Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility

Yunsheng Ma,^{*,a,b,‡} Xiaoyan Tang,^{a,b,‡} Ming Chen,^a Akio Mishima,^b Liangchun Li,^c Akihiro Hori,^b Xiaoyu Wu,^d Lifeng Ding,^d Shinpei Kusaka^b and Ryotaro Matsuda^{*,b}

 ^a School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, PR China
^b Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
^c Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China

^d Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China

Experimental

Materials and general procedures

All the starting materials were of reagent grade and used as purchased. The ligand 9H-fluorene-2,7-dicarboxylic acid (H₂FDC) was prepared according to the literature methods.^{S1,S2} The powder X-ray diffraction (PXRD) data were collected on a Rigaku Ultima IV diffractometer with Cu-K α radiation. The thermal gravimetric analyses (TGA) data were recorded on a Rigaku Thermo plus TGA 8120 apparatus in the temperature range 25–500°C under nitrogen atmosphere at a heating rate of 5 °C min⁻¹. The ¹H nuclear magnetic resonance (NMR) spectra were measured on a Bruker FourierTM 300 NMR spectrometer.

Synthesis of 2,7-diacetylfluorene

To an ice-cooled mixture of AlCl₃ (40 g, 0.3 mol) and 50 mL anhydrous 1,2dichloroethane, acetic anhydride (15.3 g, 0.15 mol) was added dropwise with stirring. Thirty minutes later, fluorene (7.3 g, 0.044 mol) in 50 mL 1,2-dichloroethane was added dropwise to the above gray-green solution. The reaction was kept at 0 °C for 5 h. Then solvent 1,2-dichloroethane was distilled off. After pouring onto ice-HCl, the aqueous phase was decanted. The remainder was recrystallized with acetone to give 2,7diacetylfluorene in 60% yield. ¹H NMR [400 MHz, CDCl₃]: $\delta_{\rm H}$ 8.17 (2H, s), 8.04-8.02 (2H, d), 7.90-7.88 (2H, d), 4.00 (2H, s), 2.67 (6H, s); ¹³C NMR: $\delta_{\rm C}$ 197.90, 144.94, 144.51, 136.46, 127.81, 125.09, 120.71, 36.90, 26.88.

Synthesis of bis(dibromoacetyl)fluorene

2,7-diacetylfluorene (1.05 g, 4.22 mmol) was dissolved in acetic acid (40 mL) at 50 oC, and to tis solution 0.95 mL of Br₂ (18.6 mmol) was added on vigorous stirring in one portion. The mixture was stirred at 100 °C for 10 min, cooled to 50 °C and diluted with water. The crude product was collected by filtration and dried under vacuum. Block crystals of bis(dibromoacetyl)fluorene can be obtained by recrystallized method with dichloromethane. Yield: 92%. ¹H NMR [400 MHz, CDCl₃]: $\delta_{\rm H}$ 8.34 (2H, s), 8.21-8.19 (2H, d), 7.99-7.97 (2H, d), 6.77 (2H, s), 4.12 (2H, s); ¹³C NMR: $\delta_{\rm C}$ 185.72, 145.81, 144.89, 130.42, 129.27, 126.64, 121.33, 39.76, 37.04.

Synthesis of fluorene-2,7-dicarboxylic acid

In a 3-neck flask, equipped with mechanical stirrer, bis(dibromoacetyl)fluorene (1.15 g, 2.1 mmol) was dissolved in 30 mL of 1,4-dioxane at 70 °C and to this solution on vigorous stirring was added warm (80 °C) solution of sodium carbonate (2 g, 18.9 mmol) in 10 mL of water immediately followed by Br₂ (0.31 mL, 6.1 mmol). In 30 sec, 15 mL of water (80 °C) was added, followed in 1 min intervals by portions of 15, 15 and 30 mL of hot water. The mixture was boiled for 5 h to remove bromoform. After cooled down, most of 1,4-dioxane was evaporated under reduced pressure. White solid of fluorene-2,7-dicarboxylic acid could precipitate after acidify the above pale-yellow solution with condensed HCl. The white product was centrifuged and washed with distilled water to remove excess HCl. Fluorene-2,7-dicarboxylic acid was dried under vacuum at 80 °C. Yield: 85%. ¹H NMR [400 MHz, (CD₃)₂SO]: $\delta_{\rm H}$ 13.04 (2H, s), 8.21 (2H, s), 8.12-8.10 (2H, d), 8.05-8.03 (2H, d), 4.07 (2H, s); ¹³C NMR: $\delta_{\rm C}$ 167.89, 144.82, 144.68, 130.34, 128.90, 126.69, 121.33, 36.88.

Synthesis and structure of [(CH₃)₂NH₂]₂[Zn₈O₃(FDC)₆]·7DMF

 $Zn(NO_3)_2 \cdot 6H_2O$ (60 mg, 2 mmol), H_2FDC (50 mg, 2 mmol), DMF (10 mL), and H_2O (0.2 mL) were mixed in a 20 mL glass viral, which was capped, heated to 80 °C for 72 h, and cooled to room temperature. The pale-yellow cubic crystals were collected and washed with DMF. The crystals of $[(CH_3)_2NH_2]_2[Zn_8O_3(FDC)_6] \cdot 7DMF$ (**Zn**₈-*as*) were heated at 120°C under vacuum for 24 h to obtain **Zn**₈-*de*.

