Supporting Information for:

Cu/Base Co-catalyzed [3 + 3] Cycloaddition for the

Synthesis of Highly Functionalized 4-Fluoropyridines

Jinhuan Dong,^{‡a} Wanzhong Feng,^{‡b} Lei Wang,^a Mei Li,^a Zhe Chen,^{* b} and Xianxiu Xu^{*a}

^{*a*}College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.

^bSchool of Science, Jilin Institute of Chemical Technology, Jilin 132022, PR China.

E-mail: chenzhecz999@163.com; xuxx677@sdnu.edu.cn.

table of contents

1. General Experimenta
2. Experimental Procedures
2.1 Synthesis of starting materials
2.2 Optimization of reaction conditions
2.3 General procedure for the synthesis of 3-8 (3a as an example):4
2.4 General procedure for the synthesis of 9-154
3. Analytical Data of Compounds
4.Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of compounds
5.X-ray Crystallographic Data of compound 3k, 3p, 4c67

1. General Experimenta

Unless otherwise indicated, all reagents and solvents were commercial and used without further purification. Melting points of all compounds were measured with a micro melting point apparatus. Flash column chromatography was carried on 300-400 mesh silica gel. All reactions were monitored by thin layer chromatography (TLC), which was performed on silica gel 60 (F254). NMR spectra were determined at 25 °C on 400 MHz for ¹H NMR, and 100 MHz for ¹³C NMR. All chemical shifts were quoted in ppm and 0.0 ppm for TMS as an internal standard. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI).

2. Experimental Procedures

2.1 Synthesis of starting materials.

gem-Difluorocyclopropenes **1a-o**,¹⁻⁴ **1q-s**¹⁻⁴ and **1p**⁵ were synthesized according to known literature procedure.

References

[1] F. Wang, W. Zhang, J. Zhu, H. Li, K.-W. Huang and J. Hu, *Chem. Commun.*, 2011, **47**, 2411–2413.

[2] K. Sekine, A. Ushiyama, Y. Endo and K. Mikami, J. Org. Chem., 2020, 85, 7916-7924.

[3] X. Deng, J. Lin, J. Zheng and J. Xiao, Chem. Commun., 2015, 51, 8805-8808

[4] F. Wang, T. Luo, J. Hu, Y. Wang, H. S. Krishnan, P. V. Jog, S. K. Ganesh, G. K. S. Prakash and G. A. Olah, *Angew. Chem. Int. Ed.*, 2011, **50**, 7153–7157.

[5] K. Yamani, H. Pierre, A. Archambeau, C. Meyer and J. Cossy, *Angew. Chem. Int. Ed.*, 2020, **59**, 18505-18509.

2.2 Optimization of reaction conditions

1	1:2	-	DBU (30 mol%)	1,4-dioxane	25	12	NR
2	1:2	-	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	12	NR
3	1:2	Cu ₂ O (30 mol%)	-	1,4-dioxane	25	35	53
4	1:2	CuBr (30 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	5	73
5	1:2	Cu ₂ O (30 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	26	65
6	1:2	CuCl (30 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	7	55
7	1:2	CuBr ₂ (30 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	48	28
8	1:2	CuI (30 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	22	64
9	1:2	Ag ₂ CO ₃ (30 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	48	44
10	1:2	Ag ₂ O (30 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	48	51
11	1:2	CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	6	79
11 12	1:2 1:2	<i>CuBr</i> (<i>10 mol%</i>) CuBr (5 mol%)	Cs ₂ CO ₃ (30 mol%) Cs ₂ CO ₃ (30 mol%)	1,4-dioxane 1,4-dioxane	25 25	6 24	79 32
11 12 13	1:2 1:2 1:2	<i>CuBr</i> (<i>10 mol%</i>) CuBr (5 mol%) CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%) Cs ₂ CO ₃ (30 mol%) Cs ₂ CO ₃ (10 mol%)	<i>1,4-dioxane</i> 1,4-dioxane 1,4-dioxane	25 25 25	6 24 6	79 32 40
11121314	1:2 1:2 1:2 1:2	<i>CuBr</i> (<i>10 mol%</i>) CuBr (5 mol%) CuBr (10 mol%) CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%) Cs ₂ CO ₃ (30 mol%) Cs ₂ CO ₃ (10 mol%) Cs ₂ CO ₃ (50 mol%)	1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane	 25 25 25 25 	6 24 6 6	79 32 40 55
 11 12 13 14 15 	<i>1:2</i> 1:2 1:2 1:2 1:2	CuBr (10 mol%) CuBr (5 mol%) CuBr (10 mol%) CuBr (10 mol%)	$\begin{array}{c} Cs_2CO_3 \\ (30 \text{ mol}\%) \\ Cs_2CO_3 \\ (30 \text{ mol}\%) \\ Cs_2CO_3 \\ (10 \text{ mol}\%) \\ Cs_2CO_3 \\ (50 \text{ mol}\%) \\ Cs_2CO_3 \\ (30 \text{ mol}\%) \end{array}$	1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane	 25 25 25 25 25 	6 24 6 6	 79 32 40 55 66
 11 12 13 14 15 16 	<i>1:2</i> 1:2 1:2 1:2 1:1.5 1:2.5	CuBr (10 mol%) CuBr (5 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%)	$\begin{array}{c} Cs_2CO_3 \\ (30 \text{ mol}\%) \\ Cs_2CO_3 \\ (30 \text{ mol}\%) \\ Cs_2CO_3 \\ (10 \text{ mol}\%) \\ Cs_2CO_3 \\ (50 \text{ mol}\%) \\ Cs_2CO_3 \\ (30 \text{ mol}\%) \\ Cs_2CO_3 \\ (30 \text{ mol}\%) \\ Cs_2CO_3 \\ (30 \text{ mol}\%) \end{array}$	1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane	 25 25 25 25 25 25 	6 24 6 6 6 24	 79 32 40 55 66 68
 11 12 13 14 15 16 17 	<i>1:2</i> 1:2 1:2 1:2 1:1.5 1:2.5 1:2	CuBr (10 mol%) CuBr (5 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%)	Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (10 mol%) Cs_2CO_3 (50 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%)	1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane	 25 25 25 25 25 25 60 	6 24 6 6 24 6	 79 32 40 55 66 68 63
 11 12 13 14 15 16 17 18 	 1:2 1:2 1:2 1:2 1:1.5 1:2.5 1:2 1:2 1:2 	CuBr (10 mol%) CuBr (5 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%)	Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (10 mol%) Cs_2CO_3 (50 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) K_2CO_3 (30 mol%)	1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane	 25 25 25 25 25 60 25 	6 24 6 6 24 6 6	 79 32 40 55 66 68 63 70
 11 12 13 14 15 16 17 18 19^c 	 1:2 1:2 1:2 1:2 1:1.5 1:2.5 1:2 1:2 1:2 1:2 1:2 	CuBr (10 mol%) CuBr (5 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%)	Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (10 mol%) Cs_2CO_3 (50 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) K_2CO_3 (30 mol%) K_2CO_3 (30 mol%)	 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 	 25 25 25 25 25 60 25 25 25 	 6 24 6 6 24 6 6 6 6 6 6 6 6 	 79 32 40 55 66 68 63 70 22
 11 12 13 14 15 16 17 18 19^c 20^c 	 1:2 1:2 1:2 1:2 1:1.5 1:2.5 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 	CuBr (10 mol%) CuBr (5 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%) CuBr (10 mol%)	Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (10 mol%) Cs_2CO_3 (50 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) Cs_2CO_3 (30 mol%) K_2CO_3 (30 mol%) t-BuOK (30 mol%) DBU (30 mol%)	 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 	 25 25 25 25 25 60 25 25 25 25 25 25 	 6 24 6 6 24 6 	 79 32 40 55 66 68 63 70 22 44

