Supporting information

Synergistic Pd/Cu-catalysed regio- and stereoselective borylation of allenylic carbonates

Wei-Dong Zhang, Jia-Yu Zou, Qin Zhong*, Shi-Sen Li, Jian Zhao*

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Email: <u>zq304@njust.edu.cn</u>; <u>jzhao@njust.edu.cn</u>

Table of Contents

1. General information	S1
2. Materials	S1
3. Detailed optimization of reaction conditions: Table S1	S2
4. Experimental procedures and analytical data of compounds 1	S3
5. Experimental procedures and analytical data of compounds 3	S8
Determination of the stereochemistry of 3n using a NOESY spectrum	S15
7. References	S16
8. NMR spectra of compounds 1 and 3	S17

General Information. ¹H NMR and ¹³C NMR spectra were recorded on BRUKER AVANCE III (500 MHz) spectrometers. ¹¹B NMR spectra were recorded on BRUKER AVANCE III (400 MHz). ¹H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d =doublet, t = triplet, m = multiplet, appt = apparently triplet), and coupling constants (Hz). ¹³C NMR spectra were recorded on BRUKER AVANCE III (126MHz) spectrometers with complete proton decoupling, and chemical shift reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77.0 ppm. ¹¹B NMR chemical shifts were quoted relative to BF₃·Et₂O as external standard. High-resolution mass spectra (HRMS) were obtained on a BRUKER autoflex maX MALDI-TOF(TOF) instrument. Column chromatography and filtration via silica plug were carried out employing silica gel (Qingdao Haiyang Chem, neutral, 300-400 Mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254 (Merck).

Materials. Unless otherwise noted, commercially available chemicals were used as received. The products **3e** and **3k** were unambiguously confirmed by ¹H- and ¹³C NMR comparing with the reported literature.¹ The structures of new products were determined by ¹H, ¹³C, ¹¹B NMR, and high-resolution mass.

Table S1. Detailed optimization of reaction conditions^a

Entry	1	[Pd]/	[Cu]/	Ligand/	Conversion of 1	Yield of 3a	Yield of 6
		2.5 mol%	5 mol%	15 mol%	/ % ^b	/ % ^b	/ % ^b
1	1a	Pd ₂ dba ₃	Cul	PPh₃	100	50	18
2	1a	Pd ₂ dba ₃	Cul	P(2-furyl)₃	89	61	12
3	1a	Pd ₂ dba ₃	Cul	P(C ₆ H ₄ - <i>p</i> -	100	29	7
				OMe) ₃			
4 ^c	1a	Pd ₂ dba ₃	Cul	dppbz	60	34	19
5 ^c	1a	Pd ₂ dba ₃	Cul	dppe	92	49	43
6	1a	Pd ₂ dba ₃	Cul	P(OMe) ₃	100	81	11
7	1a	Pd ₂ dba ₃	Cul	P(OEt) ₃	100	86 (71)	7
8	1a	Pd ₂ dba ₃	Cul	P(O ⁱ Pr)₃	100	78	20
9	1a	Pd ₂ dba ₃	Cul	P(OPh)₃	64	19	2
10 ^d	1a	PdCl ₂	Cul	P(OEt) ₃	11	0	0
11 ^d	1a	Pd(OAc) ₂	Cul	P(OEt) ₃	100	5	13
12	1a	Pd ₂ dba ₃	CuCl	P(OEt) ₃	100	15	5
13	1a	Pd ₂ dba ₃	CuCN	P(OEt) ₃	87	6	2
14 ^e	1a	Pd ₂ dba ₃	Cul	P(OEt) ₃	100	9	24
15 ^f	1a	Pd ₂ dba ₃	Cul	P(OEt) ₃	100	43	11
16 ^g	1a	Pd ₂ dba ₃	Cul	P(OEt) ₃	25	14	4
17 ^{<i>h</i>}	1a	Pd ₂ dba ₃	Cul	P(OEt)₃	100	21	18
18 ⁱ	1a	Pd ₂ dba ₃	Cul	P(OEt) ₃	100	83	10
19 ^j	1a	Pd ₂ dba ₃	Cul	P(OEt) ₃	100	40	20
20 ^k	1a	Pd ₂ dba ₃	-	P(OEt) ₃	6	0	0
21 ^{<i>k</i>}	1a	-	Cul	P(OEt) ₃	4	0	0
22 ^{k,I}	1a	-	Cul/	P(OEt) ₃	10	7	1
			<i>t</i> -BuOK	() ⁵			
23	1a-Me	Pd ₂ dba ₃	Cul	P(OEt)₃	100	79	9

