C, C^{\prime}-Ru to C, B^{\prime}-Ru Isomerisation in Bis(phosphine)Ru Complexes of [1,1'-Bis(ortho-carborane)]

Rebekah J. Jeans, Georgina M. Rosair and Alan J. Welch
Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
\section*{Supplementary Information}

A. Synthesis and Characterisation

1. Initial synthesis: $\left[\mathrm{Ru}\left(\kappa^{3}-2,2^{\prime}, 3^{\prime}-\left\{1-\left(1^{\prime}-\right.\right.\right.\right.$ closo- $\left.1^{\prime}, 2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)$-closo-1,2- $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right\}(\mathrm{PMePh})_{2}\right]$ (1) and [Ru($\kappa^{3}-2,3^{\prime}, 6-\left\{1-\left(1^{\prime}-\right.\right.$ closo-1', $\left.2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)$-closo-1,2- $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right\}(\mathrm{PMePh})_{2}\right]$ (2).

To a solution of I ($0.050 \mathrm{~g}, 0.0962 \mathrm{mmol}$) in THF (10 mL), was added $\mathrm{PMePh}_{2}(0.09 \mathrm{~mL}, 0.481 \mathrm{mmol}$, 5 eq) and the mixture stirred at room temperature until the solution turned deep red (ca. 30 mins) following which time the solvent was removed in vacuo. The crude mixture was purified by preparative TLC [DCM:40-60 petroleum ether (petrol), $2: 3$] to afford yellow ($R_{\mathrm{f}} 0.58$) and red ($R_{\mathrm{f}} 0.46$) bands. Repeated TLC of the red band always produced some of the yellow product. The yellow band was subsequently identified as [Ru($\kappa^{3}-2,3^{\prime}, 6-\left\{1-\left(1^{\prime}-\right.\right.$ closo- $\left.1^{\prime}, 2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)$-closo-1,2$\left.\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right], \mathbf{2}$, and the red band as $\left[\mathrm{Ru}\left(\kappa^{3}-2,2^{\prime}, 3^{\prime}-\left\{1-\left(1^{\prime}-\right.\right.\right.\right.$ closo- $\left.1^{\prime}, 2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)$-closo-1,2$\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right\}\left(\mathrm{PmePh}_{2}\right)_{2}$], 1. See below for detailed separate syntheses and spectroscopic characterisation of the two components.

2. Synthesis of $\left[R u\left(\kappa^{3}-2,2^{\prime}, 3^{\prime}-\left\{1-\left(1^{\prime}-\right.\right.\right.\right.$ closo- $\left.1^{\prime}, 2^{\prime}-C_{2} B_{10} H_{10}\right)$-closo-1, $\left.\left.2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right\}(P \mathrm{PMePh})_{2}\right]$ (1)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathrm{I}(0.050 \mathrm{~g}, 0.096 \mathrm{mmol})$ in THF (10 mL), was added $\mathrm{PMePh}_{2}(0.09 \mathrm{~mL}$, $0.481 \mathrm{mmol}, 5 \mathrm{eq}$) and the mixture left to stir at $0^{\circ} \mathrm{C}$ until the solution turned deep red (ca. 30 mins). The solvent was removed in vacuo. The product was dissolved in the minimum amount of DCM and then carefully layered with 5 times the volume petrol and set aside at $-20^{\circ} \mathrm{C}$. Compound $\mathbf{1}$ was isolated as red crystals ($0.0603 \mathrm{~g}, 80 \%$).

NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}\right):{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} ; \delta 14$ to -22 overlapping resonances with prominent maxima at -3.7, -7.9 (assume 20B). ${ }^{1} \mathrm{H} ; \delta 7.51-7.45\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], 7.44-7.38\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], 7.36-$ 7.23 [m, 7H, $\mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$], 7.21-7.09 [m, 6H, $\left.\mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], 7.06-6.99\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], 6.96-6.89$ [m, 2H, PCH $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$], 2.35, [d, J $\left.\mathrm{J}_{\mathrm{HP}}=7.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], 2.16\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{HP}}=10.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ as for ${ }^{1} \mathrm{H}$ plus $\delta 2.67$ to 2.08 considerable overlap of BH and CH_{3} resonances (total integral $9 \mathrm{BH}+6 \mathrm{CH}$) with prominent BH maxima at $2.61,2,46$ and $2.24,1.89(4 \mathrm{H}), 1.75$ to 1.47 overlapping resonances with prominent maxima at 1.70, 1.67, 1.60 and 1.55 (total integral $5 \mathrm{H}, \mathrm{BH}$), $0.95(1 \mathrm{H}$, $B H$), -3.27 (d, $\left.J_{H P}=31.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BHRu}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} ; \delta 34.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PP}}=28.3 \mathrm{~Hz}, 1 \mathrm{P}\right), 22.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PP}}=28.3 \mathrm{~Hz}, 1 \mathrm{P}\right)$.