21 ^{<i>c</i>}	1:2	CuBr (10 mol%)	K ₃ PO ₄ (30 mol%)	1,4-dioxane	25	6	50
22 ^{<i>c</i>}	1:2	CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%)	DCE	25	6	52
23 ^c	1:2	CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%)	CH ₃ CN	25	6	30
24 ^{<i>c</i>}	1:2	CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%)	EtOAc	25	6	61
25 ^c	1:2	CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%)	THF	25	6	44
26 ^{<i>d</i>}	1:2	CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	6	77
27 ^e	1:2	CuBr (10 mol%)	Cs ₂ CO ₃ (30 mol%)	1,4-dioxane	25	6	76

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a**, base and catalyst, solvent (2.0 mL) in open air. ^{*b*}Isolated yields. ^{*c*}H NMR yield (using CH_2Br_2 as internal standard). ^{*d*}N₂ atmosphere. ^{*e*}O₂ atmosphere.

2.3 General procedure for the synthesis of 3-8 (3a as an example):

(3,3-difluorocypropane-1-ene-1-yl) benzene **1a** (30.4 mg, 0.2 mmol), *p*-methylbenzene sulfonyl methyl isonitrile **2a** (78.1 mg, 0.4 mmol), CuBr (2.8 mg, 0.02 mmol), Cs₂CO₃ (19.5 mg, 0.06 mmol) and 1,4-dioxane (2 mL) were successively added into a 15 mL pressure tube. The reaction was carried out at 25 °C for 5 h, and TLC was used to monitor the reaction process. Cooled to room temperature, the reaction mixture was poured into 50 mL of saturated aqueous NH₄Cl and extracted with DCM (CH₂Cl₂, 20 mL×3). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by column chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **3a** (61 mg, 93% yield).

2.4 General procedure for the synthesis of 9

To a stirred solution of 4-fluoro-5-phenyl-2-tosylpyridine **3a** (65.4 mg, 0.2 mmol) in MeCN (0.2 mL) was added morpholine (0.136 mL, 0.8 mmol) and the reaction mixture was stirred at 80 $^{\circ}$ C for 9 h. The reaction mixture was concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **9** (70 mg, 89% yield) as a white solid.

2.5 General procedure for the synthesis of 10

To a stirred solution of Na (0.4 mmol) in MeOH (2 mL) at 0 °C. And was added 4-fluoro-5-phenyl-2-tosylpyridine **3a** (65.4 mg, 0.2 mmol) and the reaction mixture was stirred at 70 °C for 1 h. An aqueous saturated NH₄Cl solution was added to the mixture and the aqueous phase was extracted with AcOEt (20 mL×3). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **10** (64 mg, 94% yield) as a white solid.

2.6 General procedure for the synthesis of 11

To a stirred solution of 4-methoxy-5-phenyl-2-tosylpyridine **8** (67.8 mg, 0.2 mmol) in isopropanol (2 mL) was added CH₃SNa (0.122 g, 1.6 mmol) and the reaction mixture was stirred at 100 °C for 12 h. An aqueous saturated NH₄Cl solution was added to the mixture and the aqueous phase was extracted with DCM (20 mL×3). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **11** (35 mg, 76% yield) as a colorless oil.

2.7 General procedure for the synthesis of 12

To a stirred solution of 4-fluoro-5-phenyl-2-tosylpyridine **3a** (65.4 mg, 0.2 mmol) in DMSO (2 mL) was added NaOH (0.016 g, 0.4 mmol) and the reaction mixture was stirred at 20 °C for 12 h. An aqueous saturated NH₄Cl solution was added to the mixture and the aqueous phase was extracted with AcOEt (20 mL×3). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **12** (47 mg, 71% yield) as a white solid.

2.8 General procedure for the synthesis of 13

To a stirred solution of 4-fluoro-5-phenyl-2-tosylpyridine **3a** (65.4 mg, 0.2 mmol) in isopropanol (2 mL) was added CH₃SNa (0.084 g, 1.2 mmol) and the reaction mixture was stirred at 20 °C for 12 h. An aqueous saturated NH₄Cl solution was added to the mixture and the aqueous phase was extracted with DCM (20 mL×3). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **13** (69 mg, 97% yield)

as a white solid.

