Preparation of tricationic tris(pyridylpalladium(II)) metallacyclophane as an anion receptor

Supporting Information

Hiroshi Danjo, *a Kohei Asai, ${ }^{\text {b }}$ Tomoya Tanaka, ${ }^{\text {a }}$ Daiki Ono, ${ }^{\text {a }}$ Masatoshi Kawahata, ${ }^{\text {c }}$ and Satoshi Iwatsuki ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry and ${ }^{\text {b }}$ Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan
${ }^{\text {c Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo }}$ 194-8543, Japan

Table of Contents

- General and Materials S2
- Synthesis S3
- Spectral copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR S8
- Experimental details of Fig. 2-4, S1-S5 S16
- NMR titration experiment (Fig. S6-S12) S23
- References S30

General. All manipulations were carried out under nitrogen atmosphere. NMR spectra were recorded on a Agilent UNITY INOVA $500\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 126 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, and 202 MHz for ${ }^{31} \mathrm{P}$) or a Agilent Mercury $300\left(300 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$. Chemical shifts were reported in $\delta \mathrm{ppm}$ referenced to an internal tetramethylsilane standard or residual DMSO- $d_{5}(\delta 2.49 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR. $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$ or DMSO- $d_{6}(\delta 39.5 \mathrm{ppm})$ was used as internal reference for ${ }^{13} \mathrm{C}$ NMR. An external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ standard was used for ${ }^{31} \mathrm{P}$ NMR. ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ unless otherwise noted. IR spectra were recorded on a JASCO FT/IR-4200. Nominal (LRMS) and exact mass (HRMS) spectra were recorded on a JEOL JMS-T100LP.

Materials. All reagents were obtained from commercial sources and used without further purification.

Preparation of 2

An oven-dried 200 mL 2-necked flask equipped with a condenser was charged with 3,5-dibromobenzene ($711 \mathrm{mg}, 3.00 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3.47 \mathrm{~g}, 3.00 \mathrm{mmol})$, and 1,4-dioxane $(90 \mathrm{~mL})$ at nitrogen atmosphere, and the mixture was refluxed for 22 h . After allowed to room temperature, the mixture was evaporated, and the residue was washed with ethyl acetate for four times. The resulting precipitate was dried under reduced pressure to give $\mathbf{2}$ as a white solid ($2.34 \mathrm{~g}, 90 \%$ yield); mp. $>258{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 7.93 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 12 \mathrm{H}), 7.53(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.28$ $(\mathrm{m}, 12 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 159.0(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=5$ $\mathrm{Hz}), 151.4(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=4 \mathrm{~Hz}), 145.1(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=4 \mathrm{~Hz}), 143.3,134.5(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=6 \mathrm{~Hz}), 130.39$ $(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=23 \mathrm{~Hz}), 130.35,128.1(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=5 \mathrm{~Hz}), 120.7 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 23.9$; IR (ATR) 3055, 3008, 1519, 1478, 1432, 1095, 999, 864, 741, 690, 521, 508 cm^{-1}; MS (ESI+) m/z $869\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 825\left([\mathrm{M}-\mathrm{Br}+\mathrm{Cl}+\mathrm{H}]^{+}, 90\right), 630\left(\left[\mathrm{M}-\mathrm{PPh}_{3}+\mathrm{Na}+\mathrm{H}\right]^{+}\right.$, 72), 789 ([M-Br] ${ }^{+}, 60$), 1693 ([2M-Br+Cl+H] $\left.{ }^{+}, 10\right), 1649\left([2 \mathrm{M}-2 \mathrm{Br}+2 \mathrm{Cl}+\mathrm{H}]^{+}, 6\right), 1737$ $\left([2 \mathrm{M}+\mathrm{H}]^{+}, 4\right)$; HRMS (ESI +): m / z Calcd. for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{NP}_{2} \mathrm{Pd}[\mathrm{M}+\mathrm{H}]^{+}: 865.95681$. Found: 865.95976.