For **Zn₈-as**:

IR (cm⁻¹, KBr): 1668.98 (s), 1611.63 (s), 1559.28 (m), 1536.84 (m), 1481.99 (m), 1442.11 (m), 1397.23 (vs), 778.95 (s), 492.24 (s), 457.34 (s).

¹H NMR [400 MHz, (CD₃)₂SO]: $\delta_{\rm H}$ 8.14 (12H, s, FDC⁻), 8.07-8.05 (12H, m, FDC⁻), 7.99-7.97 (12H, m, FDC⁻), 7.91 (7H, s, DMF), 5.90 (DCl), 4.04 (12H, s, FDC⁻), 2.85 (21H, s, DMF), 2.69 (21H, s, DMF) and 2.46 (12H, m, (CH₃)₂NH₂⁺); ¹³C NMR: $\delta_{\rm C}$ 167.92, 162.95, 144.84, 144.67, 130.32, 128.93, 126.68, 121.36, 36.86, 36.35, 34.63 and 31.30.

For **Zn₈-***de*:

IR (cm⁻¹, KBr): 1617.15 (s), 1552.4 (m), 1478.3 (m), 775.1 (s), 472.2 (s).

¹H NMR [400 MHz, (CD₃)₂SO]: $\delta = 8.14$ (12H, s, FDC⁻), 8.06-8.04 (12H, d, FDC⁻),

7.98-7.96 (12H, d, FDC⁻), 5.84 (DCl), 4.03 (12H, s, FDC⁻), 2.47 (12H, m, (CH₃)₂NH₂⁺); ¹³C NMR: δ_{C} 167.89, 144.80, 144.64, 130.28, 128.91, 126.66, 121.35, 36.85 and 34.57.

Gas adsorption measurement

Before measurement, the solvent-exchanged sample (about 100 mg) was prepared by immersing the as-synthesized sample in methanol to remove non-volatile solvents. The completely activated sample was obtained by heating the solvent-exchanged sample at 120 °C under reduced pressure ($<10^{-2}$ Pa) for more than 20 h.

Gas adsorption isotherms were obtained using a Belsorp-max adsorption instrument from BEL Japan Inc. using the volumetric technique. The coincident PXRD/adsorption measurements were carried out using a Rigaku Ultima IV with CuK α radiation (λ = 1.5406 Å) connected with BELSORP-18 volumetric adsorption equipment (Bel Japan Inc.). Those apparatuses were synchronized with each other and each PXRD pattern was obtained at each equilibrium point of the sorption isotherms.

Single-crystal X-ray diffraction analyses

Single-crystal X-ray diffraction measurement was performed at 103 K with Rigaku Saturn 70 CCD system and 'XtaLAB Pro: Kappa single' with MoK α optic ($\lambda = 0.71075$ Å) and a confocal monochromator. Data were processed using CrystalClear TM-SM (version 1.4.0). The structures were solved by directed methods and refined using the full-matrix least-squares technique using the SHELXL-2018/3 package.^{S3} All non-hydrogen atoms were refined with anisotropic displacement parameters and all hydrogen atoms were refined isotropically, with the isotropic vibration parameters related to the non-hydrogen atoms to which they are bonded. While we are fully aware that the charged entities, such as [(CH₃)₂NH₂]⁺ reported herein, are not recommended to be 'SQUEEZED', we are however not able to locate the [(CH₃)₂NH₂]⁺ cation due to the high symmetry of the framework that induces severe disorder. The electron densities ascribed to [(CH₃)₂NH₂]⁺ cation and other unidentified solvates are removed by SQUEEZE function of the PLATON program.^{S4,S5} Crystallographic and refinement details of **Zn₈-as** and **Zn₈-de** are listed in Table S1.

Zn ₈ -as	Zn ₈ - <i>de</i>
$C_{90}H_{48}O_{27}Zn_8$	$C_{90}H_{48}O_{27}Zn_8$
2084.24	2084.24
trigonal	trigonal
<i>R</i> -3/c	<i>R</i> -3/c
23.159(3)	19.3732(9)
23.159(3)	19.3732(9)
70.110(14)	78.804(3)
32565(12)	25614(3)
12	12
1.275	1.621
1.799	2.287
12528	12528
69953	55272
6382	5212
1.10	1.21
0.1464, 0.3804	0.1275, 0.3326
0.1521, 0.3839	0.2269, 0.3693
1.10	1.21
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

Table S1 Crystal data and structure refinements for Zn₈-as and Zn₈-de

 $[a] R_{I} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ [b] wR_{2} = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] \}^{1/2}, \text{ and } [c] GOF = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2} - F_{c}^{2} -$

 $\{\Sigma[\omega(F_o^2-F_c^2)^2]/(n-p)\}^{1/2}$, where *n* is the number of reflections, and *p* the total number of parameters refined.