2.9 General procedure for the synthesis of 14

To a stirred solution of 4-fluoro-5-phenyl-2-tosylpyridine **3a** (65.4 mg, 0.2 mmol) in DMSO (0.5 mL) was added dimethyl malonate (0.071 mL, 0.6 mmol) and DBU (0.093 mL, 0.6 mmol) and the reaction mixture was stirred at 80 °C for 6 h. An aqueous saturated NH₄Cl solution was added to the mixture and the aqueous phase was extracted with AcOEt (20 mL×3). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **14** (60 mg, 68% yield) as a white solid.

2.10 General procedure for the synthesis of 15

To a stirred solution of 4-fluoro-5-phenyl-2-tosylpyridine **3a** (65.4 mg, 0.2 mmol) in DMSO (2 mL) was TolSO₂Na (54 mg, 0.3 mmol) and the reaction mixture was stirred at 100 °C for 3 h. An aqueous saturated NH₄Cl solution was added to the mixture and the aqueous phase was extracted with AcOEt (20 mL×3). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/EtOAc = 25:1 to 10:1, v/v) to afford the desired product **15** (83 mg, 90% yield) as a white solid.

3. Analytical Data of Compounds

3a, **4-Fluoro-5-phenyl-2-tosylpyridine**: White solid, 93% yield, 61 mg, m.p. 145–146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 9.2 Hz, 1H), 8.02-7.98 (m, 3H), 7.52-7.41 (m, 5H), 7.36 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.2. ¹³C NMR (100 MHz, CDCl₃) δ 165.7 (d, J = 268 Hz), 159.7 (d, J = 6 Hz), 152.7 (d, J = 4 Hz), 145.2, 135.2, 130.2, 129.8, 129.3, 128.9 (2C), 128.8 (d, J = 3 Hz), 128.3 (d, J = 9 Hz), 110.9 (d, J = 21 Hz), 21.5. HRMS (ESI-TOF) m/z calculated for C₁₈H₁₄FNO₂NaS⁺ ([M+Na]⁺) 350.0621, found 350.0624.

3b, **5**-([**1**,**1**'-**Biphenyl**]-**4**-**y**]-**4**-**fluoro-2**-**tosylpyridine**: White solid, 68% yield, 54 mg, m.p. 140– 142 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (d, J = 9.2 Hz, 1H), 8.05-7.96 (m, 3H), 7.72 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 8.0 Hz, 4H), 7.47 (t, J = 8.0 Hz, 2H), 7.41-7.36 (m, 3H), 2.44 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.0. ¹³C NMR (100 MHz, CDCl₃) δ 166.0 (d, J = 268 Hz), 159.9 (d, J = 6 Hz), 152.7 (d, J = 3 Hz), 145.3, 142.4, 139.9, 135.4, 129.9, 129.4 (d, J = 4 Hz), 129.2, 129.1, 128.9, 128.2 (d, J = 9.8 Hz), 127.9, 127.7, 127.1, 111.2 (d, J = 22 Hz), 21.7. **HRMS** (ESI-TOF) m/z calculated for C₂₄H₁₈FNO₂NaS⁺ ([M+Na]⁺) 426.0934, found 426.0931.

3c, **4-Fluoro-5-**(*p*-tolyl)-2-tosylpyridine: White solid,73% yield, 50 mg, m.p. 165–166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 9.2 Hz, 1H), 7.99-7.96 (m, 3H), 7.41 (dd, J = 8.0, 1.6 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H), 2.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.4. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 268 Hz), 159.5 (d, J = 6 Hz), 152.6 (d, J = 4 Hz), 145.1, 139.7, 135.4, 129.8, 129.7, 128.9, 128.7 (d, J = 2.8 Hz), 128.4 (d, J = 10 Hz), 127.4, 110.9 (d, J = 22 Hz), 21.6, 21.2. HRMS (ESI-TOF) m/z calculated for C₁₉H₁₆FNO₂NaS⁺ ([M+Na]⁺) 364.0778, found 364.0770.

3d, **4-Fluoro-5-(4-methoxyphenyl)-2-tosylpyridine**: White solid, 81% yield, 58 mg, m.p.120–122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 9.2 Hz, 1H), 7.97 (d, J = 8.8 Hz, 3H), 7.46 (dd, J = 8.8, 1.6 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.7. ¹³C NMR (100 MHz, CDCl₃) δ 165.6 (d, J = 267 Hz), 160.6, 159.0 (d, J = 6 Hz), 152.4 (d, J = 4 Hz), 145.1, 135.4, 130.2 (d, J = 3 Hz), 129.8, 128.9, 128.1 (d, J = 9 Hz), 122.5, 114.5, 111.0 (d, J = 22 Hz), 55.3, 21.6. HRMS (ESI-TOF) m/z calculated for C₁₉H₁₆FNO₃NaS⁺ ([M+Na]⁺) 380.0727, found 380.0733.

3e, **4-Fluoro-5-(4-fluorophenyl)-2-tosylpyridine**: White solid, 96% yield, 66 mg, m.p. 163–164 ^oC. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 9.2 Hz, 1H), 8.03-7.95 (m, 3H), 7.52-7.48 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.18 (tt, J = 8.0 Hz, J = 2.0 Hz, 2H), 2.43 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.3, -110.9. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 267 Hz), 163.3 (d, J = 249 Hz), 160.0 (d, J = 6 Hz), 152.5 (d, J = 4 Hz), 145.3, 135.2, 130.9 (d, J = 3 Hz), 130.8 (d, J = 3 Hz), 129.9, 129.1, 127.4 (d, J = 10 Hz), 126.3 (d, J = 4 Hz), 116.2 (d, J = 22 Hz), 111.0 (d, J = 22 Hz), 21.6. **HRMS** (ESI-TOF) m/z calculated for C₁₈H₁₃F₂NO₂NaS⁺ ([M+Na]⁺) 368.0527, found 368.0541.