^a General reaction condition: a mixture of **1** (0.2 mmol), B₂Pin₂ (**2a**, 0.3 mmol, 1.5 equiv), Pd catalyst (2.5 mol%), Cu catalyst (5 mol%), Ligand (15 mol%) and 3Å MS in THF (0.1 M, 2 mL) was reacted at r.t. for 24 h under Ar. ^b The conversions of **1** and yields of **3a/6** were determined by crude ¹H NMR spectrum with naphthalene as an internal standard, the yield of isolated **3a** is given in parentheses. ^c 10 mol% ligand was used in the reaction. ^d 5 mol% Pd catalyst was used in the reaction. ^e Toluene was used in the reaction. ^f 1,4-Dioxane was used in the reaction. ^g The reaction was carried out at 0 C. ^h The reaction was carried out at 50 C. ⁱ 3Å MS was omitted in the reaction. ^j 10 µL water was added in the reaction. ^k 10 mol% P(OEt)₃ was used in the reaction. ^d pbz = 1,2 - bis(diphenylphosphino)benzene. dppe = 1,2 - bis(diphenylphosphino)ethane.

Experimental Procedures and Spectral Data

1. Synthesis of Allenylic Carbonates 1

The allenylic carbonates **1** were synthesized according to reported procedures by Glorius and co-works.² To a round bottom-flask equipped with a Teflon coated stirrer bar were added 2,3-allenol (**S1**, 1.0 equiv), pyridine (3.0 equiv) and dichloromethane (0.25 M) under Ar atmosphere. The mixture was cooled to 0 °C and the isopropyl chloroformate (2.0 equiv) was slowly added via syringe. The reaction was allowed to stir at room temperature until completion (monitored by TLC). The mixture was diluted with dichloromethane and washed successively with saturated NH₄Cl solution and brine. The organic phase was dried over MgSO₄, filtered and evaporated under reduced pressure. Then, the residue was purified by flash column chromatography using a mixture of petroleum ether/EtOAc as eluent to yield the desired products **1**.

4-Hexyldeca-2,3-dien-1-yl isopropyl carbonate (1a)

Yield, 86%. Colorless oil. NMR data:¹H NMR (500 MHz, CDCl₃) δ 5.30-5.20 (m, 1H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.55 (d, *J* = 6.8 Hz, 2H), 1.98-1.88 (m, 4H), 1.44-1.34 (m, 4H), 1.34-1.21 (m, 18H), 0.88 (t, *J* = 6.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 202.8, 154.5, 106.7, 87.1, 71.7, 66.6, 32.2, 31.6, 28.9, 27.4, 22.6, 21.7, 14.0; HRMS (ESI): m/z calcd. for [C₂₀H₃₆O₃Na]⁺ 347.25567, found 347.25470.

Isopropyl (4-propylhepta-2,3-dien-1-yl) carbonate (1b)

Yield, 81%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.30-5.23 (m, 1H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.56 (d, *J* = 6.8 Hz, 2H), 1.92 (appt, *J* = 7.3 Hz, 4H), 1.43 (tq, *J* = 7.3, 7.3 Hz, 4H), 1.30 (d, *J* = 6.2 Hz, 6H), 0.90 (t, *J* = 7.3 Hz, 6H);¹³C NMR (126 MHz, CDCl₃) δ 202.8, 154.5, 106.2, 87.1, 71.7, 66.5, 34.3, 21.7, 20.6, 13.7; HRMS (ESI): m/z calcd. for [C₁₄H₂₄O₃Na]⁺ 263.16177, found 263.16092.

4-Butylocta-2,3-dien-1-yl isopropyl carbonate (1c)

Yield, 84%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.30-5.22 (m, 1H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.56 (d, *J* = 6.8 Hz, 2H), 1.98-1.90 (m, 4H), 1.43-1.34 (m 4H), 1.34-1.26 (m, 4H), 1.30 (d, *J* = 6.4 Hz, 6H), 0.89 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 202.7, 154.5, 106.6, 87.1, 71.7, 66.5, 31.9, 29.6, 22.3, 21.7, 13.8; HRMS (ESI): m/z calcd. for [C₁₆H₂₈O₃Na]⁺ 291.19307, found 291.19223.

