Supporting Information

Synthesis of cationic π -extended imidazolium salts by sequential Cucatalyzed arylation/annulation and photocyclization

Tianbao Wang, Qinze Zheng, Linhua Wang, Zhenmei Huang, Huaxing Zhang, Yuming

Zhang, Cheng Zhang and Ge Gao*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China

*E-mail: gg2b@scu.edu.cn

Table of Contents

I.	General Remarks	<i>S1</i>
II.	Optimization of Reaction Conditions and General Procedures	<i>S1</i>
III.	Characterization of 3 , 4 , 5 and 6	<i>S4</i>
IV.	DFT Calculations	<i>S24</i>
V.	Single Crystal X-ray Crystallographic Data	<i>S</i> 28
VI.	Optical Properties of Selected Compounds	<i>S31</i>
VII.	References	<i>S32</i>
VIII	Copies of ¹ H and ¹³ C NMR Spectra	533

I. General Remarks

All commercially available reagents were used without further purification unless otherwise noted. DMF was dried through a solvent purification system from Innovative Technology. Cu₂O (99% purity) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. MeOH (AR) and MeCN (AR) were purchased from Chengdu Kelong Chemical Engineering Reagent (China) CO., Ltd. Analytical thin layer chromatography was performed on HG/T2354-92 GF254 plates (Qingdao Haiyang Chemical Co., Ltd.). The 1-arylimidazoles¹, 1,2,3-triaryl imidazolium salts² and cyclic diaryliodonium salts³ were prepared according to the literature procedures.

NMR spectroscopy were obtained on a Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were recorded relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: $\delta = 7.26$ ppm; DMSO-*d*₆: $\delta = 2.50$ ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO-*d*₆ as the internal standard (CDCl₃: $\delta = 77.16$ ppm; DMSO-*d*₆: $\delta = 39.52$ ppm). High resolution mass spectra (HR-MS) were obtained with a Shimadzu LCMS-ITTOF (ESI). Single crystal X-Ray diffraction data were collected on an Agilent Technologies Gemini single-crystal diffractometer. Absorption spectra were obtained on a HITACHI U-2910 spectrometer. Fluorescence spectra and absolute quantum yields were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system. Photocyclization reactions were performed with a Rayonet reactor (RPR-200) with 254 nm (168 W) lamps in quartz flasks.

II. Optimization of Reaction Conditions and General Procedures

a) Screening of reaction conditions

Table S1 Optimization for the arylation/annulation of 1a.^a

5	Cu ₂ O	DMF	 C1 ⁻	trace	_
6	Cu ₂ O	Dioxane	 OTf ⁻	94	
7	Cu ₂ O	1,2-Dichlorobenzene	 OTf ⁻	75	

^{*a*}**1a** ($\overline{0.2 \text{ mmol}}$), **2a** ($\overline{0.4 \text{ mmol}}$), a catalyst ($\overline{20 \text{ mol}}$), and a solvent (1 mL) at 140 °C, N₂, 24 h; ^{*b*}Isolated yield.

Table S2 Optimization for the photocyclization of 3a.^a

	X ⁺ N X ⁻ 3a	254 nm Solvent, rt atmosphere, 12 I	h v t	N X-
Entry	Solvent	X	Atmosphere	Yield $(\%)^b$
1	MeOH	OTf ⁻	air	70
2	MeOH	BF_4^-	air	67
3	DMF	OTf ⁻	air	trace
4	MeCN	OTf ⁻	air	trace
5	DCM	OTf ⁻	air	13
6	MeOH	OTf ⁻	N_2	trace

^a3a (30 mg) in a solvent (30 mL) under 254 nm UV-light (168 W), rt, 12 h; ^bIsolated yield.

b) General procedure for the synthesis of 3

A flame-dried Schlenk tube with a magnetic stirring bar was charged with 1-arylimidazole 1 (0.2 mmol), cyclic diaryliodonium salt 2 (0.4 mmol), Cu₂O (5.7 mg, 20 mol%), and DMF (1 mL) under N₂. The reaction mixture was heated at 140 °C for 24 h. After reaction was complete, the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel with CH₂Cl₂/MeOH (v/v, 40/1–25/1) to provide product **3**.