3f, **5**-(**4**-**Chlorophenyl**)-**4**-**fluoro-2**-**tosylpyridine**: White solid, 85% yield, 61 mg, m.p. 155–156 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (d, J = 9.2 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.49-7.42 (m, 4H), 7.36 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -103.0. ¹³**C NMR** (100 MHz, CDCl₃) δ 165.9 (d, J = 268 Hz), 160.3 (d, J = 6 Hz), 152.5 (d, J = 4 Hz), 145.3, 135.8, 135.2, 130.2 (d, J = 3 Hz), 129.9, 129.3, 129.1, 128.8, 127.3 (d, J = 10 Hz), 111.1 (d, J = 22 Hz), 21.6. **HRMS** (ESI-TOF) m/z calculated for C₁₈H₁₃ClFNO₂NaS⁺ ([M+Na]⁺) 384.0232, found 384.0201.

3g, **5-(4-Bromophenyl)-4-fluoro-2-tosylpyridine**: White solid, 89% yield, 72 mg, m.p. 193–195 °C . ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 9.2 Hz, 1H), 8.02-7.96 (m, 3H), 7.63 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.9. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 268 Hz), 160.4 (d, J = 6 Hz), 152.4 (d, J = 3 Hz), 145.3, 135.2, 132.3, 130.4 (d, J = 3 Hz), 129.9, 129.3, 129.1, 127.4 (d, J = 10 Hz), 124.2, 111.0 (d, J = 22 Hz), 21.6. HRMS (ESI-TOF) m/z calculated for C₁₈H₁₃BrFNO₂NaS⁺ ([M+Na]⁺) 427.9727, found 427.9702.

3h, **4-Fluoro-5-(3-methoxyphenyl)-2-tosylpyridine**: White solid, 76% yield, 54 mg, m.p. 125–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 9.2 Hz, 1H), 8.01-7.96 (m, 3H), 7.41-7.33 (m, 3H), 7.07 (d, J = 9.2 Hz, 1H), 7.03-6.96 (m, 2H), 3.82 (s, 3H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.8. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 268 Hz), 159.9 (d, J = 6 Hz), 159.8, 152.7 (d, J = 4 Hz), 145.2, 135.3, 131.6, 130.1, 129.8, 129.0, 128.3 (d, J = 10 Hz), 121.2 (d, J = 3 Hz), 114.8, 114.7 (d, J = 3 Hz), 110.9 (d, J = 22 Hz), 55.3, 21.6. HRMS (ESI-TOF) m/z calculated for C₁₉H₁₆FNO₃NaS⁺ ([M+Na]⁺) 380.0727, found 380.0733.

3i, **5-(3-Chlorophenyl)-4-fluoro-2-tosylpyridine**: White solid, 93% yield, 67 mg, m.p. 150–151 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 9.2 Hz, 1H), 8.01 (d, J = 9.2 Hz, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.48 (s, 1H), 7.46-7.41 (m, 2H), 7.39-7.35 (m, 3H), 2.43 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.7. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 268 Hz), 160.5 (d, J = 6 Hz), 152.5 (d, J = 3 Hz), 145.3, 135.1, 134.9, 132.0, 130.3, 129.9, 129.6, 129.1, 128.9 (d, J = 3 Hz), 127.0, 111.0 (d, J = 22 Hz), 21.6. HRMS (ESI-TOF) m/z calculated for C₁₈H₁₃CIFNO₂NaS⁺ ([M+Na]⁺) 384.0232, found 384.0245.

3j, **4-Fluoro-5-(2-methoxyphenyl)-2-tosylpyridine**: White solid, 60% yield, 43 mg, m.p. 123–125 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.97 (d, J = 8.8 Hz, 1H), 7.44 (td, J = 8.0, 2.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 6.4 Hz, 1H), 7.08-6.98 (m, 2H), 3.78 (s, 3H), 2.43 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.4. ¹³C NMR (100 MHz, CDCl₃) δ 166.2 (d, J = 268 Hz), 159.7 (d, J = 6 Hz), 156.8, 154.0 (d, J = 4 Hz), 145.1, 135.4, 131.1, 130.9 (d, J = 2 Hz), 129.8, 129.0, 126.1 (d, J = 12 Hz), 120.7, 119.4, 111.1, 110.6 (d, J = 22 Hz), 55.5, 21.6. **HRMS** (ESI-TOF) m/z calculated for C₁₉H₁₆FNO₃NaS⁺ ([M+Na]⁺) 380.0727, found 380.0742.

3k, **5**-(**2**-**Chlorophenyl**)-**4**-**fluoro-2**-**tosylpyridine**: White solid, 90% yield, 65 mg, m.p. 148–149 ^oC. ¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (d, J = 8.8 Hz, 1H), 8.03-7.99 (m, 3H), 7.52 (dd, J = 8.0, 2.0 Hz, 1H), 7.46-7.34 (m, 4H), 7.29-7.25 (m, 1H), 2.44 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -97.9. ¹³C NMR (100 MHz, CDCl₃) δ 166.6 (d, J = 268 Hz), 161.0 (d, J = 6 Hz), 153.5 (d, J = 3 Hz), 145.3, 135.1, 133.6, 131.3, 130.8, 129.9, 129.8, 129.6, 129.2, 127.1, 126.7 (d, J = 12 Hz), 110.6 (d, J = 22 Hz), 21.6. **HRMS** (ESI-TOF) m/z calculated for C₁₈H₁₃ClFNO₂NaS⁺ ([M+Na]⁺) 384.0232, found 384.0201.

3l, **4-Fluoro-5-(naphthalen-1-yl)-2-tosylpyridine:** White solid, 86% yield, 65 mg, m.p. 165–166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 8.8 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 2H), 8.01-7.92 (m, 2H), 7.59-7.52 (m, 2H), 7.48-7.47 (m, 2H), 7.41-7.38 (m, 3H), 2.46 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.1. ¹³C NMR (100 MHz, CDCl₃) δ 166.4 (d, J = 268 Hz), 160.7 (d, J = 5 Hz), 154.2 (d, J = 4 Hz), 145.4, 135.2, 133.5, 131.1, 130.0, 129.9, 129.2, 128.6, 128.2, 128.1, 127.9 (d, J = 12 Hz), 127.0, 126.4, 125.1, 124.6, 110.7 (d, J = 22 Hz), 21.6. HRMS (ESI-TOF) m/z calculated for C₂₂H₁₆FNO₂NaS⁺ ([M+Na]⁺) 400.0778, found 400.0791.