Isopropyl (4-pentylnona-2,3-dien-1-yl) carbonate (1d)

1d

Yield, 89%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.29-5.22 (m, 1H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.56 (d, *J* = 6.9 Hz, 2H), 1.96-1.90 (m, 4H), 1.45-1.35 (m, 4H), 1.33-1.23 (m, 8H), 1.30 (d, *J* = 6.2 Hz, 6H), 0.88 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 202.8, 154.5, 106.6, 87.1, 71.7, 66.6, 32.1, 31.4, 27.1, 22.4, 21.7, 14.0; HRMS (ESI): m/z calcd. for [C₁₈H₃₂O₃Na]⁺ 319.22437, found 319.22348.

3-Cyclohexylideneallyl isopropyl carbonate (1e)

Yield, 79%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.18-5.11 (m, 1H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.55 (d, *J* = 6.9 Hz, 2H), 2.15-2.08 (m, 4H), 1.62-1.54 (m, 4H), 1.54-1.47 (m, 2H), 1.30 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 200.3, 154.4, 104.4, 84.2, 71.7, 66.6, 32.4, 31.0, 27.1, 25.9, 21.7; HRMS (ESI): m/z calcd. for [C₁₃H₂₀O₃Na]⁺ 247.13047, found 247.12973.

3-(4,4-Dimethylcyclohexylidene)allyl isopropyl carbonate (1f)

Yield, 87%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.18-5.09 (m, 1H), 4.86 (septet, *J* = 6.3 Hz, 1H), 4.54 (d, *J* = 6.9 Hz, 2H), 2.20-2.07 (m, 4H), 1.37 (t, *J* = 6.3 Hz, 4H), 1.29 (d, *J* = 6.3 Hz, 6H), 0.92 (s, 3H), 0.91 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 200.2, 154.4, 103.9, 84.2, 71.7, 66.6, 39.5, 29.9, 28.0(6), 28.0(4), 26.8, 21.7; HRMS (ESI): m/z calcd. for [C₁₅H₂₄O₃Na]⁺ 275.16177, found 275.16086.

Isopropyl (3-(tetrahydro-4H-pyran-4-ylidene)allyl) carbonate (1g)

1g

Yield, 82%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.30-5.20 (m, 1H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.57 (d, *J* = 6.7 Hz, 2H), 3.78-3.69 (m, 4H), 2.30-2.20 (m, 4H), 1.30 (dd, *J* = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 200.3, 154.4, 100.0, 85.8, 71.8, 68.3, 65.9, 31.0, 21.7; HRMS (ESI): m/z calcd. for [C₁₂H₁₈O₄Na]⁺ 249.10973, found 249.10918.

3-Cycloheptylideneallyl isopropyl carbonate (1h)

1h

Yield, 92%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.15-5.09 (m, 1H), 4.87 (septet, *J* = 6.2 Hz, 1H), 4.55 (d, *J* = 6.8 Hz, 2H), 2.32-2.16 (m, 4H), 1.65-1.58 (m, 4H), 1.57-1.50 (m, 4H), 1.30 (d, *J* = 6.2 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 203.5, 154.4, 106.5, 84.0, 71.7, 66.5, 32.0, 29.2, 28.2, 21.7; HRMS (ESI): m/z calcd. for [C₁₄H₂₂O₃Na]⁺ 261.14612, found 261.14536.

3-Cyclooctylideneallyl isopropyl carbonate (1i)

Yield, 93%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.19-5.11 (m, 1H), 4.87 (septet, *J* = 6.2 Hz, 1H), 4.56 (d, *J* = 6.9 Hz, 2H), 2.22-2.11 (m, 4H), 1.68-1.48(m, 10H), 1.30 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 203.7, 154.5, 106.5, 84.7, 71.7, 66.1, 31.2, 26.7, 26.6, 26.0, 21.7; HRMS (ESI): m/z calcd. for [C₁₅H₂₄O₃Na]⁺ 275.16177, found 275.16119.

3-Cyclododecylideneallyl isopropyl carbonate (1j)

Yield, 89%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.28-5.21 (m, 1H), 4.88 (septet, *J* = 6.3 Hz, 1H), 4.58 (d, *J* = 6.9 Hz, 2H), 2.08-1.97 (m, 4H), 1.51-1.43 (m, 4H), 1.37-1.24 (m, 14H), 1.30 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 203.8, 154.5, 103.6, 86.4, 71.7, 66.3, 29.3, 24.4, 24.2, 23.8, 22.9, 22.2, 21.7; HRMS (ESI): m/z calcd. for [C₁₉H₃₂O₃Na]⁺ 331.22437, found 331.22342.