c) General procedure for the intramolecular photocyclization reaction of 3

A quartz tube was charged with **3** (30 mg) and MeOH (30 mL) in air. The reaction mixture reacted at room temperature for 12 hours under the irradiation of 254 nm ultraviolet light. Then the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel with $CH_2Cl_2/MeOH$ (v/v, 40/1–10/1) to provide product **4**.

d) General procedure for the synthesis of 5

A flame-dried Schlenk tube with a magnetic stirring bar was charged with 1,3-diaryl imidazolium salt (0.2 mmol), an iodoaromatic compounds (0.4 mmol), Cu₂O (5.7 mg, 20 mol%), NaOAc (16.4 mg, 0.2 mmol) and DMF (1 mL) under N₂. The reaction mixture was heated at 120 °C for 24 h. After reaction was complete, the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel with CH₂Cl₂/MeOH (v/v, 50/1–30/1) to provide product **5**.

e) General procedure for the intramolecular photocybisclization reaction of 5

A quartz tube was charged with **5** (30 mg) and MeOH/MeCN (26 mL/4 mL) in air. The reaction mixture reacted at room temperature for 24 hours under the irradiation of 254 nm ultraviolet light. Then the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel with $CH_2Cl_2/MeOH$ (v/v, 40/1–10/1) to provide product **6**.

f) Synthesis of 4x

A flame-dried Schlenk tube with a magnetic stirring bar was charged with **4a** (44.2 mg, 0.1 mmol), 2,2'-diiodo-1,1'-biphenyl (81.2 mg, 0.2 mmol), Cu₂O (2.8 mg, 20 mol%), KOAc (39.2 mg, 0.2 mmol) and DMF (1 mL) under N₂. The reaction mixture was heated at 120 °C for 24 h. After reaction was complete, the reaction mixture was concentrated and the residue was purified by column chromatography on silica gel with CH₂Cl₂/MeOH (v/v, 50/1–25/1) to provide product **4x** as a light yellow solid (30.8 mg, 52% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.94-8.04 (m, 8H), 8.52 (t, *J* = 8.0 Hz, 1H), 8.64 (d, *J* = 7.6 Hz, 4H), 9.11-9.18 (m, 6H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 112.1, 120.0, 120.9, 122.5, 123.0, 123.8, 125.2, 126.1, 126.3, 127.7, 128.6, 128.9, 129.98, 130.03, 130.1, 131.1, 134.5, 138.9 ppm. HRMS (ESI⁺): calcd for C₂₈H₁₂N₅⁺ [M–CF₃SO₃⁻]⁺ 443.1543, found 443.1590.

III. Characterization of 3, 4, 5 and 6

1-phenyl-1*H***-imidazo**[**1**,**2***-f*]**phenanthridin-4-ium trifluoromethanesulfonate (3a):** A white solid (84.4 mg, 95% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.26$ (d, J = 8.4 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.82-8.00 (m, 7H), 8.03-8.07 (m, 1H), 8.59 (d, J = 2.0 Hz, 1H), 8.76 (d, J = 8.0 Hz, 1H), 9.00 (d, J = 8.4 Hz, 2H), 9.42 (d, J = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 115.2$, 116.7, 117.4, 121.8, 123.7, 124.4, 125.0, 127.1, 127.4, 128.6, 129.1, 129.2, 130.3, 130.9, 131.1, 131.7, 132.6, 136.5, 136.7 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₅N₂ [M–CF₃SO₃⁻]⁺ 295.1230, found 295.1225.

1-(*p*-tolyl)-1*H*-imidazo[1,2-*f*]phenanthridin-4-ium trifluoromethanesulfonate (3b): A white solid (86 mg, 94% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.40$ (d, J = 2.0 Hz, 1H), 8.99 (d, J = 7.6 Hz, 2H), 8.75 (d, J = 8.4 Hz, 1H), 8.53 (d, J = 1.6 Hz, 1H), 7.90-8.06 (m, 3H), 7.73 (d, J = 8 Hz, 2H), 7.63 (d, J = 7.2 Hz, 3H), 7.34 (d, J = 8.4 Hz, 1H), 2.54 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 21.0, 115.1, 116.8, 117.4, 121.8, 123.8, 124.4, 125.0, 126.8, 127.6, 128.6, 129.1, 129.3, 130.2, 131.1, 131.3, 132.5, 134.1, 136.7, 141.6 ppm. HRMS (ESI⁺): calcd for C₂₂H1₇N₂ [M–CF₃SO₃⁻]⁺ 309.1386, found 309.1357.$