Preparation of 3: a Typical Procedure

An oven-dried 500 mL 2-necked flask was charged with 2 ($2.33 \mathrm{~g}, 2.68 \mathrm{mmol}$), 1,2-bis(diphenylphosphino)ethane ($1.05 \mathrm{~g}, 2.64 \mathrm{mmol}$), and benzene (230 mL) at nitrogen
atmosphere, and the suspension was stirred at room temperature for 22 h . The reaction mixture was then evaporated and the residue was dropped into vigorously stirred n-hexane (ca. 600 mL). The precipitate was filtered and dried under reduced pressure to give $\mathbf{3}$ as a white solid (1.95 g , quantitative yield); mp. $>255{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 8.25 (dd, $J=1 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (dd, $J=1 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93-7.87 (m, 4H), $7.54-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.20$ and 7.19 (dd, $J=2 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}$, $2 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 157.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=135$ $\mathrm{Hz}), 156.4,153.7,145.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}), 144.6,133.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 133.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})$ $=11 \mathrm{~Hz}), 132.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=4 \mathrm{~Hz}), 131.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}), 130.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=37 \mathrm{~Hz}), 129.2$ $(\mathrm{d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 129.1(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=8 \mathrm{~Hz}), 127.9(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=53 \mathrm{~Hz}), 120.9(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10$ $\mathrm{Hz}), 29.9(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=21 \mathrm{~Hz}, 33 \mathrm{~Hz}), 23.9(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}, 27 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 55.4(J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz}), 37.3(J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz})$; IR (ATR) 3046, 3020, 2944, 2909, 1520, 1480, 1434, 1308, 1184, 1102, 1009, 868, 818, 747, 693, 532, $520 \mathrm{~cm}^{-1}$; MS (ESI+) m/z $743\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 1404$ ([2M-Br] $]^{+}, 77$), 1326 ([2M-BrPy] ${ }^{+}, 52$), 694 $\left(\left[\mathrm{M}-\mathrm{Br}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 37\right), 698\left([\mathrm{M}-\mathrm{Br}+\mathrm{Cl}+\mathrm{H}]^{+}, 28\right), 1282\left([2 \mathrm{M}-\mathrm{BrPy}-\mathrm{Br}+\mathrm{Cl}]^{+}, 24\right), 924$ $\left(\left[\mathrm{M}-\mathrm{Br}+\mathrm{PPh}_{3}\right]^{+}, 24\right), 1359\left([2 \mathrm{M}-2 \mathrm{Br}+\mathrm{Cl}]^{+}, 13\right), 1090\left(\left[\mathrm{M}-\mathrm{Br}+\mathrm{DPPE}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 13\right)$; HRMS (ESI+): m / z Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{NP}_{2} \mathrm{Pd}[\mathrm{M}+\mathrm{H}]+:$ 739.90986. Found: 739.91377.
7: 98% yield as a colorless crystal; mp. $>242{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) $8.16(\mathrm{dd}, J=2 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=1 \mathrm{~Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 6 \mathrm{H})$, $7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.25$ and $7.23(\mathrm{dd}, J=2 \mathrm{~Hz}, 4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 157.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=136 \mathrm{~Hz}), 156.9,153.7(\mathrm{~d}$, $J(\mathrm{C}, \mathrm{P})=4 \mathrm{~Hz}), 146.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=7 \mathrm{~Hz}), 144.8,143.6(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=46 \mathrm{~Hz}, 52 \mathrm{~Hz}), 140.7(\mathrm{dd}$, $J(\mathrm{C}, \mathrm{P})=35 \mathrm{~Hz}, 42 \mathrm{~Hz}), 134.3(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=16 \mathrm{~Hz}), 133.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 133.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})$ $=17 \mathrm{~Hz}), 133.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 132.6-132.2(\mathrm{~m}), 131.7(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}), 131.1,130.4$ $(\mathrm{d}, J(\mathrm{C}, \mathrm{P})=41 \mathrm{~Hz}), 129.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 128.9(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}), 128.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=$ $55 \mathrm{~Hz}), 120.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 55.2(J(\mathrm{P}, \mathrm{P})=$ $24 \mathrm{~Hz}), 45.6(J(\mathrm{P}, \mathrm{P})=24 \mathrm{~Hz})$; IR (ATR) 3047, 3025, 2972, 1523, 1480, 1433, 1303, 1181, $1159,1098,1007,867,747,690,666,546,525 \mathrm{~cm}^{-1}$; MS (ESI+) $\mathrm{m} / \mathrm{z} 1499$ ([2M-Br] ${ }^{+}, 100$), $1185\left(\left[\mathrm{M}-\mathrm{Br}+\mathrm{DPPBenz}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 57\right), 1326\left([2 \mathrm{M}-\mathrm{BrPy}]^{+}, 52\right), 742\left(\left[\mathrm{M}-\mathrm{Br}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 41\right)$, 710 ([M-Br] ${ }^{+}$, 18); HRMS (ESI+): m / z Calcd. for $\mathrm{C}_{70} \mathrm{H}_{54} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2}$ [2M-Br] $]^{+}$: 1494.88572 . Found: 1494.89538.