5-Ethylnona-2,3-dien-1-yl isopropyl carbonate (1k)

...

Yield, 91%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.30-5.25 (m, 1H), 5.13-5.04 (m, 1H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.58 (d, *J* = 6.5 Hz, 2H), 2.00-1.90 (m, 1H), 1.47-1.19 (m, 14H), 0.93-0.80 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 205.3(8), 205.3(6), 154.4, 96.9(6), 96.9(4), 86.4(5), 86.4(1), 71.8, 66.1, 40.8, 40.7, 34.4, 34.2, 29.3, 29.2, 27.9, 27.8, 22.7, 22.6, 21.7, 14.0, 11.5, 11.4; HRMS (ESI): m/z calcd. for [C₁₅H₂₆O₃Na]⁺ 277.17742, found 277.17648.

4-Cyclohexylbuta-2,3-dien-1-yl isopropyl carbonate (11)

Yield, 87%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.35-5.23 (m, 2H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.58 (dd, *J* = 6.7, 1.6 Hz, 2H), 2.06-1.93 (m, 1H), 1.74 (appt, *J* = 14.5 Hz, 4H), 1.66-1.59 (m, 1H), 1.30 (d, *J* = 6.3 Hz, 6H), 1.27-1.02 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 204.5, 154.4, 99.0, 87.4, 71.8, 66.0, 36.7, 32.8(5), 32.8(2), 26.0, 25.9, 21.7; HRMS (ESI): m/z calcd. for [C₁₄H₂₂O₃Na]⁺ 261.14612, found 261.14548.

Isopropyl (6-methylhepta-2,3-dien-1-yl) carbonate (1m)

Yield, 85%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 5.30-5.19 (m, 2H), 4.87 (septet, *J* = 6.3 Hz, 1H), 4.62-4.54 (m, 2H), 1.96-1.85 (m, 2H), 1.66 (septet, *J* = 6.6 Hz, 1H), 1.30 (d, *J* = 6.3 Hz, 6H), 0.91 (d, *J* = 6.5 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 206.1, 154.4, 91.4, 85.8, 71.8, 65.9, 37.6, 28.2, 22.1, 22.0, 21.7; HRMS (ESI): m/z calcd. for [C₁₂H₂₀O₃Na]⁺ 235.13047, found 235.13020.

Isopropyl (6-phenylhexa-2,3-dien-1-yl) carbonate (1n)

1n

Yield, 88%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 7.21-7.15 (m, 3H), 5.36-5.25 (m, 2H), 4.87 (septet, *J* = 6.4 Hz, 1H), 4.52 (dd, *J* = 6.8, 2.4 Hz, 2H), 2.80-2.64 (m, 2H), 2.38-2.27 (m, 2H), 1.29 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 205.7, 154.4, 141.3, 128.4, 128.2, 125.9, 92.2, 87.0, 71.9, 65.7, 35.1, 29.8, 21.7; HRMS (ESI): m/z calcd. for [C₁₆H₂₀O₃Na]⁺ 283.13047, found 283.12955.

Dodeca-2,3-dien-1-yl isopropyl carbonate (10)

Yield, 84%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃): δ 5.30-5.23 (m, 2H), 4.87 (septet, *J* = 6.5 Hz, 1H), 4.58 (dd, *J* = 4.5, 4.5 Hz, 2H), 2.05-1.96 (m, 2H), 1.42-1.34 (m, 2H), 1.34-1.20 (m, 16H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 205.6, 154.4, 93.0, 86.4, 71.8, 65.9, 31.8, 29.3, 29.2, 29.0, 28.9, 28.2, 22.6, 21.7, 14.0; HRMS (ESI): m/z calcd. for [C₁₆H₂₈O₃Na]⁺ 291.19307, found 291.19205.

Isopropyl trideca-2,3-dien-1-yl carbonate (1p)

Yield, 87%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃): δ 5.34-5.21 (m, 2H), 4.87 (septet, *J* = 6.2 Hz, 1H), 4.58 (dd, *J* = 4.5, 4.5 Hz, 2H), 2.06-1.96 (m, 2H), 1.44-1.35 (m, 2H), 1.35-1.20 (m, 18H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 205.6, 154.4, 93.0, 86.5, 71.9, 66.0, 31.8, 29.5, 29.4, 29.3, 29.0, 28.9, 28.2, 22.6, 21.7, 14.0; HRMS (ESI): m/z calcd. for [C₁₇H₃₀O₃Na]⁺ 305.20872, found 305.20795.