1-(4-(*tert***-butyl)phenyl)-1***H***-imidazo**[**1**,**2***-f*]**phenanthridin-4-ium tetrafluoroborate (3c):** A white solid (73.6 mg, 84% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.43$ (s, 9H), 7.29 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.93 (t, J = 8.0 Hz, 1H), 7.98 (t, J = 7.2 Hz, 1H), 8.04 (t, J = 8.0 Hz, 1H), 8.57 (d, J = 2.4 Hz, 1H), 8.75 (d, J = 8.0 Hz, 1H), 8.99 (d, J = 8.4 Hz, 2H), 9.40 (d, J = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 31.0$, 35.0, 115.1, 116.7, 117.3, 121.8, 123.7, 124.4, 124.9, 126.5, 127.5, 127.6, 128.6, 129.1, 129.2, 130.2, 131.0, 132.5, 134.0, 136.7, 154.5 ppm. HRMS (ESI⁺): calcd for C₂₅H₂₃N₂ [M–BF₄⁻]⁺ 351.1856, found 351.1852.

1-(4-cyanophenyl)-1*H*-imidazo[1,2-*f*]phenanthridin-4-ium trifluoromethanesulfonate (3d): A white solid (88.5 mg, 94% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.31 (d, *J* = 8.0 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.95 (t, *J* = 7.6 Hz, 1H), 8.00-8.11 (m, 4H), 8.34-8.38 (m, 2H), 8.61 (d, *J* = 2.4 Hz, 1H), 8.77 (d, *J* = 8.0 Hz, 1H), 9.02 (dd, *J* = 3.6 Hz, *J* = 8.4 Hz, 2H), 9.46 (d, *J* = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 114.5, 115.5, 116.4, 117.4, 117.9, 121.9, 124.1, 124.5, 125.0, 127.2, 128.4, 128.8, 129.1, 129.5, 130.3, 131.2, 132.8, 135.1, 136.9, 140.1 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₄N₃ [M–CF₃SO₃⁻]⁺ 320.1182, found 320.1178.

1-(4-(ethoxycarbonyl)phenyl)-1*H*-imidazo[1,2-*f*]phenanthridin-4-ium

trifluoromethanesulfonate (3e): A white solid (92.5 mg, 90% yield). ¹H NMR (400 MHz, DMSO d_6): $\delta = 1.40$ (t, J = 6.8 Hz, 3H), 4.44 (q, J = 6.8 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.91-8.07 (m, 5H), 8.39 (d, J = 8.0 Hz, 2H), 8.61 (d, J = 2.4 Hz, 1H), 8.75 (d, J = 8.4 Hz, 1H), 8.99 (dd, 2H, J = 3.6 Hz, J = 8.4 Hz), 9.44 (d, J = 2.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 14.1, 61.5, 115.4, 116.5, 117.4, 121.8, 123.9, 124.4, 124.9, 127.1, 127.7, 128.6, 129.1, 129.3, 130.2,$ 131.1, 131.6, 132.6, 132.6, 136.8, 140.1, 164.7 ppm. HRMS (ESI⁺): calcd for C₂₄H₁₉N₂O₂[M-CF₃SO₃⁻]⁺ 367.1441, found 367.1440.

1-(4-methoxyphenyl)-1*H*-imidazo[1,2-*f*]phenanthridin-4-ium trifluoromethanesulfonate (3f): A white solid (87.2 mg, 92% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.94 (s, 3H), 7.34-7.38 (m, 3H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.76-7.78 (m, 2H), 7.92 (t, *J* = 7.6 Hz, 1H), 7.96-8.06 (m, 2H), 8.51 (d, *J* = 2.0 Hz, 1H), 8.75 (d, *J* = 8.8 Hz, 1H), 8.98-9.00 (m, 2H), 9.38 (d, *J* = 2.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.9, 115.0, 115.9, 116.8, 117.3, 119.1, 121.8, 122.3, 123.8, 124.4, 124.9, 127.8, 128.4, 128.6, 129.0, 129.2, 129.2, 130.2, 131.1, 132.5, 136.9, 161.1 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₇N₂O [M–CF₃SO₃⁻]⁺ 325.1335, found 325.1334.