EIMS: envelope centred on $m / z 786.3\left(\mathrm{M}^{+}\right)$.

3. Synthesis of $\left[R u\left(\kappa^{3}-2,3^{\prime}, 6-\left\{1-\left(1^{\prime}-\right.\right.\right.\right.$ closo- $\left.1^{\prime}, 2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)$-closo-1,2- $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right\}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ (2)

To a solution of I ($0.100 \mathrm{~g}, 0.192 \mathrm{mmol}$) in THF (10 mL) at room temperature, was added, dropwise, $\mathrm{PMePh}_{2}(0.09 \mathrm{~mL}, 0.481 \mathrm{mmol}, 2.5 \mathrm{eq})$. An immediate colour change from orange to red was observed. The solution was stirred at $40^{\circ} \mathrm{C}$ until the solution turned yellow (ca. 2 hrs) following which THF was removed in vacuo. Compound $\mathbf{2}$ was isolated by column chromatography using an eluent system of DCM and petrol in the ratio of $2: 3$ as a yellow band ($R_{f} 0.58,0.097 \mathrm{~g}, 64 \%$).

NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, room temperature): ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} ; \delta 0.2(2 \mathrm{~B}),-1.9$ to -15.9 (overlapping resonances with maxima at -4.6, -8.7, and -14.6, total integral 17B), -17.0(1B). ${ }^{1} \mathrm{H} ; \delta 7.60-7.55\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$, 7.43-7.20 [m, 18H, PCH $\left.\mathrm{P}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], 2.34\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{PH}}=7.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], 1.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\text {cage }} \mathrm{H}\right)$ overlapping with $1.84\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{PH}}=9.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$; as for ${ }^{1} \mathrm{H}$ plus $\delta 2.53(2 \mathrm{H}, \mathrm{BH}), 2.50$
$(1 \mathrm{H}, \mathrm{BH}), 2.38(1 \mathrm{H}, \mathrm{BH}), 2.26(3 \mathrm{H}, \mathrm{BH}), 2.19(1 \mathrm{H}, \mathrm{BH}), 2.17(2 \mathrm{H}, \mathrm{BH}), 2.10(2 \mathrm{H}, \mathrm{BH}), 2.00(1 \mathrm{H}, \mathrm{BH}), 1.96$ $(1 \mathrm{H}, \mathrm{BH}), 1.76(1 \mathrm{H}, \mathrm{BH}), 1.58(3 \mathrm{H}), \mathrm{BH}),-3.99\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{HP}}=27.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BHRu}\right) .{ }^{13} \mathrm{C} ; \delta 132.4(\mathrm{~d}$, $\left.J_{C P}=11.3 \mathrm{~Hz}, C_{\text {arom }} . H\right), 132.1\left(\mathrm{~d}, J_{C P}=10.5 \mathrm{~Hz}, C_{\text {arom }} . \mathrm{H}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=11.2 \mathrm{~Hz}, \mathrm{C}_{\text {arom }} . \mathrm{H}\right.$), 131.5 (d, $\left.J_{\mathrm{CP}}=9.7 \mathrm{~Hz}, \mathrm{C}_{\text {arom. }} . \mathrm{H}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}, \mathrm{C}_{\text {arom }} . \mathrm{H}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}, C_{\text {arom }} . \mathrm{H}\right), 130.3(\mathrm{~d}$, $\left.J_{C P}=2.5 \mathrm{~Hz}, C_{\text {arom. }} . \mathrm{H}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, \mathrm{C}_{\text {arom }} . \mathrm{H}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{CP}}=9.7 \mathrm{~Hz}, C_{\text {arom }} . \mathrm{H}\right), 129.1(\mathrm{~d}$, $\left.J_{C P}=9.3 \mathrm{~Hz}, \mathrm{C}_{\text {arom }} . \mathrm{H}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}, \mathrm{C}_{\text {arom }} . \mathrm{H}\right), 128.7$ (d, $\left.J_{\mathrm{CP}}=9.6 \mathrm{~Hz}, \mathrm{C}_{\text {arom }} . \mathrm{H}\right), 91.8$ (C), 77.8 (C), $67.5\left(\mathrm{C}_{\text {cage }} \mathrm{H}\right), 18.8\left(\mathrm{~d}, J_{\mathrm{CP}}=28.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 14.2\left(\mathrm{~d}, J_{\mathrm{CP}}=34.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} ; \delta 41.5\left(\mathrm{~d}, J_{\mathrm{PP}}=28.0 \mathrm{~Hz}\right.$, 1P), 28.0 ($\left.d, J_{P P}=28.0 \mathrm{~Hz}, 1 \mathrm{P}\right)$.