2. Synthesis of 2-Bory 1,3-Butadienes 3

An oven-dried Schlenk flask was equipped with a Teflon coated stirrer bar and charged with activated 3Å molecular sieves (3-4 pellets), Pd₂dba₃ (0.005 mmol), Cul (0.01 mol), P(OEt)₃ (0.03 mmol), B₂pin₂ **2a** (0.30 mmol), and THF (1 mL) under Ar atmosphere. The resulted solution was stirred for 10 min, then a THF solution (1 mL) of **1** (0.2 mmol) was added to the reaction mixture via syringe. The final reaction mixture was stirred at room temperature for 24 hours. Completion of the reaction was checked by TLC and/or crude ¹H NMR spectrum. After a complete conversion of **1**, the reaction mixture was diluted by petroleum ether (about 5 mL). The precipitate was filtered off by a short silica pad (Qingdao Haiyang Chem, neutral, 300-400 Mesh, about 2-3 cm in pipette) using EtOAc/petroleum ether (1:10 v/v) as an eluent. The solvent was removed and the residue was purified by a rapid silica gel chromatography (within 10 min) using a mixture of petroleum ether/EtOAc as eluent affording pure product **3**.

2-(4-Hexyldeca-1,3-dien-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3a)

Yield, 71%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.69 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.16 (dd, *J* = 17.6, 1.8 Hz, 1H), 5.01 (dd, *J* = 10.7, 1.8 Hz, 1H), 2.20-2.12 (m, 4H), 1.43-1.26 (m, 16H), 1.32 (s, 12H), 0.88 (t, *J* = 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 136.2, 114.3, 83.2, 37.7, 32.0, 31.7(9), 31.7(0), 29.7, 29.6, 29.5, 29.0, 24.9, 22.6, 22.5, 14.0(7), 14.0(5); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₂₂H₄₂BO₂]⁺ 349.32724, found 349.32672.

4,4,5,5-Tetramethyl-2-(4-propylhepta-1,3-dien-3-yl)-1,3,2-dioxaborolane (3b)

Yield, 84%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.70 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.17 (dd, *J* = 17.5, 1.8 Hz, 1H), 5.01 (dd, *J* = 10.9, 1.8 Hz, 1H), 2.19-2.11 (m, 4H), 1.51-1.38 (m, 4H), 1.33 (s, 12H), 0.91 (t, *J* = 7.3 Hz, 3H), 0.89 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.1, 136.3, 114.3, 83.2, 39.6, 34.1, 24.9, 22.7, 22.2, 14.4, 14.2; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₁₆H₃₀BO₂]⁺ 265.23334, found 265.23306.

2-(4-Butylocta-1,3-dien-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c)

Yield, 64%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.70 (dd, *J* = 17.4, 10.9 Hz, 1H), 5.16 (dd, *J* = 17.6, 1.9 Hz, 1H), 5.01 (dd, *J* = 10.9, 1.9 Hz, 1H), 2.22-2.13 (m, 4H), 1.48-1.20 (m, 8H), 1.32 (s, 12H), 0.92-0.86 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 136.3, 114.3, 83.3, 37.4, 31.7(6), 31.7(2), 31.1, 24.9, 23.0, 14.0, 13.9; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₁₈H₃₃BO₂Na]⁺ 315.24658, found 315.24628.

4,4,5,5-Tetramethyl-2-(4-pentylnona-1,3-dien-3-yl)-1,3,2-dioxaborolane (3d)

Yield, 65%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.69 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.17 (dd, *J* = 17.5, 1.8 Hz, 1H), 5.01 (dd, *J* = 10.8, 1.8 Hz, 1H), 2.22-2.10 (m, 4H), 1.46-1.35 (m, 4H), 1.33 (s, 12H), 1.31-1.24 (m, 8H), 0.92-0.84(m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 136.2, 114.3, 83.2, 37.6, 32.1, 31.9, 29.2, 28.7, 24.9, 22.5(8), 22.5(2), 14.0, 13.9; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₂₀H₃₈BO₂]⁺ 321.29594, found 321.29578.