3m, **4-Fluoro-5-(naphthalen-2-yl)-2-tosylpyridine:** White solid, 93% yield, 70 mg, m.p. 160–162 °C . ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 9.2 Hz, 1H), 8.05 (d, J = 9.2 Hz, 1H), 8.01 (d, J = 8.0 Hz, 3H), 7.95 (d, J = 8.0 Hz, 1H), 7.92-7.85 (m, 2H), 7.62-7.52 (m, 3H), 7.37 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.0. ¹³C NMR (100 MHz, CDCl₃) δ 166.1 (d, J = 268 Hz), 159.9 (d, J = 6 Hz), 153.0 (d, J = 3 Hz), 145.2, 135.4, 133.3, 133.1, 129.9, 129.1, 128.9 (d, J = 3 Hz), 128.8, 128.5 (d, J = 10 Hz), 128.3, 127.7 (2C), 127.3, 126.9, 125.8 (d, J = 3 Hz), 111.1 (d, J = 22 Hz), 21.6. HRMS (ESI-TOF) m/z calculated for C₂₂H₁₆FNO₂NaS⁺ ([M+Na]⁺) 400.0778, found 400.0792.

3n, **4-Fluoro-5-(thiophen-2-yl)-2-tosylpyridine**: White solid, 56% yield, 38 mg, m.p. $148^{-1}49^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 9.2 Hz, 1H), 8.01-7.93 (m, 3H), 7.59 (d, J = 4.0 Hz, 1H), 7.52 (dd, J = 5.2, 0.8 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.18 (m, 1H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.2. ¹³C NMR (100 MHz, CDCl₃) δ 164.4 (d, J = 269 Hz), 158.8 (d, J = 6 Hz), 150.6 (d, J = 4 Hz), 145.2, 135.3, 131.3 (d, J = 4 Hz), 129.9, 129.0, 128.9 (d, J = 6 Hz), 128.7 (d, J = 4 Hz), 128.3, 122.2 (d, J = 9 Hz), 111.1 (d, J = 22 Hz), 21.7. HRMS (ESI-TOF) m/z calculated for C₁₆H₁₂FNO₂NaS₂⁺ ([M+Na]⁺) 356.0186 , found 356.0165.

30, **2-((4-Fluoro-6-tosylpyridin-3-yl)methyl)isoindoline-1,3-dione:** White solid, 65% yield, 53mg, m.p. 170–172°C. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 8.4 Hz, 3H), 7.86-7.84 (m, 2H), 7.77-7.72 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.94 (s, 2H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.0. ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 167.1 (d, J = 269

Hz), 161.2 (d, J = 6 Hz), 153.3 (d, J = 4 Hz), 145.3, 135.0, 134.4, 131.7, 129.9, 129.2, 123.7, 123.2 (d, J = 9 Hz), 110.4 (d, J = 22 Hz), 32.7 (d, J = 4 Hz), 21.6. **HRMS** (ESI-TOF) m/z calculated for C₂₁H₁₅FN₂NaO₄S⁺ ([M+Na]⁺) 433.0629, found 433.0628.

3p, **Methyl 4-fluoro-5-phenyl-6-tosylnicotinate**: White solid, 27% yield, 21 mg, m.p. 169–171 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 9.13 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.49-7.42 (m, 3H), 7.27-7.21 (m, 4H), 3.96 (s, 3H), 2.42 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -95.40. **HRMS** (ESI-TOF) m/z calculated for C₂₀H₁₆FNO₄NaS⁺ ([M+Na]⁺) 408.0676, found 408.0686.

4a, Ethyl 4-fluoro-5-phenylpicolinate: yellow oil, 79% yield, 39 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 10.0 Hz, 1H), 7.93 (d, J = 10.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.52-7.42 (m, 3H), 4.49 (q, J = 7.2 Hz, 2H), 1.45 (d, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.6. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 263 Hz), 164.1 (d, J = 4 Hz), 152.1 (d, J = 4 Hz), 149.4 (d, J = 4 Hz), 131.1, 129.2, 129.0 (d, J = 4 Hz), 128.9, 128.3 (d, J = 10 Hz), 113.6 (d, J = 20 Hz), 62.3, 14.3. HRMS (ESI-TOF) m/z calculated for C₁₄H₁₂FNNaO₂⁺ ([M+Na]⁺) 268.0744, found 268.0737

4b, Ethyl 4-fluoro-5-(4-nitrophenyl)picolinate: yellow oil, 62% yield, 36 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 9.6 Hz, 1H), 8.37 (d, J = 9.6 Hz, 2H), 8.00 (d, J = 9.6 Hz, 1H), 7.77 (dd, J = 8.8, 1.6 Hz, 2H), 4.53 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.5. ¹³C NMR (100 MHz, CDCl₃) δ 165.9 (d, J = 265 Hz), 163.7 (d, J = 4 Hz), 151.7 (d, J = 3 Hz), 151.1 (d, J = 8 Hz), 148.2, 137.5, 130.0 (d, J = 3 Hz), 126.2 (d, J = 10 Hz), 124.1, 113.7 (d, J = 20 Hz), 62.6, 14.3. **HRMS** (ESI-TOF) m/z calculated for C₁₄H₁₁FN₂NaO₄⁺ ([M+Na]⁺) 313.0595, found 313.0585.

4c, Ethyl 5-(4-chlorophenyl)-4-fluoropicolinate. yellow oil, 75% yield, 42 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 10.0 Hz, 1H), 7.96 (d, J = 10.0 Hz, 1H), 7.54-7.48 (m, 4H), 4.52 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.4. ¹³C NMR (100 MHz, CDCl₃) δ 165.7 (d, J = 264 Hz), 163.8 (d, J = 3 Hz), 151.7 (d, J = 3 Hz), 149.8 (d, J = 7 Hz), 135.5, 130.2 (d, J = 3 Hz), 129.4, 129.2, 127.2 (d, J = 10 Hz), 113.5 (d, J = 20 Hz), 62.3, 14.2. HRMS (ESI-TOF) m/z calculated for C₁₄H₁₁CIFNNaO₂⁺ ([M+Na]⁺) 302.0355, found 302.0386.

