## **Supporting Information**

## Supramolecular Assembly-Enabled Homochiral Polymerization of Short (dA)<sub>n</sub> Oligonucleotides

Sreejith Mangalath, Suneesh C. Karunakaran, Gary Newnam, Gary B. Schuster, and Nicholas V. Hud\*

School of Chemistry and Biochemistry, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0400 (USA) E-mail: <u>hud@chemistry.gatech.edu</u>

## **Materials and Methods**

Oligonucleotides were purchased from IDT. Cyanuric acid, EDC, MES, HEPES and MgCl<sub>2</sub> were purchased from Sigma Aldrich. beta-L-Pac-dA-CE Phosphoramidite was purchased from Glen Research. L-oligonucleotide and all the oligos with mismatches were synthesized inhouse using a standard DNA/RNA synthesizer.

**Construction of assembly:** 500  $\mu$ M of oligonucleotide (unless otherwise stated), Cyanuric acid (12.5 mM – 75 mM), 100 mM HEPES buffer (pH 6.8) and 10 mM MgCl<sub>2</sub> were mixed and made up to 10  $\mu$ L by gentle heating to 80 °C for 5 min. The mixture is then allowed to cool to 4 °C for 15 min and used for analyses.

**Polymerization Reactions:** Samples for polymerization reactions were prepared by mixing oligonucleotide (500  $\mu$ M, unless otherwise stated) and Cyanuric acid (12.5 mM – 75 mM), 100 mM HEPES buffer (pH 6.8) and 10 mM MgCl<sub>2</sub>. After 15 min equilibration at 4 °C, EDC (250 mM, from an H<sub>2</sub>O stock) was added, and samples were incubated for 24 h (unless otherwise stated) at 4 °C.

<sup>32</sup>**P** Post-labeling assay: After reaction, a 1  $\mu$ L aliquot of reaction mixture was removed and treated with T4 polynucleotide kinase and [ $\gamma^{32}$ P] ATP overnight, according to standard procedures. The <sup>32</sup>P labelled redaction products were analyzed using 20% denaturing PAGE analysis.

Ion exchange chromatography (HPLC) analysis of Reaction Products: Reactions contained 500  $\mu$ M oligonucleotide, Cyanuric acid (12.5 mM – 75 mM), 10 mM MgCl<sub>2</sub>, 100 mM HEPES buffer (pH 6.8), and 250 mM EDC. The reactions were incubated at 4 °C. At each time point, a 1  $\mu$ L aliquot was removed and diluted in 99  $\mu$ L 25 mM EDTA and 25 mM tris buffer. The aliquot was then immediately chromatographed (Thermofisher DNAPac 200 analytical column, ambient temperature). Gradient: Solvent A = 12.5 mM Tris buffer, pH 8. Solvent B = 12.5 mM Tris buffer + 1.5 M NaCl, pH 8. 0–15 min, 5% B. 15–25 min, 5–55% B. 25–30 min, 5% B.

**CD Analysis:** Circular dichroism (CD) spectra were collected using a JASCO 810 CD spectropolarimeter. Samples were contained within a strain free 0.1 mm quartz demountable cell (Starna).

**AFM Analyis:** AFM images were obtained with a Nanoscope IIIa (Digital Instruments) in tapping mode using Si tips (Vistaprobes, 48 Nm<sup>-1</sup>) on freshly cleaved mica. The mica substrate was rinsed with water and dried under N<sub>2</sub>. A 2  $\mu$ L sample of the assembly solution was spread over the mica using N<sub>2</sub> flow and was dried with N<sub>2</sub> gas. The average length and height of supramolecular polymers from AFM images were calculated using the image analysis software Image J (NIH).



**Figure S1.** Ion exchange chromatograms of  $(dA)_53$ 'p- CA (500  $\mu$ M, 25 mM CA, 100 mM HEPES, pH 6.8, 10 mM MgCl<sub>2</sub>, 250 mM EDC, 4 °C) polymerization reactions at various time intervals (1, 3, 6, 12 and 24 h).



**Figure S2.** (a) Ion exchange chromatograms of  $(dA)_5 - CA$  assembly (500  $\mu$ M(dA)<sub>5</sub>3'p, 25 mM CA, 10 mM MgCl<sub>2</sub>, 250 mM EDC, 4 °C) polymerization reactions in HEPES and MES buffer (100 mM, pH 6.7-6.8) after 24 h.



**Figure S3.** Ion exchange chromatograms of  $(dA)_5 - CA$  assembly  $(500 \ \mu M \ (dA)_5 3' p, 25 \ mM \ CA$ , 100 mM HEPES, pH 6.8, 250 mM EDC, 4 °C) polymerization reactions at various MgCl<sub>2</sub> concentrations (10 mM, 0.1 mM and 0 mM) after 24 h.



