Supporting Information

2D Hybrid Perovskite Incorporating Cage-Confined Secondary

Ammonium Cation toward Effective Photodetection

Lina Hua, Huaixi Chen, Shiguo Han, Haojie Xu, Lei Lu, Liwei Tang, Beibei Wang, Junhua Luo and Zhihua Sun*

1. Experimental section

Synthesis and Characterization of (i-BA)2(DMA)Pb2Br7: All the chemical reagents were purchased from commercial suppliers and used without further purification. A mixture of *n*-isobutylamine (98% wt), dimethylamine (98% wt) and lead acetate trihydrate (the molar ratio: 2:1:2) dissolved in concentrated HBr (48 % wt) were placed in a glass vial by heating, forming a bright yellow solution. The temperature-cooling technique was utilized to control the crystal growth. Large yellow bulk crystals grew in an oven, of which the initial temperature was set at 80°C and the cooling rate was 0.5°C per day. Powder X-ray diffractometry (PXRD) data were measured at room temperature, using a Mini Flex II Powder X-ray diffractometer. The UV-vis absorption spectra were recorded with a PerkinElmer Lambda 950 UV-vis-IR Spectrophotometer. Thermogravimetric analyses (TGA) were performed in the range of 300-1200 K using the STA449C Thermal Analyser. Calculations on the band structures and partial density of states were performed with the single-crystal structure data by the total energy code CASTEP in the framework of DFT. The general gradient approximation functional of Perdew-Burke-Ernzerhof was employed. The core-electrons interactions were described by the norm-conserving pseudopotentials. The other parameters and convergent criteria were the default values of CASTEP code.

Crystal Structure Determination: The single crystal X-ray diffractions were measured on a Bruker D8 diffractometer with Mo K α radiation (λ = 0.77 Å) at 330 K. The crystal structure of IA)₂(DMA)Pb₂Br₇ was solved by using the direct methods and refined by the full-matrix method based on F^2 using the SHELXS-97 software package. As for the non-hydrogen atoms, the different Fourier maps and anisotropical refinement were performaned by using SHELXL- 97. Crystal data, structure refinements, and selected parameters are listed in Tables S1–S4 (Supporting Information).

Fabrication and Measurements of Photodetectors: The planar array photodetectors were fabricated on the high-quality crystal wafers. A square copper mesh was used as a mask to get the patterned Au electrode. The channel length (L) and width (W) of the device were 230 and 30 µm, respectively. The *I-V* measurements were performed using a Keithley 6517B source meter on a probe station (EverBeing, PE4). Laser diodes with 405 nm (LP405-SF10) were used as light source by applying a voltage of 10 V. The power intensity of light sources was carefully measured using a power meter (Thorlabs GmbH., PM 100D). The steady state response time was carried by illuminating the sample with a 405 nm laser, the high-speed Tektronix MDO3014 Oscilloscope was used to record the output. For polarization-sensitive photodetection, the linearly polarized light was obtained through a half-wave plate, and then rotate the half-wave plate during the measurement. All measurements were performed in ambient conditions at room temperature.

Figure S1. Bulk crystal of 1 with the dimension of $10 \times 9 \times 2 \text{ mm}^3$.

Figure S2. Experimental and calculated powder X-ray diffraction patterns of 1 at room temperature.

Figure S3. SEM image of crystal surface for 1.

Figure S4. The current–voltage graphs measured at different temperatures.

Figure S5. Responsivity and detectivity as a function of the incident light intensity based on the single-crystal photodetector.

Figure S6. The stability test of the device under constant illumination.

Figure S7. Schematic illustration of the photodetector based on the highquality bulk crystal of **1**.

Figure S8. Polarization-dependence of photocurrents for 1.

Figure S9. Rise and fall process of photocurrent responses during on/off illumination switching.

Figure S10. Powder X-ray diffraction patterns of **1** recorded on the sample after one day and 100 days.

Figure S11. TG curve shows the thermal stability of 1 up to 520 K.