4d, **Methyl 4-fluoro-5-phenylpicolinate**: yellow oil, 70% yield, 32 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, J = 10.0 Hz, 1H), 7.96 (d, J = 10.0 Hz, 1H), 7.61-7.57 (m, 2H), 7.55-7.46 (m, 3H), 4.05 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -106.4. ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7 (d, J = 264 Hz), 164.4 (d, J = 4 Hz), 152.0 (d, J = 3 Hz), 149.1 (d, J = 7 Hz), 131.0, 129.2, 129.0 (d, J = 3 Hz), 128.9, 128.5 (d, J = 10 Hz), 113.6 (d, J = 22 Hz), 53.1. **HRMS** (ESI-TOF) m/z calculated for C₁₃H₁₀FNaO₂⁺ ([M+Na]⁺) 254.0588, found 254.0614.

4e, **Tert-butyl 4-fluoro-5-phenylpicolinate**: yellow oil in, 70% yield, 39 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 10.0 Hz, 1H), 7.85 (d, J = 10.4 Hz, 1H), 7.57-7.55 (m, 2H), 7.53-7.42 (m, 3H), 1.65 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.2. ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 263 Hz), 162.9 (d, J = 4 Hz), 152.0 (d, J = 4 Hz), 150.9 (d, J = 7 Hz), 131.2, 129.1, 129.0 (d, J = 3 Hz), 128.9, 127.8 (d, J = 10 Hz), 113.2 (d, J = 20 Hz), 82.8, 28.0. **HRMS** (ESI-TOF) m/z calculated for C₁₆H₁₆FNNaO₂⁺ ([M+Na]⁺) 296.1057, found 296.1073.

4f, **4-Fluoro-2-(4-nitrophenyl)-5-phenylpyridine**: yellow oil, 34% yield, 20 mg. ¹**H** NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 10.4 Hz, 1H), 8.35 (d, J = 6.8 Hz, 2H), 8.22 (d, J = 6.8 Hz, 2H), 7.66-7.59 (m, 3H), 7.55-7.50 (m, 2H), 7.50-7.44 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.3. ¹³C NMR (100 MHz, CDCl₃) δ 166.2 (d, J = 262 Hz), 156.2 (d, J = 7 Hz), 152.2 (d, J = 4 Hz), 148.4, 143.7, 131.5, 128.9 (2C), 128.8, 127.6, 125.1 (d, J = 10 Hz), 124.1, 109.2 (d, J = 21 Hz). HRMS (ESI-TOF) m/z calculated for C₁₇H₁₁FN₂NaO₂⁺ ([M+Na]⁺) 317.0697, found 317.0687.

4g, **4-Fluoro-5-phenyl-2,4'-bipyridine**: White solid, 55% yield, 28 mg, m.p. 135–136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 9.2 Hz, 3H), 7.92 (d, J = 4.8 Hz, 2H), 7.68-7.58 (m, 3H), 7.56-7.42 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.5. ¹³C NMR (100 MHz, CDCl₃) δ 166.2 (d, J = 268 Hz), 156.1 (d, J = 8 Hz), 152.2 (d, J = 4 Hz), 150.6, 144.9 (d, J = 3 Hz), 131.6, 128.9, 128.8, 125.4 (d, J = 10 Hz), 120.9, 108.8 (d, J = 20 Hz). HRMS (ESI-TOF) m/z calculated for C₁₆H₁₁FN₂Na⁺ ([M+Na]⁺) 273.0798, found 273.0791.

5, **2-Ethyl 5-methyl 4-fluoro-3-phenylpyridine-2,5-dicarboxylate**. yellow oil, 75% yield, 45 mg. ¹**H** NMR (400 MHz, CDCl₃) δ 9.13 (d, J = 8.4 Hz, 1H), 7.52-7.43 (m, 3H), 7.35-7.33 (m, 2H), 4.17 (q, J = 7.2 Hz, 2H), 3.99 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -100.4. ¹³**C** NMR (100 MHz, CDCl₃) δ 165.1 (d, J = 274 Hz), 165.0 (d, J = 3 Hz), 162.6 (d, J = 3 Hz), 155.0 (d, J = 4 Hz), 152.2, 129.9, 129.2, 128.9, 128.4, 126.3 (d, J = 15 Hz), 116.4 (d, J = 8 Hz), 62.1, 52.9, 13.5. **HRMS** (ESI-TOF) m/z calculated for C₁₆H₁₄FNNaO₄⁺ ([M+Na]⁺) 326.0799, found 326.0822.

6, **Ethyl 4-fluoro-3,5-diphenylpicolinate**. yellow oil, 56% yield, 45 mg. ¹**H** NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 9.2 Hz, 1H), 7.62-7.57 (m, 2H), 7.54-7.42 (m, 6H), 7.41-7.35 (m, 2H), 4.19 (q, J = 7.2 Hz, 2H), 1.07 (t, J = 7.2 Hz, 3H). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -109.9. ¹³**C** NMR (100 MHz, CDCl₃) δ 165.5 (d, J = 4 Hz), 162.8 (d, J = 262 Hz), 150.4 (d, J = 4 Hz), 150.3 (d, J = 3 Hz), 131.3, 131.2, 129.3, 129.1 (d, J = 3 Hz), 129.0, 128.9, 128.6, 128.3, 127.1 (d, J = 10 Hz), 126.3 (d, J = 15 Hz), 61.8, 13.7. **HRMS** (ESI-TOF) m/z calculated for C₂₀H₁₆FNNaO₂⁺ ([M+Na]⁺) 344.1057, found 344.1078.