EIMS: envelope centred on $m / z 786.3\left(\mathrm{M}^{+}\right)$, $586.2\left(\mathrm{M}^{+}-\mathrm{PMePh}_{2}\right)$.

NMR Spectra of $1\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}\right)$
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$

${ }^{1} \mathrm{H}$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ detail

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (the small doublets at ca. 42 and 28 ppm are due to a trace of compound $\mathbf{2}$)

NMR Spectra of $\mathbf{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, room temperature)
${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$

${ }^{1} \mathrm{H}$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$

${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ detail

${ }^{13} \mathrm{C}$

${ }^{13} \mathrm{C}$ detail (high frequency)

${ }^{13} \mathrm{C}$ detail (low frequency)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$

B. Crystallographic Studies

Single crystals of $1 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were grown by diffusion of a DCM solution of the appropriate compound and petrol at $-20^{\circ} \mathrm{C}$. Diffraction data were collected on a Bruker D8 Venture diffractometer equipped with $\mathrm{Cu}-K_{\alpha}$ radiation at 100 K . Using OLEX2 ${ }^{1}$ structures were solved by direct methods using the SHELXS ${ }^{2}$ or SHELXT 3 programme, and refined by full-matrix least-squares using SHELXL. ${ }^{4}$ Crystals of $\mathbf{1} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are isomorphous. Both contain DCM of solvation and the solvate molecules were located albeit that they are only fractionally occupied and are disordered. There is also some disorder in two of the Ph rings in the structure of 1. In both cases application of the Vertex-Centroid Distance (VCD) and Boron-Hydrogen Distance (BHD) methods ${ }^{5}$ allowed cage C atoms and cage B atoms to be distinguished, confirming that in $\mathbf{1}$ the bis(carborane) is C, C^{\prime}-bound to Ru (vertices 2 and 2^{\prime}) whereas in $\mathbf{2}$ it is C, B^{\prime}-bound (vertices 2 and 3^{\prime}). See Table S1. In both cases cage H atoms were allowed positional refinement. All other H atoms were treated as riding, with $\mathrm{C}_{\text {phenyl }}-\mathrm{H}$ $0.95 \AA, C_{\text {primary }}-H 0.98 \AA$ and $C_{\text {secondary }}-H 0.99 \AA . \mathrm{H}$ atom displacement parameters were constrained to $1.2 \times U_{\text {eq }}$ (bound B or C) except for Me H atoms $\left[1.5 \times U_{\text {eq }}\left(C_{\text {methyl }}\right)\right]$. Table $S 2$ contains unit cell data and further experimental details.