2-(1-Cyclohexylideneallyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3e)

Yield, 61%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.76 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.17 (dd, *J* = 17.5, 1.8 Hz, 1H), 5.01 (dd, *J* = 10.8, 1.8 Hz, 1H), 2.36-2.26 (m, 4H), 1.70-1.53 (m, 6H), 1.38 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 153.4, 135.5, 114.5, 83.3, 36.3, 30.3, 28.6, 27.9, 26.7, 24.9; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₁₅H₂₅BO₂Na]⁺ 271.18398, found 271.18350.

2-(1-(4,4-Dimethylcyclohexylidene)allyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f)

Yield, 66%. Colorless oil. NMR data:¹H NMR (500 MHz, CDCl₃) δ 6.76 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.17 (d, *J* = 17.5 Hz, 1H), 5.01 (d, *J* = 10.8 Hz, 1H), 2.37-2.27 (m, 4H), 1.40 (t, *J* = 6.2 Hz, 1H), 1.36 (t, *J* = 6.2 Hz, 1H), 1.32 (s, 12H), 0.94 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 153.4, 135.5, 114.6, 83.3, 40.9, 40.2, 31.9, 30.4, 28.1, 26.1, 24.9; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₁₇H₂₉BO₂Na]⁺ 299.21528, found 299.21512.

4,4,5,5-Tetramethyl-2-(1-(tetrahydro-4H-pyran-4-ylidene)allyl)-1,3,2-dioxaborolane (3g)

Yield, 72%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.71 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.27 (d, *J* = 17.6 Hz, 1H), 5.09 (d, *J* = 10.8 Hz, 1H), 3.73 (t, *J* = 5.4 Hz, 2H), 3.69 (t, *J* = 5.4 Hz, 2H), 2.48 (t, *J* = 5.4 Hz, 2H), 2.47 (t, *J* = 5.4 Hz, 2H), 1.32 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 147.9, 134.7, 116.0, 83.5, 69.1, 68.5, 36.0, 31.2, 24.8; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₁₄H₂₃BO₃Na]⁺ 273.16325, found 273.16299.

2-(1-Cycloheptylideneallyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3h)

Yield, 76%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.72 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.15 (dd, *J* = 17.6, 1.9 Hz, 1H), 5.01 (dd, *J* = 10.8, 1.8 Hz, 1H), 2.49-2.33 (m, 4H), 1.66-1.55 (m, 4H), 1.53-1.44 (m, 4H), 1.32 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 136.0, 114.3, 83.2, 36.6, 31.9, 29.0, 28.6, 26.5, 24.8; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₁₆H₂₈BO₂]⁺ 263.21769, found 263.21713.

2-(1-Cyclooctylideneallyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i)

Yield, 67%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.75 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.14 (dd, *J* = 17.6, 1.8 Hz, 1H), 5.01 (dd, *J* = 10.7, 1.8 Hz, 1H), 2.40-2.32 (m, 4H), 1.73-1.63 (m, 4H), 1.54-1.42 (m, 6H), 1.33 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 155.5, 136.3, 113.8, 83.2, 36.8, 31.0, 27.4, 27.3, 26.5, 26.4, 25.8, 24.9; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₁₇H₃₀BO₂]⁺ 277.23334, found 277.23300.

2-(1-Cyclododecylideneallyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3j)

Yield, 74%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.74 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.16 (dd, *J* = 17.6, 1.9 Hz, 1H), 5.01 (dd, *J* = 10.8, 1.9 Hz, 1H), 2.24-2.14 (m, 4H), 1.56-1.36 (m, 18H), 1.33 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 154.2, 136.3, 114.4, 83.3, 33.1, 27.1, 26.0(8), 26.0(0), 25.9, 24.8, 24.5, 24.0, 22.9, 22.8, 22.0(9), 22.0(0); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 31. HRMS (ESI): m/z calcd. for [C₂₁H₃₈BO₂]⁺ 333.29594, found 333.29565.

(Z)-2-(5-ethylnona-1,3-dien-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3k)

Yield, 84%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.68 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.02 (d, *J* = 10.1 Hz, 1H), 5.66 (dd, *J* = 17.6, 2.5 Hz, 1H), 5.13 (d, *J* = 11.1, 1H), 2.58-2.45 (m, 1H), 1.49-1.37 (m, 2H), 1.29 (s, 12H), 1.27-1.14 (m, 6H), 0.85 (t, *J* = 6.5 Hz, 3H), 0.82 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.1, 134.4, 117.2, 83.0, 39.8, 34.7, 29.6, 28.1, 24.7, 22.8, 14.0, 11.9; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₁₇H₃₁BO₂Na]⁺ 310.23093, found 310.23077.