7, Ethyl 3,5-bis(4-bromophenyl)-4-fluoropicolinate: White solid, 82% yield, 78 mg. m.p. 125–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 9.2 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.48-7.43 (m, 2H), 7.24 (d, J = 8.4 Hz, 2H), 4.23 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.4. ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, J = 4 Hz), 162.4 (d, J = 262 Hz), 150.4 (d, J = 4 Hz), 150.3, 132.3, 131.6, 130.9, 130.6 (d, J = 3 Hz), 129.9 (d, J = 12 Hz), 126.2 (d, J = 12 Hz), 125.5 (d, J = 16 Hz), 123.8, 123.1, 62.1, 13.8. HRMS (ESI-TOF) m/z calculated for C₂₀H₁₄Br₂FNO₂Na⁺ ([M+Na]⁺) 499.9268, found 499.9285.

8, Ethyl 4-fluoro-3-methyl-5-phenylpicolinate: yellow oil, 34% yield, 18 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 9.2 Hz, 1H), 7.59-7.43 (m, 5H), 4.49 (q, J = 7.2 Hz, 2H), 2.56 (d, J = 2.4 Hz, 3H), 1.47 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.7. ¹³C NMR (100 MHz, CDCl₃) δ 165.6 (d, J = 37 Hz), 164.5 (d, J = 260 Hz), 149.0 (d, J = 14 Hz), 148.7 (d, J = 4 Hz), 131.6, 129.1 (d, J = 4 Hz), 128.9, 128.8, 126.9 (d, J = 12 Hz), 123.7 (d, J = 16 Hz), 61.9, 14.3, 10.7 (d, J = 6 Hz).

9, **4**-(**5**-Phenyl-2-tosylpyridin-4-yl)morpholine: White solid, 89% yield, 70 mg. m.p. 178–179 $^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.70 (s, 1H), 7.51-7.41 (m, 4H), 7.39-7.33 (m, 3H), 3.67-3.59 (m, 4H), 3.06-2.96 (m, 4H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 157.0, 152.4, 144.6, 136.8, 135.9, 130.0, 129.6, 129.1, 128.8, 128.4, 127.8, 109.8, 66.0, 49.4, 21.6. HRMS (ESI-TOF) m/z calculated for C₂₂H₂₂NO₃SNa⁺ ([M+Na]⁺) 417.1243, found 417.1256.

10, 4-Methoxy-5-phenyl-2-tosylpyridine: White solid, 94% yield, 64 mg, m.p. 128–130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.99 (d, J = 8.4 Hz, 2H), 7.82 (s, 1H), 7.46-7.40 (m, 5H), 7.35 (d, J = 8.0 Hz, 2H), 3.98 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 159.4, 151.2, 144.8, 135.8, 133.1, 129.8, 129.3, 129.1, 128.9, 128.4, 128.4, 104.9, 56.2, 21.6. HRMS (ESI-TOF) m/z calculated for C₁₉H₁₇NaNO₃S⁺ ([M+Na]⁺) 362.0821, found 362.0829.

11, 4-Methoxy-2-(methylthio)-5-phenylpyridine: colorless oil, 76% yield, 35 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.49-7.47 (m, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.37-7.31 (m, 1H), 6.77 (s, 1H), 3.82 (s, 3H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 160.4, 149.8, 134.7, 129.3, 128.2, 127.4, 123.2, 103.5, 55.3, 13.3. HRMS (ESI-TOF) m/z calculated for C₁₃H₁₃NaNOS⁺ ([M+H]⁺) 254.0610, found 254.0623.

12, 5-Phenyl-2-tosylpyridin-4-ol: White solid, 71% yield, 47 mg, m.p. 230–232 °C. ¹H NMR (400 MHz, DMSO) δ 11.86 (s, 1H), 8.43 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.74 (s, 1H), 7.57 (d, J = 7.2 Hz, 2H), 7.48-7.35 (m, 5H), 2.39 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 163.0, 158.4, 151.8, 145.2, 136.1, 133.9, 130.5, 129.7, 129.0, 128.8, 128.6, 127.6, 109.8, 21.6. HRMS (ESI-TOF) m/z calculated for C₁₈H₁₆NO₃S⁺ ([M+H]⁺) 326.0845, found 326.0862.

13, **4**-(**Methylthio**)-**5**-phenyl-2-tosylpyridine: White solid, 97% yield, 69 mg, m.p. 127–129 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.00 (s, 2H), 7.98 (s, 1H), 7.48-7.44 (m, 3H), 7.39-7.33 (m, 4H), 2.52 (s, 3H), 2.44 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 157.8, 152.4, 149.1, 144.9, 137.8, 135.8, 135.2, 129.8, 129.1, 129.0, 128.9, 128.7, 115.7, 21.7, 14.6. **HRMS** (ESI-TOF) m/z calculated for C₁₉H₁₇NaNO₂S₂⁺ ([M+Na]⁺) 378.0593, found 378.0583.

14, **Dimethyl 2-(5-phenyl-2-tosylpyridin-4-yl)malonate**: White solid, 68% yield, 60 mg, m.p. 180–181 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.46 (s, 1H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.50-7.47 (m, 3H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.28-7.24 (m, 2H), 4.89 (s, 1H), 3.77 (s, 6H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 157.7, 151.4, 144.9, 141.1, 141.0, 135.8, 134.7, 129.8, 129.1, 129.0, 128.9, 122.6, 53.3, 21.6. HRMS (ESI-TOF) m/z calculated for C₂₃H₂₁NO₆SNa⁺ ([M+Na]⁺) 462.0982, found 462.0987.

15, 5-Phenyl-2,4-ditosylpyridine: White solid, 90% yield, 83 mg, m.p. 170–172 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.01 (s, 1H), 8.51 (s, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.41-7.38 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 7.01-6.97 (m, 2H), 2.45 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 153.8, 150.2, 145.5, 145.1, 138.9, 135.2, 135.1, 133.0, 130.0, 129.8, 129.4, 129.2, 129.1, 128.3, 127.8, 119.5, 21.7, 21.6. HRMS (ESI-TOF) m/z calculated for C₂₅H₂₁NaNO₄S₂⁺ ([M+Na]⁺) 486.0804, found 486.0799.