Preparation of 1•($\left.\mathrm{NO}_{3}\right)_{3}$: a Typical Procedure

An oven-dried 100 mL 2-necked flask was charged with 3 ($381 \mathrm{mg}, 0.514 \mathrm{mmol}$), DMF (25 $\mathrm{mL})$, and chloroform (13 mL) at nitrogen atmosphere, and the mixture was stirred at room temperature for 10 min . To the solution was added silver nitrate ($87.4 \mathrm{mg}, 0.514 \mathrm{mmol}$) at rt , and the suspension was stirred at intact temperature for 20 h . The mixture was then
concentrated to ca. 20 mL and filtered through Celite pad. The filtrate was concentrated under reduced pressure to give $1 \cdot\left(\mathrm{NO}_{3}\right)_{3}$ as a white solid, which was further purified by crystallization from its DMF/chloroform (1:1) solution by vapor diffusion with diethyl ether ($357 \mathrm{mg}, 96 \%$ yield as a colorless crystal); mp. > $225{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 9.96(\mathrm{~s}, 3 \mathrm{H}), 8.25(\mathrm{dd}, J=8 \mathrm{~Hz}, 13 \mathrm{~Hz}, 6 \mathrm{H}), 7.94(\mathrm{dd}, J=7 \mathrm{~Hz}, 12 \mathrm{~Hz}, 6 \mathrm{H})$, $7.68(\mathrm{dt}, J=3 \mathrm{~Hz}, 8 \mathrm{~Hz}, 6 \mathrm{H}), 7.47(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 7.37-7.19(\mathrm{~m}, 21 \mathrm{H}), 7.09(\mathrm{dt}, J=3 \mathrm{~Hz}, 9$ $\mathrm{Hz}, 6 \mathrm{H}), 7.05(\mathrm{t}, J=2 \mathrm{~Hz}, 3 \mathrm{H}), 6.95(\mathrm{t}, J=13 \mathrm{~Hz}, 6 \mathrm{H}), 6.93(\mathrm{t}, J=13 \mathrm{~Hz}, 6 \mathrm{H}), 6.80(\mathrm{~d}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}), 3.53-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.07(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.42(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.82(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.5(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=4 \mathrm{~Hz}, 121 \mathrm{~Hz}$), 153.1 (d, $J(\mathrm{C}, \mathrm{P})=5 \mathrm{~Hz}), 148.6(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=5 \mathrm{~Hz}), 145.9,135.3(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 134.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=$ $13 \mathrm{~Hz}), 132.6,132.1,132.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}), 131.25(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}), 131.21,130.8$, $130.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 129.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 129.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}), 129.1(\mathrm{~d}$, $J(\mathrm{C}, \mathrm{P})=41 \mathrm{~Hz}), 128.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 127.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=46 \mathrm{~Hz}), 127.7(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=56$ $\mathrm{Hz}), 127.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=61 \mathrm{~Hz}), 120.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 31.5(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=17 \mathrm{~Hz}, 35 \mathrm{~Hz})$, $25.5(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, 29 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 56.6(J(\mathrm{P}, \mathrm{P})=18$ $\mathrm{Hz}), 46.3(J(\mathrm{P}, \mathrm{P})=19 \mathrm{~Hz})$; IR (ATR) 3050, 2954, 2922, 1655, 1520, 1435, 1332, 1107, 997, 876, 819, 748, 707, 692, $532 \mathrm{~cm}^{-1}$; MS (ESI+) $m / z 1024\left(\left[\mathrm{M}+\mathrm{NO}_{3}\right]^{2+}, 100\right), 734$ ([BrPy(dppe)+THF $\left.]^{+}, 18\right), 1386\left(\left[\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{NO}_{3}\right]^{+}, 16\right), 662\left([\mathrm{BrPyPd}(\mathrm{dppe})]^{+}, 13\right)$, 2110 ($\left[\mathrm{M}+2 \mathrm{NO}_{3}\right]^{+}, 3$); HRMS (ESI+): m/z Calcd. for $\mathrm{C}_{93} \mathrm{H}_{81} \mathrm{Br}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{Pd}_{3}\left[\mathrm{M}+\mathrm{NO}_{3}\right]^{2+}$: 2041.93890. Found: 2041.93943.
$\mathbf{1} \cdot\left(\mathbf{B F}_{4}\right)_{3}$: 96% yield as a colorless crystal; mp. > $237{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}) 9.51(\mathrm{~s}, 3 \mathrm{H}), 8.29(\mathrm{dd}, J=8 \mathrm{~Hz}, 13 \mathrm{~Hz}, 6 \mathrm{H}), 7.90(\mathrm{dd}, J=7 \mathrm{~Hz}, 12 \mathrm{~Hz}$, $6 \mathrm{H}), 7.71(\mathrm{dt}, J=2 \mathrm{~Hz}, 8 \mathrm{~Hz}, 6 \mathrm{H}), 7.62(\mathrm{dt}, J=2 \mathrm{~Hz}, 8 \mathrm{~Hz}, 3 \mathrm{H}), 7.53(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.49(\mathrm{t}$, $J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 15 \mathrm{H}), 7.21(\mathrm{t}, J=2 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{dt}, J=$ $2 \mathrm{~Hz}, 8 \mathrm{~Hz}, 6 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 12 \mathrm{H}), 3.45-3.12(\mathrm{~m}, 6 \mathrm{H}), 2.80-2.60(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.66$ (m, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 162.6(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}, 120 \mathrm{~Hz}), 152.3$, $148.3,145.2,135.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=13 \mathrm{~Hz}), 134.6(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=14 \mathrm{~Hz}), 132.5,131.75(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=$ $9 \mathrm{~Hz}), 131.72,131.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 131.0,130.5,129.9(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 129.7(\mathrm{~d}$, $J(\mathrm{C}, \mathrm{P})=41 \mathrm{~Hz}), 129.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}), 128.9(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=40 \mathrm{~Hz}), 128.50(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=56$ $\mathrm{Hz}), 128.48(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}), 128.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 127.3(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=54 \mathrm{~Hz}), 119.4$ $(\mathrm{d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 30.2(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=17 \mathrm{~Hz}, 35 \mathrm{~Hz}), 24.0(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=8 \mathrm{~Hz}, 30 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 57.5(J(\mathrm{P}, \mathrm{P})=20 \mathrm{~Hz}), 45.7(J(\mathrm{P}, \mathrm{P})=18 \mathrm{~Hz})$; IR (ATR) 3054, 2970, 2930, 1739, 1520, 1435, 1050, 877, 818, 744, 690, 533, $520 \mathrm{~cm}^{-1}$; MS (ESI+) m / z $1036\left(\left[\mathrm{M}+\mathrm{BF}_{4}\right]^{2+}, 100\right), 1404\left([\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{Br}]^{+}, 42\right), 694\left(\left[\mathrm{BrPy}(\mathrm{dppe})+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 29\right)$, $662\left([\operatorname{BrPyPd}(\mathrm{dppe})]^{+}, 18\right), 1410\left(\left[\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{BF}_{4}\right]^{+}, 8\right), 2159\left(\left[\mathrm{M}+2 \mathrm{BF}_{4}\right]^{+}, 6\right) ;$ HRMS (ESI+): m / z Calcd. for $\mathrm{C}_{93} \mathrm{H}_{81} \mathrm{Br}_{3} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{P}_{6} \mathrm{Pd}_{3}\left[\mathrm{M}+\mathrm{BF}_{4}\right]^{2+}: 2066.95400$. Found: 2066.94348.
$1 \cdot(\mathrm{OTs})_{3}: 99 \%$ yield as a colorless crystal; mp. $230-233{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
(ppm) 10.17 (s, 3H), 8.35 (ddd, $J=2 \mathrm{~Hz}, 8 \mathrm{~Hz}, 13 \mathrm{~Hz}, 6 \mathrm{H}$), 8.07 (dd, $J=7 \mathrm{~Hz}, 12 \mathrm{~Hz}, 6 \mathrm{H}$), 7.98 (br s, 6H), 7.37-7.02 (m, 42H), 6.98 (dt, $J=8 \mathrm{~Hz}, 11 \mathrm{~Hz}, 6 \mathrm{H}), 6.84$ (t, $J=2 \mathrm{~Hz}, 3 \mathrm{H}$), $6.60(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 3.53-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.11(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{br} \mathrm{s}$, $9 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 162.0(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=2 \mathrm{~Hz}$, $109 \mathrm{~Hz}), 154.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=5 \mathrm{~Hz}), 148.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=3 \mathrm{~Hz}), 145.2,145.0,138.7$, $135.6(\mathrm{~d}$, $J(\mathrm{C}, \mathrm{P})=13 \mathrm{~Hz}), 135.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=14 \mathrm{~Hz}), 132.15,132.07(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 131.7,131.4(\mathrm{~d}$, $J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 131.1,130.7,129.7(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 129.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=42 \mathrm{~Hz}), 129.32(\mathrm{~d}$, $J(\mathrm{C}, \mathrm{P})=8 \mathrm{~Hz}), 129.25(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 128.7(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 128.5,128.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})$ $=41 \mathrm{~Hz}), 128.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=55 \mathrm{~Hz}), 127.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=55 \mathrm{~Hz}), 126.5,120.1(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=8$ $\mathrm{Hz}), 31.5(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=17 \mathrm{~Hz}, 34 \mathrm{~Hz}), 25.4(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, 29 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 55.5(J(\mathrm{P}, \mathrm{P})=20 \mathrm{~Hz}), 45.4(J(\mathrm{P}, \mathrm{P})=20 \mathrm{~Hz})$; IR (ATR) 3050, 2916, 1739, 1633, 1519, 1484, 1434, 1199, 1105, 1033, 1011, 874, 815, 747, 693, 678, 563, 529 $\mathrm{cm}^{-1} ; ~ M S ~(E S I+) ~ m / z 1078\left([\mathrm{M}+\mathrm{OTs}]^{2+}, 100\right), 662\left([\mathrm{BrPyPd}(\mathrm{dppe})]^{+}, 35\right), 694$ ([BrPy(dppe) $\left.\left.+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, \quad 33\right), \quad 1359 \quad\left([\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{Cl}]^{+}, \quad 29\right), \quad 1495$ ([M-BrPyPd(dppe)+OTs $\left.]^{+}, 4\right), 2328$ ([M+2OTs $\left.]^{+}, 2\right) ;$ HRMS (ESI+): m/z Calcd. for $\mathrm{C}_{100} \mathrm{H}_{88} \mathrm{Br}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{Pd}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{OTs}]^{2+}: 2150.96267$. Found: 2150.95244.