1-(*o***-tolyl)-1***H***-imidazo[1,2-***f***]phenanthridin-4-ium trifluoromethanesulfonate (3g): A white solid (89.8 mg, 98% yield). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 2.17 (s, 3H), 7.16 (d, J = 8.4 Hz, 1H), 7.59-7.65 (m, 2H), 7.72-7.79 (m, 3H), 7.92-8.08 (m, 3H), 8.56 (d, J = 2.0 Hz, 1H), 8.78 (d, J = 8.8 Hz, 1H), 9.01 (d, J = 8.4 Hz, 2H), 9.48 (d, J = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 16.8, 115.8, 116.7, 117.4, 121.9, 122.9, 124.5, 124.9, 126.7, 127.6, 128.4, 128.6, 129.45, 129.48, 130.4, 131.0, 131.9, 132.2, 132.7, 135.1, 135.4, 136.3 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₇N₂[M–CF₃SO₃⁻]⁺ 309.1386, found 309.1386.**

1-(3-cyanophenyl)-1*H***-imidazo**[**1**,**2**-*f*]**phenanthridin-4-ium trifluoromethanesulfonate (3h):** A white solid (91.0 mg, 97% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.30 (d, *J* = 8.4 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.95 (t, *J* = 7.6 Hz, 1H), 8.00-8.08 (m, 3H), 8.21-8.24 (m, 1H), 8.37 (d, *J* = 7.6 Hz, 1H), 8.46 (s, 1H), 8.60 (d, *J* = 2.0 Hz, 1H), 8.76 (d, *J* = 8.4 Hz, 1H), 9.02 (d, *J* = 8.4 Hz, 2H), 9.45 (d, *J* = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 113.6, 115.4, 116.4, 117.4, 117.5, 121.9, 124.1, 124.5, 125.0, 127.4, 128.8, 129.0, 129.5, 130.3, 131.0, 131.2, 132.3, 132.8, 135.5, 137.0, 137.1 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₄N₃ [M–CF₃SO₃⁻]⁺ 320.1182, found 320.1182.

1-(2-chlorophenyl)-1*H*-imidazo[1,2-*f*]phenanthridin-4-ium trifluoromethanesulfonate (3i): A white solid (92.7 mg, 97% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.20$ (d, J = 8.4 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 7.91-7.98 (m, 2H), 8.01-8.09 (m, 4H), 8.68 (d, J = 2.0 Hz, 1H), 8.79 (d, J = 8.4 Hz, 1H), 9.02-9.05 (m, 2H), 9.54 (d, J = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 116.1$, 116.2, 117.6, 121.9, 122.8, 124.7, 125.0, 127.1, 128.9, 129.2, 129.7, 129.9, 130.0, 130.5, 130.6, 131.3, 131.4, 133.2, 133.6, 133.8, 136.6 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₄ClN₂ [M–CF₃SO₃⁻]⁺ 329.0840, found 329.0840.

1-(thiophen-2-yl)-1*H***-imidazo**[**1**,**2***-f*]**phenanthridin-4-ium trifluoromethanesulfonate (3j):** A white solid (89.3 mg, 99% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.39-7.43 (m, 2H), 7.70-7.74 (m, 2H), 7.93 (t, *J* = 7.6 Hz, 1H), 8.01-8.06 (m, 3H), 8.64 (d, *J* = 2.4 Hz, 1H), 8.74 (d, *J* = 8.4 Hz, 1H), 9.00 (dd, *J* = 3.2 Hz, *J* = 8.4 Hz, 2H), 9.40 (d, *J* = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 115.2, 116.5, 117.4, 121.9, 123.7, 124.4, 124.9, 127.1, 128.6, 128.7, 129.0, 129.1, 129.3, 129.9, 130.5, 131.1, 132.9, 135.3, 138.0 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃N₂S [M–CF₃SO₃⁻]⁺ 301.0794, found 301.0790.

