(4-bromo-1-(hex-1-yn-1-yl)-1-(2,2,2-trifluoroethoxy)-1H-isochromen-3-

yl)naphthalen-2-yl acetate (6j)

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 9.0 Hz, 1H), 7.87 (dd, *J* = 6.7, 2.6 Hz, 1H), 7.83 (dd, *J* = 6.7, 2.8 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.41 (d, *J* = 9.0 Hz, 1H), 4.49 (dq, *J* = 11.5, 8.9 Hz, 1H), 4.13 (dq, *J* = 11.7, 8.6 Hz, 1H), 2.33

(t, J = 7.1 Hz, 2H), 2.26 (s, 3H), 1.55 (p, J = 7.0 Hz, 2H), 1.42 (h, J = 7.1 Hz, 2H), 0.90 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.14, 146.73, 142.60, 131.57, 131.46, 130.81, 130.29, 128.70, 128.22, 128.16, 127.30, 126.34, 126.03, 125.26, 124.92, 122.82, 122.47, 121.76, 104.57, 98.02, 91.43, 77.00, 74.53, 62.59 (J = 34.0 Hz), 30.02, 21.93, 20.81, 18.30, 13.45. **HRMS (ESI)** m/z Calcd for [C₂₉H₂₄BrF₃NaO₄, M+Na]⁺: 595.0801, Found: 595.0707. **HPLC analysis**: Chiralcel AD-H (Hexane/*i*-PrOH) = 98:2, flow rate = 1.0 mL/min, wave length = 254 nm, $t_{\rm R} = 4.907$ min (minor), $t_{\rm R} = 5.820$ min (major). **Physical properties:** yellow foam; **Yield:** (SiO₂, PE:EA=10:1) 88%

IX.¹H and ¹³C NMR spectra of substrates (1a-1k, 3a-3g)

S70

X. ¹H and ¹³C NMR spectra of substrates (2a-2w, 4a-4j, M1, 5j-6j)

S106

S109

S110

S111

S114

S118

XI. Crystallographic details of 4j.

	O S Br//, R			
	4 j		CCDC: 2077845	
Bond precision:	C-C = 0.0079 A		Wavelength=0.71073	
Cell:	a=7.8735(3)	b=13.6168(5)	c=24.1689(10)	
	alpha=90	beta=90	gamma=90	
Temperature:	295 K			
	Calculated		Reported	
Volume	2591.19(17)		2591.18(19)	
Space group	P 21 21 21		P 21 21 21	
Hall group	P 2ac 2ab		P 2ac 2ab	
Moiety formula	C32 H22 Br2 O3		C32 H22 Br2 O3	
Sum formula	C32 H22 Br2 O3		C32 H22 Br2 O3	
Mr	614.30		614.31	
Dx,g cm-3	1.575		1.575	
Z	4		4	
Mu (mm-1)	3.161			
F000	1232.0			
F000'	1230.22			
h,k,lmax	10,18,33		10,18,32	
Nref	6928[3907]		5957	
Tmin,Tmax	0.457,0.483		0.717,1.000	
Tmin'	0.423			
Correction method= # Reported T Limits: Tmin=0.717 Tmax=1.000				

AbsCorr = MULTI-SCAN

Data completeness= 1.52/0.86	Theta(max)= 29.042
R(reflections) = 0.0421(4360)	wR2(reflections)= 0.0779(5957)
S = 1.049	Npar= 335