Preparation of $1 \cdot\left(\mathbf{S b F}_{6}\right)_{3}$: a Typical Procedure

An oven-dried 100 mL 2-necked flask was charged with 3 ($1.95 \mathrm{~g}, 2.63 \mathrm{mmol}$), DMF (135 mL), and chloroform (68 mL) at nitrogen atmosphere, and the mixture was stirred at room temperature for 10 min . To the solution was added nitrobenzene ($270 \mu \mathrm{~L}, 2.63 \mathrm{mmol}$) and silver hexafluoroantimonate ($904 \mathrm{mg}, 2.63 \mathrm{mmol}$) at rt , and the suspension was stirred at intact temperature for 20 h . The mixture was then concentrated to ca. 100 mL and filtered through Celite pad. The filtrate was concentrated under reduced pressure to give $\mathbf{3} \cdot\left(\mathrm{SbF}_{6}\right)_{3}$ as a white solid, which was further purified by crystallization from its DMF/chloroform (1:1) solution by vapor diffusion with diethyl ether ($1.54 \mathrm{~g}, 65 \%$ yield as a colorless crystal); mp. $>$ $232{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta(\mathrm{ppm}) 9.19(\mathrm{~s}, 3 \mathrm{H}), 7.94-7.87(\mathrm{~m}, 6 \mathrm{H})$, 7.71 (dd, $J=8 \mathrm{~Hz}, 12 \mathrm{~Hz}, 6 \mathrm{H}), 7.60(\mathrm{~s}, 3 \mathrm{H}), 7.55(\mathrm{t}, J=8 \mathrm{~Hz}, 6 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 12 \mathrm{H})$, $7.38-7.24(\mathrm{~m}, 18 \mathrm{H}), 7.09(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{dd}, J=9 \mathrm{~Hz}, 12 \mathrm{~Hz}, 6 \mathrm{H}), 6.98(\mathrm{dd}, J=9 \mathrm{~Hz}$, $11 \mathrm{~Hz}, 6 \mathrm{H}), 3.40-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.17-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.2 .55(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.13(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 161.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=122 \mathrm{~Hz}), 152.3,148.6,145.7$, $134.1(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 133.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 132.7,132.253(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz})$, $132.250,131.6,131.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 131.0,129.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 129.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})$ $=40 \mathrm{~Hz}), 128.7(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}), 128.5(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 128.1(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=40 \mathrm{~Hz})$, $128.0(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=54 \mathrm{~Hz}), 127.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=55 \mathrm{~Hz}), 119.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}), 29.7(\mathrm{dd}$, $J(\mathrm{C}, \mathrm{P})=17 \mathrm{~Hz}, 36 \mathrm{~Hz}), 24.5(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=9 \mathrm{~Hz}, 31 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 55.7(J(\mathrm{P}, \mathrm{P})=19 \mathrm{~Hz}), 46.0(J(\mathrm{P}, \mathrm{P})=18 \mathrm{~Hz})$; IR (ATR) 3059, 2921, 1666,