7,10-di-tert-butyl-1-(4-(tert-butyl)phenyl)-1H-imidazo[1,2-f]phenanthridin-4-ium

trifluoromethanesulfonate (3k): A white solid (67.7 mg, 55% yield). ¹H NMR (400 MHz, DMSO*d*₆): $\delta = 1.429$ -1.433 (m, 18H), 1.52 (s, 9H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 2H), 8.09 (d, *J* = 9.2 Hz, 1H), 8.51 (d, *J* = 2.0 Hz, 1H), 8.66 (d, *J* = 8.8 Hz, 1H), 8.80 (s, 2H), 9.36 (d, *J* = 2.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 30.7$, 31.1, 31.1, 35.0, 35.3, 35.6, 114.5, 114.8, 117.2, 120.0, 120.5, 121.4, 123.7, 126.6, 127.1, 127.3, 127.4, 127.6, 128.7, 130.2, 134.0, 136.5, 151.2, 154.4, 155.7 ppm. HRMS (ESI⁺): calcd for C₃₃H₃₉N₂ $[M-CF_3SO_3^-]^+$ 463.3108, found 463.3109.

1-(4-(ethoxycarbonyl)phenyl)-7,10-difluoro-1*H*-imidazo[1,2-*f*]phenanthridin-4-ium

trifluoromethanesulfonate (3l): A white solid (59.0 mg, 53% yield). ¹H NMR (400 MHz, DMSO*d*₆): $\delta = 1.40$ (t, J = 7.2 Hz, 3H), 4.43 (q, J = 7.2 Hz, 2H), 7.34-7.38 (m, 1H), 7.59-7.64 (m, 1H), 7.99-8.07 (m, 3H), 8.37-8.40 (m, 2H), 8.60 (d, J = 2.4 Hz, 1H), 8.83-8.87 (m, 1H), 8.88-8.94 (m, 2H), 9.42 (d, J = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 14.1$, 61.5, 111.3 (d, $J_{CF} = 24.8$ Hz), 111.5 (d, $J_{CF} = 25.2$ Hz), 113.9, 115.5, 118.6 (d, $J_{CF} = 23.7$ Hz), 119.9 (d, $J_{CF} = 24.9$ Hz), 120.2 (d, $J_{CF} = 9.4$ Hz), 123.6, 126.2, 127.1, 127.3 (d, $J_{CF} = 9.5$ Hz), 127.6, 131.7, 132.66, 132.74 (d, $J_{CF} = 3.2$ Hz), 132.8 (d, $J_{CF} = 2.5$ Hz), 136.4, 139.8, 161.3 (d, $J_{CF} = 244.7$ Hz), 163.9 (d, $J_{CF} = 251.8$ Hz), 164.7 ppm. HRMS (ESI⁺): calcd for C₂₄H₁₇F₂N₂O₂ [M–CF₃SO₃⁻]⁺ 403.1253, found 403.1250.

9-phenyl-9*H***-benzo[4,5]imidazo[1,2-***f***]phenanthridin-14-ium trifluoromethanesulfonate (3m):** A yellow solid (69.1 mg, 70% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.45 (dd, *J* = 8.8 Hz, *J* = 3.2 Hz, 2H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.85-8.01 (m, 8H), 8.08-8.15 (m, 2H), 9.06-9.12 (m, 2H), 9.24-9.29 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 113.3, 116.2, 117.0, 118.3, 119.1, 122.1, 122.3, 124.4, 125.3, 125.7, 127.3, 127.9, 128.1, 128.5, 129.2, 131.2, 131.65, 131.67, 132.1, 132.3, 134.2, 134.3, 134.8, 142.2 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₇N₂[M−CF₃SO₃⁻]⁺ 345.1386, found 345.1386.

9-(4-(*tert*-butyl)phenyl)-9H-benzo[4,5]imidazo[1,2-f]phenanthridin-14-ium

trifluoromethanesulfonate (3n): A yellow solid (110.6 mg, 83% yield). ¹H NMR (400 MHz, DMSO d_6): $\delta = 1.48$ (s, 9H), 7.43-7.46 (m, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.82-7.88 (m, 3H), 7.93-8.01 (m, 4H), 8.07-8.14 (m, 2H), 9.07 (d, J = 8.4 Hz, 1H), 9.11 (d, J = 8.0 Hz, 1H), 9.23 (d, J = 8.8 Hz,1H), 9.27 (d, J = 8.4 Hz,1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 31.1$, 35.1, 113.4, 116.4, 117.0, 118.3, 122.1, 124.4, 125.3, 125.6, 127.3, 127.4, 127.8, 128.1, 128.4, 128.5, 129.2, 131.2, 131.6, 131.7, 132.3, 134.3, 134.9, 142.3, 154.9 ppm. HRMS (ESI⁺): calcd for C₂₉H₂₅N₂ [M–CF₃SO₃⁻]⁺ 401.2012, found 401.2012.

