1	Supplementary
2	Information
3	
4	
5	
6	
7	Chromonic Nematic Liquid Crystals in a
8	Room-Temperature Ionic Liquid
9	J. R. Magana ^a , A. Pérez-Calm ^{a,b} , C. Rodriguez-Abreu ^{a,b}
10 11	^a Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain.
12 13	^b Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26 08034, Barcelona, Spain.
14	
15	
16	
18	
19	
20	
21	
22	
23 24	
25	
26	
27	

28 Experimental

29 CHEMICALS

30 Commercially available perylenetetracarboxylic dianhydride >98% (PTCDA, TCI Europe), 31 hydroxyethylammonium formate (HEAF, Iolitec), ethyl ammonium nitrate (EAN, Iolitec) and 1-ethyl-32 3-methylimidazolium acetate (EMIAc, Iolitec), Tetraethyl-orthosilicate (TEOS, Sigma Aldrich) were 33 used without further purification. Ultrapure water (resistivity = 18 M Ω /cm) was used in all 34 experiments. Dyes and chromonic mesogens used in the experiments were obtained from different 35 manufacturers (see Table SI1) at the highest purity available and used without further purification.

36 SYNTHESIS

37 Bis (N',N' - diethyl - N' - methyl - 2 - ammoniumethyl) perylene - 3, 4, 9, -10 - tetracarboxylic 38 diimide dichloride (PDI), was synthesized according to the literature.^[1]

39 UV-VIS SPECTROSCOPY

40 UV-vis spectra were collected in a Shimadzu UV-2550 and a Perkin Elmer Lambda 365 using a quartz

41 cuvette with a path length of 2 mm. The absorbance, A, was converted into the molar absorption

42 coefficient, ε , using:

43 $A = \varepsilon cl$

44 Where c and I are the dye concentration and cuvette path length, respectively. The PDI spectra in

45 HEAF and water was modeled assuming an isodesmic aggregation similar to previous publications

46 by using the following equation:^[2]

$$\epsilon(\lambda, C_o) = (\varepsilon_M(\lambda) - \varepsilon_D(\lambda)) \frac{\sqrt{(8K_D C_o + 1)} - 1}{4K_D}$$

47

52

48 Where ε_M and ε_D are the molar absorption coefficient of the monomer and dimer, respectively, K_D 49 is the dimerization constant, and C_o is the total molar concentration of PDI in solution. The values 50 for K_D were averaged from different wavelengths and different concentrations. The Gibbs free 51 energy, ΔG , was calculated as:

$$\Delta G = \frac{k_B T * ln^{\text{ini}}(K_D)}{N_a}$$

53 Where *T*, k_B and N_a are the absolute temperature, the Boltzmann constant, and the Avogadro 54 number, respectively.

55 K_D, calculated as a function of temperature, was used to estimate the activation energy, E_a , 56 according to Arrhenius theory:

$$\ln \left(K_D \right) = -\frac{E_a}{k_B T} + intercept$$
57

60 FLUORESCENCE SPECTROSCOPY

61 Samples were measured in 2mm quartz cuvettes in a Horiba Scientific Fluoromax-4 and an Agilent

- 62 Cary Eclipse. The conditions where identical for all the measurements and the data is as obtained
- 63 without any normalization.

64 SAMPLE PREPARATION AT HIGH PDI CONCENTRATIONS.

65 PDI/HEAF viscous samples (above 25 wt% PDI) were prepared by repeatedly passing the mixture

66 through a narrow constriction in flame sealed glass tubes using a centrifuge.

67 SMALL ANGLE X-RAY SCATTERING

68 All experiments were performed on an Anton Paar SAXSess MC² system. The scattering intensity

69 was measured as a function of the scattering vector, q:

$$q = \frac{4\pi * \sin(\theta)}{\lambda}$$

71 where θ is the scattering angle and I is the radiation wavelength (1.54 Å).

Liquid crystalline PDI samples were placed in flame-sealed glass capillaries. The intercolumnar
 distance, *d*, in the nematic phase was estimated using Bragg law as:

$$d = \frac{2\pi}{q_{max}}$$

- 75 Where q_{max} is the q value at the peak maxima. The cross-sectional area of the aggregates, A_c , can be
- 76 estimated by approximating the nematic phase to a loose hexagonal packing as:^[3]

$$A_c = \frac{2d^2\phi_f}{\sqrt{3}}$$

78 Where ϕ_f is the volume fraction (estimated using the density of mesogen in the solid state).

79 POLARIZED OPTICAL MICROSCOPY

- 80 Polarized optical microscopy (POM) observations were made on a Nikon SMZ-1500 microscope.
- 81 Temperature-dependent POM was performed on an Olympus BX51TRF6 microscope coupled to a
- 82 Peltier hot stage with a precision of ± 1 °C.