1521, 1484, 1436, 1386, 1308, 1106, 1070, 998, 870, 813, 749, 692, 654, $530 \mathrm{~cm}^{-1}$; MS (ESI+) $m / z 1049\left(\left[\mathrm{M}+\mathrm{Br}+\mathrm{CH}_{3} \mathrm{OH}\right]^{2+}, 100\right), 662\left([\mathrm{BrPyPd}(\mathrm{dppe})]^{+}, 79\right), 1010\left([\mathrm{M}+\mathrm{Cl}]^{2+}, 62\right)$, $694\left(\left[\mathrm{BrPy}(\mathrm{dppe})+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 79\right), 1359\left([\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{Cl}]^{+}, 40\right), 1111\left(\left[\mathrm{M}+\mathrm{SbF}_{6}\right]^{2+}, 20\right)$, $1436\left(\left[\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{Br}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 19\right), 2333\left(\left[\mathrm{M}+\mathrm{SbF}_{6}+\mathrm{Br}\right]^{+}, 2\right), 2257\left(\left[\mathrm{M}+\mathrm{SbF}_{6}+\mathrm{Cl}\right]^{+}\right.$, 2), $2457\left(\left[\mathrm{M}+2 \mathrm{SbF}_{6}\right]^{+}, 1\right), 2209$ ($\left.\left[\mathrm{M}+2 \mathrm{Br}+2 \mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 1\right)$; HRMS (ESI+): m / z Calcd. for $\mathrm{C}_{93} \mathrm{H}_{81} \mathrm{Br}_{3} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{P}_{6} \mathrm{Pd}_{3} \mathrm{Sb}_{2}\left[\mathrm{M}+2 \mathrm{SbF}_{6}\right]^{+}: 2449.73956$. Found: 2449.74932.
$4 \cdot\left(\mathbf{S b F}_{6}\right)_{3}: 92 \%$ yield as a colorless crystal; mp. $>241^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}) 8.93(\mathrm{~s}, 3 \mathrm{H}), 7.92-7.74(\mathrm{~m}, 12 \mathrm{H}), 7.73-7.65(\mathrm{~m}, 9 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 12 \mathrm{H})$, $7.54(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.50(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 12 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 12 \mathrm{H}), 7.17$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.07(\mathrm{dd}, J=9 \mathrm{~Hz}, 11 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) δ $(\mathrm{ppm}) 160.9(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=122 \mathrm{~Hz}), 151.7,148.3,145.8,141.0(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=43 \mathrm{~Hz}, 57 \mathrm{~Hz})$, $138.2(\mathrm{dd}, J(\mathrm{C}, \mathrm{P})=31 \mathrm{~Hz}, 49 \mathrm{~Hz}), 134.1(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=18 \mathrm{~Hz}), 134.0-133.7(\mathrm{~m}), 133.4(\mathrm{~d}$, $J(\mathrm{C}, \mathrm{P})=13 \mathrm{~Hz}), 132.74(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 132.68,132.4,132.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 132.0$, 131.6, $129.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz}), 129.7(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=13 \mathrm{~Hz}), 129.1(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 128.8$ $(\mathrm{d}, J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}), 128.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=42 \mathrm{~Hz}), 127.2(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=56 \mathrm{~Hz}), 126.4(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=$ $59 \mathrm{~Hz}), 126.3(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=46 \mathrm{~Hz}), 119.8(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=10 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 54.5(J(\mathrm{P}, \mathrm{P})=22 \mathrm{~Hz}), 48.2(J(\mathrm{P}, \mathrm{P})=22 \mathrm{~Hz})$; IR (ATR) 3056, 2943, 1748, $1669,1520,1436,1386,1217,1098,998,871,748,692,654,546,527 \mathrm{~cm}^{-1} ;$ MS (ESI+) m / z 742 ([M-2BrPyPd(dppbenz) $\left.\left.+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 100\right), 710\left([\mathrm{M}-2 \mathrm{BrPyPd}(\mathrm{dppbenz})]^{+}, 79\right), 972$ ([M-2BrPyPd(dppbenz) $\left.+\mathrm{PPh}_{3}\right]^{+}, 42$), 1532 ($\left.\left[\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{Br}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, ~ 9\right), 1655$ $\left(\left[\mathrm{M}-\mathrm{BrPyPd}(\mathrm{dppe})+\mathrm{SbF}_{6}\right]^{+}, 2\right), 2601\left(\left[\mathrm{M}+2 \mathrm{SbF}_{6}\right]^{+}, 2\right), 2477\left(\left[\mathrm{M}+\mathrm{SbF}_{6}+\mathrm{Br}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 1\right)$; HRMS (ESI+): m/z Calcd. for $\mathrm{C}_{105} \mathrm{H}_{81} \mathrm{Br}_{3} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{P}_{6} \mathrm{Pd}_{3} \mathrm{Sb}_{2}\left[\mathrm{M}+2 \mathrm{SbF}_{6}\right]^{+}: 2593.73956$. Found: 2593.75442.

2, ${ }^{1} \mathrm{H}$ NMR (500 MHz , in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$)

2, ${ }^{13} \mathrm{C}$ NMR (126 MHz , in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$)

3, ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$)

3, ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}\right.$, in $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

7, ${ }^{1} \mathrm{H}$ NMR (500 MHz , in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$)

7, ${ }^{13} \mathrm{C}$ NMR (126 MHz , in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$)

$\mathbf{1} \cdot\left(\mathrm{NO}_{3}\right)_{3},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, in $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

$\mathbf{1} \cdot\left(\mathrm{NO}_{3}\right)_{3},{ }^{13} \mathrm{C}$ NMR (126 MHz , in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$)

$\mathbf{1} \cdot\left(\mathrm{BF}_{4}\right)_{3},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, in DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right)$

$\mathbf{1} \cdot\left(\mathrm{BF}_{4}\right)_{3},{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}\right.$, in DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right)$

$\mathbf{1} \cdot(\mathrm{OTs})_{3},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, in $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

$\mathbf{1} \cdot(\mathrm{OTs})_{3},{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}\right.$, in $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

$\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{3},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, in DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right)$

$\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{3},{ }^{13} \mathrm{C}$ NMR (126 MHz , in DMSO- $d_{6}, 25^{\circ} \mathrm{C}$)

$4 \cdot\left(\mathrm{SbF}_{6}\right)_{3},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, in DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right)$

$4 \cdot\left(\mathrm{SbF}_{6}\right)_{3},{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}\right.$, in DMSO- $\left.d_{6}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{H}$ NMR experiment (Fig. 3)

NMR experiments were performed on a Agilent Mercury 300 (300 MHz) at 298 K . Each sample solution was prepared in a sample vial and transferred to a 5 mm quartz NMR tube with adjusting 50 mm of solution height.

Dye extraction experiment (Fig. 4)

The dye solution was prepared by dissolving $\mathbf{5} \cdot \mathrm{Na}(1.25 \mathrm{mg}, 3.0 \mu \mathrm{~mol}$, for (b)) or $\mathbf{6} \cdot \mathrm{Na}(0.98$ $\mathrm{mmg}, 3.0 \mu \mathrm{~mol}$, for (c)) in water (300 mL). The dye solution (10 mL) and chloroform (10 mL) was added to a sample vial, and the bilayer was shaken and left to stand (left). To this bilayer was then added $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{3}(0.27 \mathrm{mg}, 0.10 \mu \mathrm{~mol})$ and the bilayer was again shaken and left to stand (right).