9-(4-(methoxycarbonyl)phenyl)-9H-benzo[4,5]imidazo[1,2-f]phenanthridin-14-ium

trifluoromethanesulfonate (30): A white solid (66.3 mg, 60% yield). ¹H NMR (400 MHz, DMSO*d*₆): $\delta = 4.01$ (s, 3H), 7.47-7.50 (m, 2H), 7.66-7.71 (m, 1H), 7.87 (t, J = 8.0 Hz, 1H), 7.94-8.03 (m, 2H), 8.07-8.16 (m, 4H), 8.49-8.51 (m, 2H), 9.09 (d, J = 8.4 Hz, 1H), 9.13 (d, J = 8.0 Hz, 1H), 9.26 (d, J = 8.8 Hz, 1H), 9.29 (d, J = 8.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 52.8$, 113.3, 116.1, 117.1, 118.4, 122.2, 124.4, 125.3, 125.9, 127.4, 128.0, 128.2, 128.6, 129.5, 131.1, 131.8, 132.3, 132.5, 132.8, 134.5, 134.5, 138.1, 142.3, 165.3 ppm. HRMS (ESI⁺): calcd for C₂₇H₁₉N₂O₂ [M–CF₃SO₃⁻]⁺ 403.1441, found 403.1437.

9-(4-cyanophenyl)-9H-benzo[4,5]imidazo[1,2-f]phenanthridin-14-ium

trifluoromethanesulfonate (3p): A yellow solid (56.1 mg, 54% yield). ¹H NMR (400 MHz, DMSO*d*₆): δ = 7.48 (d, *J* = 8.4 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.88 (t, *J* = 7.6 Hz, 1H), 7.95-8.03 (m, 2H), 8.12-8.16 (m, 4H), 8.46 (d, *J* = 8.0 Hz, 2H), 9.09-9.15 (m, 2H), 9.25-9.31 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 113.3, 115.0, 116.0, 117.1, 117.9, 118.4, 122.2, 124.5, 125.3, 126.0, 127.5, 127.9, 128.3, 128.7, 129.3, 129.7, 131.0, 131.8, 132.3, 134.4, 134.6, 135.9, 138.1, 142.3 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₆N₃ [M–CF₃SO₃⁻]⁺ 370.1339, found 370.1334.

3,6-di-*tert*-butyl-9-(4-(*tert*-butyl)phenyl)-9H-benzo[4,5]imidazo[1,2-f]phenanthridin-14-ium

trifluoromethanesulfonate (3q): A yellow solid (110.0 mg, 83% yield). ¹H NMR (400 MHz, DMSO d_6): $\delta = 1.45$ (s, 9H), 1.48 (s, 9H), 1.55 (s, 9H), 7.40 (t, J = 7.2 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.80-7.85 (m, 3H), 7.89-7.96 (m, 3H), 8.12 (d, J = 8.4 Hz, 1H), 8.87 (s, 1H), 8.91 (s, 1H), 9.16 (d, J = 7.2Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 30.4$, 30.8, 30.9, 34.85, 34.87, 35.6, 113.0, 113.9, 116.6, 117.9, 119.9, 120.8, 121.7, 123.3, 125.4, 126.7, 126.8, 127.0, 127.2, 127.5, 128.1, 128.2, 128.6, 129.1, 131.4, 132.0, 134.7, 141.7, 150.3, 154.6, 157.5 ppm. HRMS (ESI⁺): calcd for C₃₇H₄₁N₂ [M–CF₃SO₃⁻]⁺ 513.3264, found 513.3260.