	Room Temperature	High Temperature Date	
	Date		
Empirical formula	$C_{10}H_{32}Br_7N_3Pb_2$	$C_{10}H_{32}Br_7N_3Pb_2$	
Formula weight	1168.13	1168.13	
Temperature/K	299 K	330 K	
Crystal system	tetragonal	tetragonal	
Space group	I4/mmm	I4/mmm	
a/Å	6.0037(11)	5.9841(2)	
b/Å	6.0037(11)	5.9841(2)	
c/Å	39.308(13)	39.049(3)	
α/°	90	90	
β/°	90	90	
γ/°	90	90	
Volume/ ų	1416.8(7)	1398.33(14)	
Z	2	2	
$ ho_{calcg}$ / cm ³	2.738	2.774	
µ / mm ⁻¹	21.738	22.025	
<i>F</i> (000)	1044.0	1044.0	
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	
2θ range for data			
collection/°	0.800 10 54.524	0.20 10 55.144	
	$-7 \le h \le 7, -7 \le k \le 7,$	$-6 \le h \le 7, -7 \le k \le 7,$	
muex ranges	-50 ≤ <i>l</i> ≤ 49	-50 ≤ <i>I</i> ≤ 46	
Independent reflections	541 [<i>R</i> _{int} = 0.0453,	545 [<i>R</i> _{int} = 0.0490,	
independent reliections	R _{sigma} = 0.0311]	R _{sigma} = 0.0328]	
Goodness-of-fit on <i>F</i> ²	1.409	1.194	
Data/restraints/parameters	541/97/91	545/18/50	
Final R indexes [I> = 2σ	$R_1 = 0.0913,$	$R_1 = 0.0741,$	

 Table S1. Crystal data and structure refinement for 1.

(I)]	<i>wR</i> ₂ = 0.2812	<i>wR</i> ₂ = 0.2190	
Final R indexes [all data]	$R_1 = 0.0962,$	<i>R</i> ₁ = 0.0791,	
	<i>wR</i> ₂ = 0.2910	<i>wR</i> ₂ = 0.2262	
Largest diff. peak/hole/eÅ ⁻³	1.79/-3.35	1.81/-2.12	

Table S2. Bond lengths for	1	
----------------------------	---	--

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Pb1	Br3	3.0051(6)	C1	C2	1.502(12)
Pb1	Br2	2.835(3)	C1	N1	1.513(14)
Pb1	Br1	3.2063(12)	C4	C2	1.497(12)
C5	N2	1.501(13)	C2	C3	1.500(11)
N2	C6	1.501(13)			

¹1-Y,+X,+Z; ²1-Y,1+X,+Z; ³1+X,+Y,+Z

 Table S3. Bond Angles for 1.

Atom	Angle/	Atom	Angle/
Br3-Pb1-Br3 ¹	89.875(5)	Pb1-Br1-Pb1 ⁵	180.0
Br3-Pb1-Br3 ²	174.64(10)	C6-N2-C5	112.6(10)
Br3-Pb1-Br1	92.68(5)	C2-C1-N1	112.1(11)
Br2-Pb1-Br3 ¹	87.32(5)	C4-C2-C1	97.7(8)
Br2-Pb1-Br1	180.0	C4-C2-C3	113.2(10)
Pb1 ⁴ -Br3-Pb1	174.65(10)	C3-C2-C1	129.9(13)

¹-Y,+X,+Z; ²1-Y,+X,+Z; ³+X,1+Y,+Z; ⁴+X,-1+Y,+Z; ⁵1-X,1-Y,1-Z

I able S4. N-H I hydrogen bonds c	of 1	I.
--	------	----

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N2 ^a -H2B ^a	0.910	2.964	138.41	3.694	Br3[-y+1, x, z]
N1 ^a -H1D ^a	0.910	2.585	151.56	3.413	Br3 [-y+1, x, z]
N1ª-H1Eª	0.910	2.731	151.39	3.556	Br3[x, y-1, z]