Single crystal X-ray diffraction experiment (Fig. 2, S1, S2, S3, S4, and S5)

A single crystal was immersed in Paratone-N oil and placed in the N_{2} cold stream at 173 K . Data were collected using a diffractometer with Dectris PILATUS3R 200K-A detector (RIGAKU XtaLAB Pro, $\mathrm{CuK} \alpha: \lambda=1.54184 \AA$). Absorption correction was performed by an empirical method implemented in SCALE3 ABSPACK. Structure solution and refinement were performed by using SHELXT-2018/2 ${ }^{1}$ and SHELXL-2018/3 ${ }^{2}$. Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 137, 23, 33 and 43) with $U_{\text {iso }}$ values constrained to $1.2 / 1.5 U_{\text {eq }}$ of their parent atoms.
$\mathbf{1} \cdot\left(\mathbf{N O}_{3}\right)_{3}$: colourless prismatic crystal $\left(0.500 \times 0.300 \times 0.200 \mathrm{~mm}^{3}\right)$, obtained from DMF/CHCl ${ }_{3} / n$-hexane.
$\mathrm{C}_{101} \mathrm{H}_{97} \mathrm{Br}_{3} \mathrm{Cl}_{6} \mathrm{~N}_{8} \mathrm{O}_{11} \mathrm{P}_{6} \mathrm{Pd}_{3}, M \mathrm{r}=2556.31$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.618 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, $a=16.3967(3), b=16.6563(2), c=23.2181(4) \AA, \alpha=73.1360(10), \beta=73.9560(10), \gamma=$ $61.181(2)^{\circ}, V=5245.82(17) \AA^{3}, 63189$ measured and 20004 independent $[I>2 \sigma(I)$] reflections, 1257 parameters, 6 restraints, final $R_{1}=0.0478, w R_{2}=0.1309, S=1.030[I>$ 2 $\sigma(I)$]. CCDC 2109899
Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 / 1.5 U_{\mathrm{eq}}$ of their parent atoms.
$\mathbf{1} \cdot\left(\mathbf{B F}_{4}\right)_{3}$: colourless plate crystal $\left(0.080 \times 0.050 \times 0.010 \mathrm{~mm}^{3}\right)$, obtained from DMF/CHCl ${ }_{3} / n$-hexane.
$\mathrm{C}_{101} \mathrm{H}_{97} \mathrm{~B}_{3} \mathrm{Br}_{3} \mathrm{Cl}_{6} \mathrm{~F}_{12} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{Pd}_{3}, M \mathrm{r}=2630.71$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.629$ $\mathrm{g} \cdot \mathrm{cm}^{-3}, a=16.4427(3), b=16.7626(3), c=23.5756(4) \AA, \alpha=72.5019(15), \beta=74.1791(14)$, $\gamma=61.1214(19)^{\circ}, V=5363.12(19) \AA^{3}, 57487$ measured and 13963 independent $[I>2 \sigma(I)]$ reflections, 1274 parameters, final $R_{1}=0.1220, w R_{2}=0.3137, S=1.204[I>2 \sigma(I)]$. CCDC

2109900

Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX $13,137,23$ and 43) with U_{iso} values constrained to $1.2 / 1.5 U_{\mathrm{eq}}$ of their parent atoms.
$\mathbf{1} \cdot(\mathbf{O T s})_{3}$: colourless plate crystal $\left(0.200 \times 0.150 \times 0.020 \mathrm{~mm}^{3}\right)$, obtained from $\mathrm{DMF} / \mathrm{Et}_{2} \mathrm{O}$.
$\mathrm{C}_{117} \mathrm{H}_{109.6} \mathrm{Br}_{3} \mathrm{~N}_{4} \mathrm{O}_{10.3} \mathrm{P}_{6} \mathrm{Pd}_{3} \mathrm{~S}_{3}, M \mathrm{r}=2577.592$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.572$ $\mathrm{g} \cdot \mathrm{cm}^{-3}, a=14.6590(2), b=18.6024(2), c=22.3327(3) \AA, \alpha=76.0582(10), \beta=86.6453(11)$, $\gamma=67.2209(12)^{\circ}, V=5445.46(13) \AA^{3}, 62210$ measured and 15252 independent $[I>2 \sigma(I)]$ reflections, 1273 parameters, final $R_{1}=0.0697, w R_{2}=0.1829, S=1.079[I>2 \sigma(I)]$. CCDC 2109901
Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 137, 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 / 1.5 U_{\text {eq }}$ of their parent atoms. In the final stage of structure refinement, The solvent mask in Olex 2^{3} was applied.
$1 \cdot\left(\mathbf{S b F}_{6}\right)_{3}$: colourless prismatic crystal $\left(0.200 \times 0.200 \times 0.100 \mathrm{~mm}^{3}\right)$, obtained from acetone/tert-butyl methyl ether.
$\mathrm{C}_{108} \mathrm{H}_{106} \mathrm{Br}_{3} \mathrm{~F}_{18} \mathrm{~N}_{4} \mathrm{P}_{6} \mathrm{Pd}_{3} \mathrm{Sb}_{3}, \mathrm{Mr}=3008.118$; triclinic, space group $P-1, Z=2, D_{\text {calc }}=1.825$ $\mathrm{g} \cdot \mathrm{cm}^{-3}, a=16.8469(4), b=18.3312(3), c=21.5816(3) \AA, \alpha=71.4480(10), \beta=69.156(2), \gamma$ $=63.581(2)^{\circ}, V=5475.5(2) \AA^{3}, 68796$ measured and 17352 independent $[I>2 \sigma(I)]$ reflections, 1162 parameters, final $R_{1}=0.0605, w R_{2}=0.1638, S=0.996[I>2 \sigma(I)]$. CCDC 2109902

Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 U_{\text {eq }}$ of their parent atoms.
In the final stage of structure refinement, The solvent mask in Olex 2^{3} was applied.
$\mathbf{1} \cdot(\mathbf{O T s})\left(\mathbf{S b F}_{6}\right)_{2}$: colourless plate crystal $\left(0.150 \times 0.100 \times 0.020 \mathrm{~mm}^{3}\right)$, obtained from $\mathrm{DMF} / \mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$.
$\mathrm{C}_{115.45} \mathrm{H}_{124.65} \mathrm{Br}_{3} \mathrm{~F}_{12} \mathrm{~N}_{8.15} \mathrm{O}_{8.45} \mathrm{P}_{6} \mathrm{Pd}_{3} \mathrm{SSb}_{2}, M \mathrm{r}=3010.042$; monoclinic, space group $P 2_{1} / c, Z=4$, $D_{\text {calc }}=1.637 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=16.5257(3), b=35.6560(4), c=21.5547(3) \AA, \beta=105.892(2)^{\circ}, V=$ $12215.5(3) \AA^{3}, 74152$ measured and 18794 independent $[I>2 \sigma(I)$] reflections, 1611 parameters, 608 restraints, final $R_{1}=0.0615, w R_{2}=0.1552, S=0.9917[I>2 \sigma(I)]$. CCDC 2109903
Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 137, 23, 33 and 43) with $U_{\text {iso }}$ values constrained to $1.2 / 1.5 U_{\mathrm{eq}}$ of their parent atoms. In the final stage of structure refinement, The solvent mask in Olex 2^{3} was applied.

Fig. S1 Crystal structure of $\mathbf{1} \cdot(\mathrm{OTs})\left(\mathrm{SbF}_{6}\right)_{2}$ obtained from a mixture of $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{3}$ and TBAOTs drawn by the stick model. Front (left) and top (right) views. Metallacyclophane $\mathbf{1}^{3+}$ is shown in gray, p-toluenesulfonate ion in yellow, and hexafluoroantimonate ion in green. Solvent molecules (DMF) are omitted for clarity.

2: colorless plate crystal $\left(0.100 \times 0.100 \times 0.010 \mathrm{~mm}^{3}\right)$, obtained from $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$.
$\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{NP}_{2} \mathrm{Pd}, \mathrm{Mr}=867.84$; monoclinic, space group $P c, Z=4, D_{\text {calc }}=1.611 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=$ $12.33630(10), b=11.97080(10), c=24.3472(2) \AA, \beta=95.4730(10)^{\circ}, V=3579.09(5) \AA^{3}$, 21865 measured and 10039 independent $[I>2 \sigma(I)]$ reflections, 891 parameters, 62 restraints, final $R_{1}=0.0484, w R_{2}=0.1264, S=1.039[I>2 \sigma(I)]$. CCDC 2109904
Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 43) with $U_{\text {iso }}$ values constrained to $1.2 U_{\text {eq }}$ of their parent atoms.

Fig. S2 An ORTEP drawing of the crystal structure of $\mathbf{2}$ (30% probability).

3: colourless plate crystal $\left(0.350 \times 0.200 \times 0.200 \mathrm{~mm}^{3}\right)$, obtained from $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$.
$\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{NP}_{2} \mathrm{Pd}, M \mathrm{r}=741.69$; monoclinic, space group $P 2_{1} / n, Z=4, D_{\text {calc }}=1.713 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=$ $9.71886(11), b=16.93137(16), c=17.59126(16) \AA, \beta=96.4054(9)^{\circ}, V=2876.63(5) \AA^{3}$, 18017 measured and 5252 independent $[I>2 \sigma(I)]$ reflections, 334 parameters, final $R_{1}=$ $0.0518, w R_{2}=0.1385, S=1.123[I>2 \sigma(I)]$. CCDC 2109905
Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 23 and 43) with $U_{\text {iso }}$ values constrained to $1.2 U_{\text {eq }}$ of their parent atoms.

Fig. S3 An ORTEP drawing of the crystal structure of $\mathbf{3}$ (50% probability).
$4 \cdot\left(\mathbf{S b F}_{6}\right)_{3}$: colourless block crystal $\left(0.350 \times 0.150 \times 0.100 \mathrm{~mm}^{3}\right)$, obtained from acetone/tert-butyl methyl ether.
$\mathrm{C}_{125.66} \mathrm{H}_{122.32} \mathrm{Br}_{3} \mathrm{~F}_{18} \mathrm{~N}_{3} \mathrm{O}_{6.89} \mathrm{P}_{6} \mathrm{Pd}_{3} \mathrm{Sb}_{3}, M \mathrm{r}=3236.917$; monoclinic, space group $P 2_{1} / n, Z=4, D_{\text {calc }}$ $=1.536 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, a=13.51766(15), b=26.3003(2), c=36.6039(4) \AA, \beta=94.7417(10)^{\circ}, V=$ 12968.8(2) $\AA^{3}, 88803$ measured and 22039 independent $[I>2 \sigma(I)]$ reflections, 1448 parameters, 318 restraints, final $R_{1}=0.0856, w R_{2}=0.2223, S=1.0268[I>2 \sigma(I)]$. CCDC 2109906

Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 137, 33 and 43) with $U_{\text {iso }}$ values constrained to $1.2 / 1.5 U_{\text {eq }}$ of their parent atoms. In the final stage of structure refinement, The solvent mask in Olex 2^{3} was applied.

Fig. S4 An ORTEP drawing of the crystal structure of $\mathbf{4} \cdot\left(\mathrm{SbF}_{6}\right)_{3}(30 \%$ probability $)$.