9-(4-(ethoxycarbonyl)phenyl)-3,6-difluoro-9*H***-benzo[4,5]imidazo[1,2-***f***]phenanthridin-14-ium trifluoromethanesulfonate (3r**): A pale yellow solid (62.6 mg, 52% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 4.01 (s, 3H), 7.49-7.55 (m, 2H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.89 (t, *J* = 7.6 Hz, 1H), 7.95-8.07 (m, 4H), 8.50 (d, *J* = 8.0 Hz, 2H), 9.01 (t, *J* = 12.0 Hz, 2H), 9.21 (d, *J* = 8.4 Hz, 1H), 9.33-9.36 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 53.8, 111.5 (d, *J*_{CF} = 24.6 Hz), 112.0 (d, *J*_{CF} = 25.0 Hz), 113.4, 113.5, 116.8, 119.0 (d, *J*_{CF} = 23.8 Hz), 120.0 (d, *J*_{CF} = 23.7 Hz), 121.1 (d, *J*_{CF} = 9.0 Hz), 124.05 (d, *J*_{CF} = 2.8 Hz), 124.14 (d, *J*_{CF} = 3.3 Hz), 127.6, 127.8, 128.0, 128.6, 128.8, 129.4 (d, *J*_{CF} = 10.2 Hz), 132.6, 132.9, 134.4, 134.9 (d, *J*_{CF} = 12.7 Hz), 137.8, 141.7, 160.7 (d, *J*_{CF} = 245.3 Hz), 165.1 (d, *J*_{CF} = 254.1 Hz), 165.3 ppm. HRMS (ESI⁺): calcd for C₂₈H₁₉F₂N₂O₂[M–CF₃SO₃⁻]⁺ 439.1253, found 439.1258.

9-(benzo[*b*]thiophen-3-yl)-9*H*-benzo[4,5]imidazo[1,2-*f*]phenanthridin-14-ium tetrafluoroborate (3s): A white solid (72.2 mg, 74% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.42-7.47 (m, 2H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.62 (q, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.83 (t, *J* = 7.6 Hz, 1H), 7.96 (t, *J* = 8.4 Hz, 1H), 8.03 (t, *J* = 7.2 Hz, 1H), 8.08 (t, *J* = 8.0 Hz, 1H), 8.17 (t, *J* = 8.4 Hz, 1H), 8.63 (s, 1H), 9.09-9.16 (m, 2H), 9.28-9.34 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 113.2, 116.1, 117.2, 118.5, 121.3, 122.3, 124.3, 124.4, 125.05, 125.12, 125.3, 126.0,

126.5, 127.5, 128.2, 128.3, 128.7, 129.6, 130.4, 131.5, 131.8, 132.5, 133.3, 134.6, 134.6, 139.0, 142.7 ppm. HRMS (ESI⁺): calcd for $C_{27}H_{17}N_2S$ [M–BF₄⁻]⁺ 401.1107, found 401.1103.

9-(benzo[*b***]thiophen-2-yl)-9***H***-benzo[4,5]imidazo[1,2-***f***]phenanthridin-14-ium tetrafluoroborate (3t**): A light yellow solid (52.0 mg, 53% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.64-7.79 (m, 4H), 7.90 (t, *J* = 7.6 Hz, 1H), 7.96-8.05 (m, 3H), 8.13-8.22 (m, 4H), 8.30 (d, *J* = 7.6 Hz, 1H), 9.10-9.16 (m, 2H), 9.24-9.30 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 113.4, 116.1, 117.1, 118.4, 122.3, 123.6, 124.3, 125.3, 125.8, 127.1, 127.6, 127.9, 128.4, 128.9, 129.7, 131.1, 131.8, 132.5, 133.0, 134.7, 135.3, 137.0, 139.5, 143.3 ppm. HRMS (ESI⁺): calcd for C₂₇H₁₇N₂S [M–BF₄⁻]⁺ 401.1107, found 401.1108.