83 SCANNING ELECTRON MICROSCOPY

SEM micrographs of the silica samples were collected using a Hitachi TM4000Plus II operating 5 kV
 with secondary electrons. Samples were prepared by drop-casting ethanol dispersions on a silicon
 wafer.

87 NITROGEN ADSORPTION-DESORPTION

88 Nitrogen adsorption and desorption studies were performed on an Autosorb-1 Quantachrome89 Instrument.

- 91 Table SI1. Dyes, chromonic mesogens and ILs used in POM contact experiments. Manufacturers are
- 92 indicated between brackets next to the mesogen's name. Last column displays the occurrence of
- 93 such mesogens in water and their concentration range (if known) at 20 °C

Chromonic mesogen	Molecular structure	HEAF HO NH2 O O	EMIAc	EAN ↔ ⊖ NH ₃ NO ₃	LCLC formation in water [wt% range]
Acid Red 27 (TCI)	$Na^{+} \stackrel{O}{_{O} \leq S} \stackrel{O}{_{O} \leq S} \stackrel{O}{_{Na^{+}}} \stackrel{N}{_{Na^{+}}} \stackrel{N}{_{Na^{+}}} \stackrel{O}{_{Na^{+}}} \stackrel{O}{_{Na^{+}}}$	No LC	Not tested	Not tested	[0.5 wt% – 10 wt%] ^[4]
Congo Red (TCI)	$H_{2}N$ $O = S = O$ $O = N^{-} N^{+}$ $O = S = O$ $O = N^{-} N^{+}$ $O = N^{-} N^{+}$ $O = N^{-} N^{+}$ $O = N^{+} N^{+} N^{+}$ $O = N^{+} N^{+}$ $O = N^{+} N^{+} N^{+}$ $O = N^{+} N^{+} N^{+} N^{+}$ $O = N^{+} N^{$	No LC	Not tested	Not tested	LC ^[5,6]
Neutral Red (Sigma-Aldrich)		No LC	No LC	Not tested	LC(unpublished results)
Acid Black 1 (TCI)	$\begin{array}{c} O^{-} \\ O^{-} \\ N^{+} \\ N=N \\ N=N \\ O_{N} \\ O_{$	No LC	Not tested	Not tested	No LC

Alcian Blue tetrakis (methylpyridiniu m) chloride aka Alcian Blue (Sigma-Aldrich)	R = N + K + K + K + K + K + K + K + K + K +	No LC	No LC	Not tested	LC (unpublished results)
1,1'-Diethyl- 3,3,3',3'- tetramethylindoc arbocyanine lodide (TCI)		No LC	Not tested	Not tested	Not tested
3,3,3',3'- Tetramethyl-1,1'- bis(4-sulfobutyl) indocarbocyanin e(TCI)	$ \begin{array}{c} \stackrel{\bullet}{\longrightarrow} & \stackrel{\bullet}{\longrightarrow} \\ \stackrel{\bullet}{\longrightarrow} $	No LC	Not tested	Not tested	No LC
AzBTS (TCI)		No LC	Not tested	Not tested	No LC
Nickel(II) phthalocyanine- tetrasulfonic acid tetrasodium salt (Sigma-Aldrich)	$\begin{array}{c} O^{-} \\ O = S = 0 \\ O = S = 0 \\ O = S = 0 \\ O = N \\ O =$	No LC	Not tested	Not tested	LC ^[7]

Copper phthalocyanine- 3,4',4",4"- tetrasulfonic acid tetrasodium salt (Sigma-Aldrich)	$\begin{array}{c} O \\ O \\ S \\ S \\ O \\ O \\ S \\ S \\ O \\ S \\ O \\ O$	No LC	Not tested	Not tested	LC ^[7]
Cromolyn (Alfa Aesar)		No LC	No LC	Not tested	[5 wt% - 40 wt%] ^[8]
Sunset Yellow (Sigma-Aldrich)	$ \begin{array}{c} $	No LC	Not tested	Not tested	[25 wt% – 45 wt%] ^[9]
Pyronin Y (Sigma- Aldrich)		No LC	No LC	No LC	[40 wt% - 75wt %] ^[3]
Quinaldine Red Iodide (Sigma- Aldrich)		No LC	No LC	Not tested	No LC
Quinaldine Red Acetate (Synthesized)		No LC	No LC	Not tested	[35 wt% - 70 wt%] ^[3]

Pinacyanol Acetate (Synthesized)		LC (metastable)	No LC	No LC	[<1 wt% -10 wt%] ^[10]
Pinacyanol Chloride (Sigma-Aldrich)		LC (metastable)	Not tested	Not tested	No LC
Gallocyanine (Sigma-Aldrich)		No LC	No LC	Not tested	No LC
Perylene diimide chloride (PDI) (Synthesized)		LC (stable)	No LC	No LC	[5 wt% - 20 wt%] ^[11]
Diethyl (thiacarbocyanin e) acetate (Synthesized)	$ \begin{array}{c} $	LC	Not tested	Not tested	LC ^[2]
Diethyl (thiacarbocyanin e) Iodide (TCI)		No LC	Not tested	Not tested	No LC
Dipropyl (thiacarbocyanin e) acetate (Synthesized)	$ \begin{array}{c} $	LC	Not tested	Not tested	LC ^[2]
Dipropyl (thiacarbocyanin e) lodide (TCl)		No LC	Not tested	Not tested	No LC