Table S1

Vertex	VCD/Å	BHD/Å		Vertex	VCD/Å	BHD/Å
Compound 1						
1	$1.570(2)$	-		1^{\prime}	$1.575(2)$	-
2	$1.661(2)$	-	2^{\prime}	$1.611(2)$	-	
3	$1.682(2)$	$1.08(2)$	3^{\prime}	$1.641(3)$	$1.15(2)^{\dagger}$	
4	$1.702(3)$	$1.03(2)$		4^{\prime}	$1.711(2)$	$1.09(3)$
5	$1.699(3)$	$1.09(2)$	5^{\prime}	$1.699(2)$	$1.11(2)$	
6	$1.688(2)$	$1.06(3)$	6^{\prime}	$1.707(2)$	$1.07(2)$	
7	$1.682(3)$	$1.11(3)$	7^{\prime}	$1.680(3)$	$1.08(2)$	
8	$1.689(2)$	$1.14(3)$	8^{\prime}	$1.703(2)$	$1.02(3)$	
9	$1.690(3)$	$1.11(3)$		9^{\prime}	$1.668(3)$	$1.03(3)$
10	$1.684(2)$	$1.10(3)$	10^{\prime}	$1.672(3)$	$1.07(2)$	
11	$1.687(3)$	$1.10(3)$		11^{\prime}	$1.690(2)$	$1.09(2)$
12	$1.667(3)$	$1.07(3)$		12^{\prime}	$1.685(3)$	$1.05(3)$
Compound 2						
1	$1.586(2)$	-		1^{\prime}	$1.563(2)$	-
2	$1.616(2)$	-		2^{\prime}	$1.526(2)$	$0.42(3)$
3	$1.706(2)$	$1.06(2)$		3^{\prime}	$1.834(2)$	-
4	$1.702(2)$	$1.09(2)$		4^{\prime}	$1.676(2)$	$1.08(2)$
5	$1.708(2)$	$1.11(2)$		5^{\prime}	$1.701(3)$	$1.11(2)$
6	$1.648(2)$	$1.10(2) \dagger$		6^{\prime}	$1.733(3)$	$1.03(2)$
7	$1.687(2)$	$1.09(2)$		7^{\prime}	$1.680(2)$	$1.11(2)$
8	$1.677(3)$	$1.06(2)$		8^{\prime}	$1.688(3)$	$1.05(2)$
9	$1.674(2)$	$1.07(2)$	9^{\prime}	$1.669(2)$	$1.11(2)$	
10	$1.700(2)$	$1.07(2)$		10^{\prime}	$1.708(2)$	$1.05(3)$
11	$1.685(2)$	$1.05(2)$		11^{\prime}	$1.697(2)$	$1.10(3)$
12	$1.683(2)$	$1.10(2)$	12^{\prime}	$1.668(2)$	$1.06(3)$	

\dagger Bridging H atom

Table S2

	1-0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
CCDC	2117898	2117899
Formula	$\mathrm{C}_{30.5} \mathrm{H}_{47} \mathrm{~B}_{20} \mathrm{ClP}_{2} \mathrm{Ru}$	$\mathrm{C}_{30.5} \mathrm{H}_{47} \mathrm{~B}_{20} \mathrm{ClP}_{2} \mathrm{Ru}$
M	828.34	828.34
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	C2/c
a/Å	38.4205(9)	38.0931(9)
b/Å	10.5927(2)	10.6717(3)
c/Å	21.1877(5)	21.3413(5)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	111.3870(10)	111.8580(10)
$\gamma /{ }^{\circ}$	90	90
V / \AA^{3}	8029.1(3)	8051.9(4)
Z, Z^{\prime}	8, 1	8, 1
$F(000) / \mathrm{e}$	3368.0	3368.0
$D_{\text {calc }} / \mathrm{Mg} \mathrm{m}^{-3}$	1.371	1.367
X-radiation	$\mathrm{Cu}-K_{\alpha}$	$\mathrm{Cu}-K_{\alpha}$
λ / \AA	1.54178	1.54178
μ / mm^{-1}	4.693	4.680
$\theta_{\text {max }} /{ }^{\circ}$	74.78	74.73
Data measured	54551	64154
Unique data	8168	8221
$R_{\text {int }}$	0.0220	0.0283
$R, \mathrm{w} R_{2}$ (obs. data)	0.0213, 0.0529	0.0208, 0.0512
S	1.050	1.065
Variables	632	586
$E_{\text {max }}, E_{\text {min }} / \mathrm{e} \AA^{-3}$	0.56, -0.61	0.36, -0.54

1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
2 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
3 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, 71, 3-8.
4 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
5 (a) A. McAnaw, G. Scott, L. Elrick, G. M. Rosair and A. J. Welch, Dalton Trans., 2013, 42, 645-664;
(b) A. McAnaw, M. E. Lopez, D. Ellis, G. M. Rosair and A. J. Welch, Dalton Trans., 2014, 43, 50955105; (c) A. J. Welch, Crystals, 2017, 7, 234.