7: low diffracting colourless plate crystal $\left(0.800 \times 0.150 \times 0.070 \mathrm{~mm}^{3}\right)$, obtained from $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$.
$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{Cl}_{3} \mathrm{NP}_{2} \mathrm{Pd}, M \mathrm{r}=909.10$; monoclinic, space group $P 2_{1} / c, Z=4, D_{\text {calc }}=1.696 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, $a=11.88724(13), b=19.9861(2), c=15.1044(2) \AA, \beta=97.0850(12)^{\circ}, V=3561.11(8) \AA^{3}$, 19825 measured and 5382 independent $[I>2 \sigma(I)]$ reflections, 383 parameters, 108 restraints, final $R_{1}=0.1562, w R_{2}=0.4345, S=1.906[I>2 \sigma(I)]$. CCDC 2109907
Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13 and 43) with $U_{\text {iso }}$ values constrained to $1.2 U_{\mathrm{eq}}$ of their parent atoms. SIMU/RIGU/EADP were applied in the refinement.

Fig. S5 An ORTEP drawing of the crystal structure of $\mathbf{7}$ (30\% probability).

NMR titration experiment (binding studies, Fig. S6-S12)

NMR measurements were performed on a Agilent Mercury 300 (300 MHz) at 298 K. Each sample solution was prepared by mixing $500 \mu \mathrm{~L}$ of $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{3}$ solution $(8.0$ or 10.0 mM in DMSO- d_{6}) and the appropriate amount ($25-500 \mu \mathrm{~L}$) of the solution of each TBA salt of guest anion (10.0 mM in DMSO- d_{6}) followed by adjusting the total amount of 1.0 mL with DMSO- d_{6}, and transferred to a 5 mm quartz NMR tube with adjusting 50 mm of solution height.

Fig. S6 (a) Binding curve for $\mathbf{1}^{3+}$ titrated with $\mathrm{NO}_{3}{ }^{-}$from ${ }^{1} \mathrm{H}$ NMR signal of $\mathbf{1}^{3+}$ in DMSO- d_{6} at $25^{\circ} \mathrm{C}$. (b) Partial ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ in DMSO- d_{6}) of mixtures of $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{4}$ and TBANO_{3} in various mole fraction ratio. The fitting curves in (a) were drawn according to the host:guest $=1: 1$ binding constant analysis using supramolecular.org program. ${ }^{4}$

Fig. S7 (a) Binding curve for $\mathbf{1}^{3+}$ titrated with $\mathrm{BF}_{4}-$ from ${ }^{1} \mathrm{H}$ NMR signal of $\mathbf{1}^{3+}$ in DMSO- d_{6} at $25{ }^{\circ} \mathrm{C}$. (b) Partial ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ in DMSO- d_{6}) of mixtures of $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{4}$ and TBABF_{4} in various mole fraction ratio. The fitting curves in (a) were drawn according to the host:guest $=1: 1$ binding constant analysis using supramolecular.org program. ${ }^{4}$

Fig. $\mathbf{S 8}$ (a) Binding curve for $\mathbf{1}^{3+}$ titrated with ClO_{4}^{-}from ${ }^{1} \mathrm{H}$ NMR signal of $\mathbf{1}^{3+}$ in DMSO- d_{6} at $25^{\circ} \mathrm{C}$. (b) Partial ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$ in DMSO- d_{6}) of mixtures of $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{4}$ and TBAClO_{4} in various mole fraction ratio. The fitting curves in (a) were drawn according to the host:guest $=1: 1$ binding constant analysis using supramolecular.org program. ${ }^{4}$

Fig. S9 (a) Binding curve for $\mathbf{1}^{3+}$ titrated with HSO_{4}^{-}from ${ }^{1} \mathrm{H}$ NMR signal of $\mathbf{1}^{3+}$ in DMSO- d_{6} at $25^{\circ} \mathrm{C}$. (b) Partial ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ in DMSO- d_{6}) of mixtures of $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{4}$ and TBAHSO_{4} in various mole fraction ratio. The fitting curves in (a) were drawn according to the host:guest $=1: 1$ binding constant analysis using supramolecular.org program. ${ }^{4}$

Fig. S10 (a) Binding curve for $\mathbf{1}^{3+}$ titrated with TsO^{-}from ${ }^{1} \mathrm{H}$ NMR signal of $\mathbf{1}^{3+}$ in DMSO- d_{6} at $25^{\circ} \mathrm{C}$. (b) Partial ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ in DMSO- d_{6}) of mixtures of $\mathbf{1} \cdot\left(\mathrm{SbF}_{6}\right)_{4}$ and TBAOTs in various mole fraction ratio. The fitting curves in (a) were drawn according to the host:guest $=1: 1$ binding constant analysis using supramolecular.org program. ${ }^{4}$

Fig. S11 (a) Binding curve for $\mathbf{4}^{3+}$ titrated with BF_{4}^{-}from ${ }^{1} \mathrm{H}$ NMR signal of $\mathbf{4}^{3+}$ in DMSO- d_{6} at $25{ }^{\circ} \mathrm{C}$. (b) Partial ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$ in DMSO- d_{6}) of mixtures of $4 \cdot\left(\mathrm{SbF}_{6}\right)_{4}$ and TBABF_{4} in various mole fraction ratio. The fitting curves in (a) were drawn according to the host:guest $=1: 1$ binding constant analysis using supramolecular.org program. ${ }^{4}$

Fig. S12 (a) Binding curve for $\mathbf{4}^{3+}$ titrated with TsO^{-}from ${ }^{1} \mathrm{H}$ NMR signal of 4^{3+} in DMSO- d_{6} at $25^{\circ} \mathrm{C}$. (b) Partial ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$ in DMSO- d_{6}) of mixtures of $4 \cdot\left(\mathrm{SbF}_{6}\right)_{4}$ and TBAOTs in various mole fraction ratio. The fitting curves in (a) were drawn according to the host:guest $=1: 1$ binding constant analysis using supramolecular.org program. ${ }^{4}$

References:

1 G. M. Sheldrick, Acta. Cryst., 2015, A71, 3-8.
2 G. M. Sheldrick, Acta. Cryst., 2015, C71, 3-8.
3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
4 Supramolecular.org (online binding constant calculators), http://supramolecular.org, (accessed December 2021), which is cited in D. B. Hibbert and P. Thordarson, Chem. Commun., 2016, 52, 12792-12805.