				1		
	Dibutyl (thiacarbocyanin e) acetate (Synthesized)	$ \begin{array}{c} $	LC	Not tested	Not tested	LC ^[2]
	Dibutyl (thiacarbocyanin e) lodide (TCl)	S N S N S S S S S S S S S S	No LC	Not tested	Not tested	No LC
94						
95						
96						
07	Tabla SI	2 Thermodynamic parameters calculat	ad from the U	Vicencetr		
97	Table St	2. mermodynamic parameters calculat	eu nom the o	v-vis specti	d.	
	Sample	K_D (M ⁻¹) - ΔG	(kJ/mol)	<i>E</i> _a (kJ/mol)	
	PDI in HEAF	$5.2 \cdot 10^3 \pm 1.3 \cdot 10^3$	21.2		12.2	
98	PDI in water	$1.4 \cdot 10^{-5} \pm 8.0 \cdot 10^{-5}$	29.4		1.1	
00						
77						
100						

102 Figure SI1. Representative POM micrograph at room temperature (25°C) of the contact interface

HEAF content

103 between PDI and HEAF.

106 Figure SI2. POM micrographs at room temperature (25°C) of a 3 wt% Pinacyanol acetate in HEAF

 $\,$ displaying the crystallization over time of a nematic mesophase. The scale bar is 200 μm

110 Figure SI3. Temperature-dependent UV-Vis spectra of a 100 μM PDI solution in a) HEAF and b) water.

- 112 Figure SI4. Arrhenius plot showing the natural logarithm of the dimerization constant vs the inverse
- $\,$ temperature of a 100 μM PDI sample in HEAF and water.

- 116 Figure SI5. POM micrograph of a 30 wt% PDI sample in HEAF at room temperature showing a
- 117 characteristic Schlieren texture (scale bar = 100 μm).

118

119

- 120 Figure SI6. Temperature-dependent SWAXS patterns of a 30 wt% PDI sample in HEAF heated from
- 121 25 °C to 95 °C in 10 °C steps; the arrow indicates increasing temperature.

122

123 Figure SI7. a) Nitrogen adsorption isotherm of the calcined silica material and b) the corresponding

124 fit for the Brunauer-Emmer-Teller (BET) theory.

126

127 References

- 128 [1] S. W. Tam-Chang, J. Helbley, I. K. Iverson, *Langmuir* **2008**, *24*, 2133–2139.
- I29 [2] J. R. Magana, C. Solans, L. M. Salonen, E. Carbó-Argibay, J. Gallo, G. J. T. Tiddy, C. Rodríguez Abreu, J. Taiwan Inst. Chem. Eng. 2018, 92, 134–142.
- [3] J. R. Magana, M. Homs, C. Solans, M. Obiols-Rabasa, L. M. Salonen, C. Rodríguez-Abreu, J.
 Phys. Chem. B 2016, 120, 250–258.
- 133 [4] A. Alfutimie, A. P. Ormerod, J. W. Jones, H. Wheatcroft, D. J. Edwards, G. J. T. Tiddy,
 134 http://dx.doi.org/10.1080/02678292.2015.1024770 2015, 42, 1169–1178.
- 135 [5] M. R. Kuzma, V. Skarda, M. M. Labes, J. Chem. Phys. **1998**, 81, 2925.
- 136 [6] M. Skowronek, B. Stopa, L. Konieczny, J. Rybarska, B. Piekarska, E. Szneler, G. Bakalarski, I.
 137 Roterman, *Biopolymers* 1998, 46, 267–281.
- Carlos Rodríguez-Abreu, Y. V. Kolen'ko, Kirill Kovnir, Margarita Sanchez-Dominguez, R.
 Goswami Shrestha, Partha Bairi, Katsuhiko Ariga, L. Kumar Shrestha, *Phys. Chem. Chem. Phys.* 2020, *22*, 23276–23285.
- 141 [8] N. H. Hartshorne, G. D. Woodard, *https://doi.org/10.1080/15421407308083381* 2007, *23*,
 142 343–368.
- [9] D. J. Edwards, J. W. Jones, O. Lozman, A. P. Ormerod, M. Sintyureva, G. J. T. Tiddy, J. Phys.
 144 Chem. B 2008, 112, 14628–14636.
- 145 [10] C. Rodríguez-Abreu, C. A. Torres, G. J. T. Tiddy, *Langmuir* **2011**, *27*, 3067–3073.
- 146 [11] S. W. Tam-Chang, I. K. Iverson, J. Helbley, *Langmuir* **2003**, *20*, 342–347.