4.Copies of ¹H NMR , ¹⁹F NMR and ¹³C NMR spectra of compounds

¹H NMR (400 MHz, CDCl₃) for 3a

¹⁹F NMR (376 MHz, CDCl₃) for **3a**

-30

40

-10 -20

80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (400 MHz, CDCl₃) for 3a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for **3b**

¹⁹F NMR (376 MHz, CDCl₃) for **3b**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR (400 MHz, CDCl₃) for 3b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 3c

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 3d

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR (100 MHz, CDCl₃) for 3d

30

20 10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

¹H NMR (400 MHz, CDCl₃) for **3e**

¹⁹F NMR (376 MHz, CDCl3) for 3e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 3e

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 3f

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR (100 MHz, CDCl₃) for 3f

40 30

20 10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50

¹H NMR (400 MHz, CDCl₃) for 3g

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

¹H NMR (400 MHz, CDCl₃) for **3h**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 3h

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for **3i**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 3i

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 3j

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 3j

30 20 10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

¹H NMR (400 MHz, CDCl₃) for 3k

¹⁹F NMR (376 MHz, CDCl₃) for 3k

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 3k

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹**H NMR** (400 MHz, CDCl₃) for **3**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for **3m**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 3m

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for **3n**

¹⁹F NMR (376 MHz, CDCl₃) for 3n

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 3n

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for **30**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 30

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR (400 MHz, CDCl₃) for 4a

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR (100 MHz, CDCl₃) for 4a

30 20 10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

¹H NMR (400 MHz, CDCl₃) for 4b

¹⁹F NMR (376 MHz, CDCl₃) for 4b

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 4c

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR (100 MHz, CDCl₃) for 4c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 4d

¹⁹F NMR (376 MHz, CDCl₃) for 4d

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 4d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 4e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 4e

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 4f

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 4g

(8.825 (8.799) (7.924) (7.912)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 4g

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 5

¹⁹F NMR (376 MHz, CDCl₃) for 5

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR (100 MHz, CDCl₃) for 6

55

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) for 7

¹⁹F NMR (376 MHz, CDCl₃) for 7

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:

¹³C NMR (100 MHz, CDCl₃) for **7**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2:

¹³C NMR (100 MHz, CDCl₃) for 8

0 -10

10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

The NOESY spectrum of 8

¹H NMR (400 MHz, CDCl₃) for 9

¹³C NMR (100 MHz, CDCl₃) for **10**

¹H NMR (400 MHz, DMSO- d_6) for 12

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (100 MHz, CDCl₃) for 13

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (100 MHz, CDCl₃) for 14

¹³C NMR (100 MHz, CDCl₃) for 14

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (100 MHz, CDCl₃) for 15

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

5.X-ray Crystallographic Data of compound 3k, 3p, 4c

Single-crystal X-ray diffraction data was collected at room temperature on a Oxford Diffraction Gemini R Ultra diffractometer, the X-ray generator using Mo-K α ($\lambda = 0.71073$ Å) radiation with a ω scan technique. The crystal structures were solved by direct method of SHELXS-97 and refined by full-matrix least-squares techniques using the SHELXL-97 program. Non-hydrogen atoms were refined anisotropic. CCDC deposition number: 2076659 (**3k**), 2076898 (**3p**), 2076661 (**4c**). Data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Crystal data and structure refinement for 3k

Empirical formula	$C_{36}H_{26}O_4N_2F_2S_2Cl_2$
Formula weight	723.61
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.5995(5)
b/Å	11.0868(7)
c/Å	18.5904(14)
α/°	96.689(6)
β/°	101.847(6)
γ/°	99.853(5)
Volume/Å ³	1687.83(19)
Z	2
$ ho_{calc} mg/mm^3$	1.424

m/mm ⁻¹	3.345
F(000)	744.0
Crystal size/mm ³	$0.09 \times 0.02 \times 0.01$
Index ranges	$-10 \le h \le 9, -13 \le k \le 13, -22 \le l \le 22$
Reflections collected	11108
Independent reflections	6014[R(int) = 0.0260]
Data/restraints/parameters	6014/0/433
Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0482, wR_2 = 0.1257$
Final R indexes [all data]	$R_1 = 0.0677, wR_2 = 0.1447$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.37

Crystal data and structure refinement for **3p**

Empirical formula	$C_{20}H_{16}NO_4SF$
Formula weight	385.40
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	6.0579(2)
b/Å	15.5439(5)
c/Å	9.8183(3)
$\alpha/^{\circ}$	90.00
β/°	92.620(3)

$\gamma/^{\circ}$	90.00
Volume/Å ³	923.56(5)
Z	2
$ ho_{calc} mg/mm^3$	1.386
m/mm ⁻¹	1.877
F(000)	400.0
Crystal size/mm ³	0.26 imes 0.20 imes 0.09
Index ranges	$-7 \le h \le 7, -13 \le k \le 18, -11 \le l \le 8$
Reflections collected	3793
Independent reflections	2576[R(int) = 0.0185]
Data/restraints/parameters	2576/1/244
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0350, wR_2 = 0.0918$
Final R indexes [all data]	$R_1 = 0.0365, wR_2 = 0.0935$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.24
Flack parameter	0.029(18)

Crystal data and structure refinement for 4c

Empirical formula	$C_{14}H_{11}NO_2ClF$
Formula weight	279.69
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	7.3135(7)
b/Å	7.6484(6)

c/Å	12.3996(11)
α /°	103.627(7)
β /°	97.874(8)
γ /°	98.131(7)
Volume/Å ³	656.75(10)
Z	2
$\rho_{calc} mg/mm^3$	1.414
m/mm ⁻¹	2.675
F(000)	288.0
Crystal size/mm ³	0.22 $ imes$ 0.16 $ imes$ 0.13
2Θ range for data collection	7.46 to 134.02°
Index ranges	$-8 \leqslant h \leqslant 8$, $-9 \leqslant k \leqslant 6$, $-14 \leqslant 1 \leqslant 14$
Reflections collected	3825
Independent reflections	2312[R(int) = 0.0210]
Data/restraints/parameters	2312/0/174
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0507, wR_2 = 0.1399$
Final R indexes [all data]	$R_1 = 0.0603, wR_2 = 0.1547$
Largest diff. peak/hole / e Å $^{-3}$	0.22/-0.21