**Figure S4.** Ion exchange chromatograms of  $(dA)_5 - CA$  (500  $\mu$ M (dA)<sub>5</sub>3'p, 25 mM CA, 10 mM MgCl<sub>2</sub>, 250 mM EDC, 4 °C) polymerization in aqueous solution (No buffer and MgCl<sub>2</sub>) after 24 h.



**Figure S5.** CD spectra of  $(dA)_5$  – CA assemblies (500  $\mu$ M (dA)<sub>5</sub>3'p, 100 mM HEPES, pH 6.8, 10 mM MgCl<sub>2</sub>) with varying CA concentrations 2.5 mM, 10 mM, 12.5 mM and 25 mM (dA:CA = 1:1, 1:4, 1:5 and 1:10) at 4 °C.



**Figure S6.** Ion exchange chromatograms of  $(dA)_53'p$  – CA assembly polymerization reactions at various CA concentrations- 2.5 mM, 12.5 mM and 25 mM (dA:CA = 1:1, 1:5 and 1:10) after 24 h (500  $\mu$ M (dA)<sub>5</sub>3'p, 100 mM HEPES, pH 6.8, 250 mM EDC, 4 °C).



**Figure S7.** Ion exchange chromatograms of  $(dA)_53$ 'p – CA assembly polymerization reactions at various CA concentrations- 25 mM, 50 mM and 75 mM (dA:CA = 1:10, 1:20 and 1:30) after 24 h (500  $\mu$ M (dA)<sub>5</sub>3'p, 10 mM MgCl<sub>2</sub>, 100 mM HEPES, pH 6.8, 250 mM EDC, 4 °C).



**Figure S8.** CD spectra of  $(dA)_5 - CA$  assemblies with varying  $(dA)_53$ 'p concentrations (100-500  $\mu$ M (dA)<sub>5</sub>3'p, 100 mM HEPES, pH 6.8, 10 mM MgCl<sub>2</sub>) with 5 – 25 mM CA (dA:CA = 1:10) at 4 °C.



**Figure S9.** Ion exchange chromatograms of  $(dA)_n 3^{\circ}p$ -CA polymerization reactions with change in oligomer length  $((dA)_2 3^{\circ}p - 5 \text{ mM}, (dA)_3 3^{\circ}p - 1 \text{ mM}, (dA)_4 3^{\circ}p - 700 \ \mu\text{M}, (dA)_5 3^{\circ}p - 500 \ \mu\text{M}, (dA)_{10} 3^{\circ}p - 500 \ \mu\text{M}$  and  $(dA)_{15} 3^{\circ}p - 500 \ \mu\text{M}$  with CA concentrations of 25-100 mM (dA:CA = 1:10) after 24 h (100 mM HEPES, pH 6.8, 250 mM EDC, 4 °C). The concentrations of  $(dA)_n 3^{\circ}p$ , n>4 were fixed at 500  $\mu$ M and higher concentrations of  $(dA)_n 3^{\circ}p$ , n<5 were chosen to ensure formation of stable assembly.



**Figure S10.** (a) Ion exchange chromatograms of (dA)3'p– CA assembly polymerization reaction (black trace) after 24 h (10 mM (dA)3'p, 100 mM CA, 100 mM HEPES, pH 6.8, 10 mM MgCl<sub>2</sub>, 250 mM EDC, 4 °C) plotted with pre-synthesized  $(dA)_23'p$  (red trace) for reference. (b) CD spectrum of (dA)3'p– CA assemblies (10 mM (dA)3'p, 100 mM CA, 100 mM HEPES, pH 6.8, 10 mM MgCl<sub>2</sub>, 4 °C).



**Figure S11.** Ion exchange chromatograms of  $5'p(dA)_5$  – CA assembly polymerization reaction after 24 h (500  $\mu$ M 5'p(dA)<sub>5</sub>, 25 mM CA, 100 mM HEPES, pH 6.8, 10 mM MgCl<sub>2</sub>, 250 mM EDC, 4 °C).



**Figure S12.** (a) Temperature dependent CD spectra of 5'p(A)<sub>5</sub>-CA assembly (500  $\mu$ M 5'p(A)<sub>5</sub>, 100 mM HEPES, pH 6.8). (b) Ion exchange chromatograms of (A)<sub>5</sub>5'p and 5'p(A)<sub>5</sub>:CA polymerization reactions after 12 h and 24 h (500  $\mu$ M 5'p(A)<sub>5</sub>, 25 mM CA, 100 mM HEPES, pH 6.8, 250 mM EDC, 4 °C).



**Figure S13.** Ion exchange chromatograms of  $(dA)_53$ 'p and  $(dA)_53$ 'p with mismatches (G and C) polymerization reactions after 24 h (500  $\mu$ M oligonucleotides, 25 mM CA, 100 mM HEPES, pH 6.8, 250 mM EDC, 4 °C).