(Z)-2-(1-Cyclohexylbuta-1,3-dien-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3l)

Yield, 80%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.69 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.13 (d, *J* = 8.8 Hz, 1H), 5.66 (d, *J* = 17.4 Hz, 1H), 5.14 (d, *J* = 10.8 Hz, 1H), 2.60-2.45 (m, 1H), 1.78-1.50 (m, 6H), 1.28 (s, 12H), 1.21-1.04 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 153.2, 133.9, 117.3, 83.0, 37.4, 32.4, 25.9, 25.8, 24.7; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₁₆H₂₇BO₂Na]⁺ 285.19963, found 285.19922.

(Z)-4,4,5,5-Tetramethyl-2-(6-methylhepta-1,3-dien-3-yl)-1,3,2-dioxaborolane (3m)

Yield, 85%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.69 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.34 (t, *J* = 7.5 Hz, 1H), 5.67 (dd, *J* = 17.5, 2.4 Hz, 1H), 5.16 (d, *J* = 11.0 Hz, 1H), 2.15 (t, *J* = 7.2 Hz, 2H), 1.72 (septet, *J* = 6.7 Hz, 1H), 1.29 (s, 12H), 0.91 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 147.0, 133.9, 117.4, 83.0, 37.7, 28.4, 24.7, 22.5. Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₁₄H₂₆BO₂]⁺ 237.20204, found 237.20161.

(Z)-4,4,5,5-Tetramethyl-2-(6-phenylhexa-1,3-dien-3-yl)-1,3,2-dioxaborolane (3n)

Yield, 66%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.260 (m, 2H), 7.23-7.14 (m, 3H), 6.67 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.39 (t, *J* = 7.1 Hz, 1H), 5.67 (dd, *J* = 17.6, 1.0 Hz, 1H), 5.17 (d, *J* = 11.0 Hz, 1H), 2.77-2.67 (m, 2H), 2.60-2.50 (m, 2H), 1.29 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 146.5, 141.8, 133.5, 128.3, 128.2, 125.8, 117.9, 83.2, 35.3, 30.7, 24.7. Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₁₈H₂₆BO₂]⁺ 280.20204, found 280.20154.

(Z)-2-(dodeca-1,3-dien-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30)

30

Yield, 72%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.69 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.33 (t, *J* = 7.3 Hz, 1H), 5.66 (d, *J* = 17.6 Hz, 1H), 5.16 (d, *J* = 11.0 Hz, 1H), 2.25 (dt, *J* = 7.3, 7.3 Hz, 1H), 1.46-1.35 (m, 2H), 1.29 (s, 12H), 1.27-1.15 (m, 10H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 133.8, 117.4, 83.1, 31.8, 29.4, 29.4, 29.2, 29.0, 28.7, 24.7, 22.6, 14.0; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₁₈H₃₄BO₂]⁺ 293.26464, found 293.26422.

(Z)-4,4,5,5-tetramethyl-2-(trideca-1,3-dien-3-yl)-1,3,2-dioxaborolane (3p)

Yield, 69%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.69 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.33 (t, *J* = 7.1 Hz, 1H), 5.66 (d, *J* = 17.5 Hz, 1H), 5.16 (d, *J* = 11.0 Hz, 1H), 2.25 (dt, *J* = 7.3, 7.3 Hz, 2H), 1.46-1.35 (m, 2H), 1.28 (s, 12H), 1.27-1.15 (m, 12H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 133.8, 117.3, 83.1, 31.8, 29.5, 29.4, 29.3, 29.0, 28.7, 24.7, 22.6, 14.0; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₁₉H₃₆BO₂]⁺ 307.28029, found 307.27975.

(3aR,4R,6R,7aS)-2-(4-Hexyldeca-1,3-dien-3-yl)-3a,5,5-trimethylhexahydro-4,6methanobenzo[d][1,3,2]dioxaborole (3ab)

3ab

Yield, 83%. Colorless oil. NMR data: ¹H NMR (500 MHz,CDCl₃) δ 6.71 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.21 (dd, *J* = 17.6, 1.8 Hz, 1H), 5.03 (dd, *J* = 10.8, 1.8 Hz, 1H), 4.38 (dd, *J* = 8.9, 2.1 Hz, 1H), 2.41-2.36 (m, 1H), 2.28-2.14 (m, 5H), 2.11 (dd, *J* = 5.2, 5.2 Hz, 1H), 2.00-1.85 (m, 2H), 1.44 (s, 3H), 1.42-1.36 (m, 4H), 1.35-1.20 (m, 16H), 0.95-0.80 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 136.4, 114.5, 85.6, 77.6, 51.2, 39.5, 38.1, 37.8, 35.6, 32.1, 31.7(8), 31.7(0), 29.7, 29.6, 29.5, 28.9, 28.8, 27.0, 26.7, 24.0, 22.6, 22.5, 14.0; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₂₆H₄₆BO₂]⁺ 401.35854, found 401.35751.