Fig. S1 The ¹H NMR spectrum of 2,7-diacetylfluorene with CDCl₃ as solvent.

Fig. S2 The ¹³C NMR spectrum of 2,7-diacetylfluorene with CDCl₃ as solvent.

Fig. S3 The ¹H NMR spectrum of bis(dibromoacetyl)fluorene with CDCl₃ as solvent.

Fig. S4 The ¹³C NMR spectrum of bis(dibromoacetyl)fluorene with CDCl₃ as solvent.

Fig. S5 The ¹H NMR spectrum of fluorene-2,7-dicarboxylic acid with DMSO- d_6 as solvent.

Fig. S6 The ¹³C NMR spectrum of fluorene-2,7-dicarboxylic acid with DMSO- d_6 as solvent.

Fig. S7 Thermogravimetric curve of Zn₈-as under N₂.

Fig. S8 Thermogravimetric curve of Zn₈-de under N₂.

170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S10 The ¹³C NMR spectrum of Zn_8 -as with DMSO- d_6 as solvent.

Fig. S11 The ¹H NMR spectrum of Zn_8 -*de* with DMSO-*d*₆ as solvent.

Fig. S12 The ¹³C NMR spectrum of Zn_8 -*de* with DMSO-*d*₆ as solvent.

Fig. S13 PXRD patterns for Zn₈-as and Zn₈-de.

Fig. S14 N₂ adsorption (\blacksquare) and desorption (\square) profiles of **Zn₈-***de* at 77 K.

Fig. S15 PXRD patterns for Zn_8 -as and C_2H_2 loaded form.

Computational Methodology

Density functional theory (DFT) calculations with the plane-wave pseudopotential formalism and Perdew-Burke-Ernzerhof exchange-correlation functional cut-off at 500 eV were performed using Vienna ab initio simulation package (VASP).^{S6} DFT-D3(BJ) was implanted to compensate the Van de Waals dispersion.^{S7} During the geometric optimizations of the gas particles, positions of framework atoms and (CH₃)₂NH₂⁺ anions were constrained.

The binding energy of C_2H_2 and CO_2 was calculated by the following equation:

$$E_C = E_{A+B} - E_A - E_B$$

Where E_A is the energy of the optimized MOF structure. E_B is the energy of the gas molecules. E_{A+B} is the energy of the optimized binding complex of the MOFs with either C₂H₂ or CO₂. To find the global minimum E_{A+B} , multiple initial configurations of the gas molecules were attempted.

Before the C_2H_2 and CO_2 DFT binding energy calculation, Monte Carlo (MC) simulation was performed using RASPA package^{S8} to locate the $(CH_3)_2NH_2^+$ cations that could diffuse inside the pores as counter ions. The computational model of $(CH_3)_2NH_2^+$ was taken from the work of Nagys^{S9} and Maria.^{S10} Computational model of **Zn₈-as** and **Zn₈-de** were described using Universal Forcefield (UFF),^{S11} where the partial charges were computed using Density-Derived Electrostatic Charges method (DDEC): DDEC3 protocols.^{S12}

Fig. S16 DFT optimized binding positions (a) C_2H_2 in **Zn**₈-*as*; (b) C_2H_2 in **Zn**₈-*de*; (c) CO_2 in **Zn**₈-*de* (Color scheme: Brown, Zn; C, grey; O, red. [(CH₃)₂NH₂]⁺ cations and hydrogen atoms were omitted for clarity)

References

- S1 Sulzberg, T.; Cotter, R. J. Electron acceptors derived from fluorenecarboxylic acids and their charge-transfer complexes. *J. Org. Chem.* 1970, **35**, 2762–2769.
- S2 P.J. Skabara, R. Berridge, I.M. Serebryakov, A.L. Kanibolotsjy, L. Kanibolotskaya, S. Gordeyev, I.F. Perepichka, N.S. Sariciftci, C. Winder, *J. Mater. Chem.*, 2007, 17, 1055-1062.
- S3 Sheldrick, G. SHELXL-2018/3, Program for the Solution and Refining of Crystal structures. 2018.
- S4 Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–13.
- S5 Spek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Crystallogr., Sect. C*, 2015, **71**, 9–18.
- S6 (a) G. Kresse, J. Non. Cryst. Solids, 1995, 192–193, 222–229; (b) G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, 54, 11169–11186.
- S7 (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; (b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- S8 D. Dubbeldam, S. Calero, D. E. Ellis and R. Q. Snurr, *Mol. Simul.*, 2016, 42, 81– 101.
- S9 M. C. Bernini, D. Fairen-Jimenez, M. Pasinetti, A. J. Ramirez-Pastor and R. Q. Snurr, J. Mater. Chem. B, 2014, 2, 766–774.
- S10 P. I. Nagy, Phys. Chem. Chem. Phys., 2012, 14, 849-857.
- S11 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024-10035
- S12 D. Nazarian, J. S. Camp and D. S. Sholl, Chem. Mater., 2016, 28, 785–793.