(3aS,4S,6S,7aR)-2-(4-Hexyldeca-1,3-dien-3-yl)-3a,5,5-trimethylhexahydro-4,6methanobenzo[d][1,3,2]dioxaborole (3ac)

3ac

Yield, 85%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃ δ 6.71 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.21 (d, *J* = 17.6 Hz, 1H), 5.03 (d, *J* = 10.9 Hz, 1H), 4.38 (dd, *J* = 8.5, 2.0 Hz, 1H), 2.44-2.34 (m, 1H), 2.28-2.13 (m, 5H), 2.11 (dd, *J* = 5.3, 5.3 Hz, 1H), 1.98-1.85 (m, 2H),1.44 (s, 3H), 1.43-1.34 (m, 4H), 1.33-1.16 (m, 16H), 0.96-0.76 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 136.4, 114.5, 85.6, 77.6, 51.2, 39.5, 38.2, 37.8, 35.6, 32.1, 31.7(8), 31.7(0), 29.7, 29.6, 29.5, 29.0, 28.8, 27.0, 26.7, 24.0, 22.6, 22.5, 14.0; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 30. HRMS (ESI): m/z calcd. for [C₂₆H₄₆BO₂]⁺ 401.35854, found 401.35742.

2-(4-Hexyldeca-1,3-dien-3-yl)-4,4,6,6-tetramethyl-1,3,2-dioxaborinane (3ad)

Yield, 61%. Colorless oil. NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.72 (dd, *J* = 17.5, 10.6 Hz, 1H), 5.06 (d, *J* = 17.5 Hz, 1H), 4.97 (d, *J* = 10.6 Hz, 1H), 2.13 (t, *J* = 7.7 Hz, 2H), 2.08 (t, *J* = 7.7 Hz, 2H), 1.89 (s, 2H), 1.40 (s, 12H), 1.47-1.20 (m, 16H), 0.88 (t, *J* = 6.8 Hz, 6H);¹³C NMR (126 MHz, CDCl₃) δ 150.1, 136.5, 113.6, 71.0, 49.1, 38.1, 31.9, 31.8, 31.7(6), 31.7(3), 29.9, 29.3, 29.1, 22.6, 14.0; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. ¹¹B NMR (128 MHz, CDCl₃) δ 28. HRMS (ESI): m/z calcd. for [C₂₃H₄₄BO₂]⁺ 363.34289, found 363.34210.

Determination of the stereochemistry of 3n using a NOESY spectrum

Figure S1. Observed NOESY effect between the C2 proton and C5 proton

The NOESY experiment (Figure S1) indicated a through space NOE effect between C2-H and C5-H. This indicates that C2-H and C5-H are close in space, and the C3-C4 double bond has an Z geometry.

References:

- 1. K. Semba, T. Fujihara, J. Terao and Y. Tsuji, *Angew. Chem. Int. Ed.*, 2013, **52**, 12400-12403.
- 2. H. Wang, B. Beiring, D.-G. Yu, K. D. Collins and F. Glorius, *Angew. Chem. Int. Ed.*, 2013, **52**, 12430-12434.

ZWD0099002CLM

ZWD0115001CLM

2020-11-28 HHX0017001

HHX0040001CLM

HHX0039001

LSS0023001CLM

ZWD0076001CLM

LSS0029001CLM-22

ZWD0126001CLM

ZWD0155001CLM

ZWD0102001CLM

ZWD0064002

ZJY0014001CLM

ZWD0140001

ZWD0133001CLM

ZJY0016001CLM

ⁿC₅H₁₁ ^{*n*}C₅H₁₁ Bpin

ZWD0114002-2

ZWD0097003-2CLM

ZWD0134001CLM

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 1.06 1.09 1.09 1.06 1.07 6.13 12.54 4.00

ppm

ZWD0107001clm-h

3ab

ZWD0042050CLM

Nov14-2021-ZWD-42-50-B.10.fid

3ac

ZWD0042051CLM-2