9-(furan-2-yl)-9*H***-benzo[4,5]imidazo[1,2-***f***]phenanthridin-14-ium tetrafluoroborate (3u): A light yellow solid (33.8 mg, 47% yield). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 7.14 (s, 1H), 7.22-7.25 (m, 2H), 7.75 (d,** *J* **= 6.8 Hz, 1H), 7.87 (t,** *J* **= 6.8 Hz, 1H), 7.96-8.03 (m, 3H), 8.13 (t,** *J* **= 7.6 Hz, 1H), 8.20 (t,** *J* **= 6.8 Hz, 1H), 8.30 (s, 1H), 9.11-9.14 (m, 2H), 9.22-9.27 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 110.7, 113.0, 113.6, 115.5, 117.5, 118.7, 122.5, 124.5, 124.8, 125.3, 127.8, 128.1, 128.6, 129.2, 130.0, 131.1, 131.9, 132.8, 134.3, 135.1, 137.1, 143.5, 144.9 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₅N₂O [M–BF₄⁻]⁺ 335.1179, found 335.1172.**

9-(naphthalen-1-yl)-9H-benzo[4,5]imidazo[1,2-f]phenanthridin-14-ium

trifluoromethanesulfonate (3v): A white solid (42.4 mg, 39% yield). ¹H NMR (400 MHz, DMSO d_6): $\delta = 7.20$ (d, J = 8.4 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.75-7.82 (m, 3H), 7.94-8.05 (m, 4H), 8.12-8.20 (m, 2H), 8.36 (d, J = 8.4 Hz, 1H), 8.57 (d, J = 8.4 Hz, 1H), 9.09 (d, J = 8.0 Hz, 1H), 9.15 (d, J = 8.4 Hz, 1H), 9.31-9.38 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 113.3$, 116.1, 117.3, 118.5, 122.1, 122.3, 124.4, 125.2, 125.3, 126.8, 127.3, 127.4, 128.09, 128.13, 128.4, 128.6, 128.7, 128.898, 128.904, 129.1, 129.4, 130.3, 131.65, 131.71, 132.49, 132.52, 134.4, 134.5, 134.9, 142.6 ppm. HRMS (ESI⁺): calcd for C₂₉H₁₉N₂ [M–TfO⁻]⁺ 395.1543, found 395.1543.

9-(naphthalen-2-yl)-9*H***-benzo[4,5]imidazo[1,2-***f***]phenanthridin-14-ium tetrafluoroborate (3w): A white solid (66.5 mg, 69% yield). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 7.52-7.58 (m, 3H), 7.81-7.86 (m, 3H), 7.93-8.08 (m, 4H), 8.15 (t,** *J* **= 7.6 Hz, 1H), 8.22 (d,** *J* **= 7.2 Hz, 1H), 8.30 (m,** *J* **= 7.6 Hz, 1H), 8.51 (d,** *J* **= 8.0 Hz, 1H), 8.58 (s, 1H), 9.07-9.13 (m, 2H), 9.26-9.31 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 113.6, 116.3, 117.0, 118.4, 122.2, 124.3, 124.4, 125.3, 125.8, 127.4, 127.5, 127.9, 128.1, 128.2, 128.4, 128.6, 128.7, 128.8, 129.4, 131.3, 131.6, 131.7, 132.0, 132.3, 133.3, 133.9, 134.4, 135.0, 142.4 ppm. HRMS (ESI⁺): calcd for C₂₉H₁₉N₂ [M–BF₄⁻]⁺ 395.1543, found 395.1543.**

tribenzo[*b,de,g*]imidazo[1,2,3-*ij*][1,8]naphthyridin-3-ium trifluoromethanesulfonate (4a): A yellow solid (21.2 mg, 70% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.86 (t, *J* = 7.2 Hz, 2H), 8.00 (t, *J* = 7.6 Hz, 2H), 8.29 (t, *J* = 7.6 Hz, 1H), 8.61 (d, *J* = 8.0 Hz, 2H), 8.88 (d, *J* = 7.6 Hz, 4H), 9.53 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.6, 117.0, 117.4, 121.9, 122.1, 125.6, 128.2, 128.3, 129.6, 131.2, 133.1, 133.3 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₃N₂⁺ [M–CF₃SO₃⁻]⁺ 293.1073, found 293.1075.

12-methyltribenzo[*b,de,g*]**imidazo**[**1,2,3**-*ij*][**1,8**]**naphthyridin-3-ium trifluoromethanesulfonate** (**4b**): A light yellow solid (24.6 mg, 82% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.53 (s, 3H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.99 (t, *J* = 7.6 Hz, 1H), 8.21 (t, *J* = 8.0 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 8.52 (s, 1H), 8.57 (d, *J* = 8.4 Hz, 1H), 8.71 (d, *J* = 7.6 Hz, 1H), 8.78-8.83 (m, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 20.9, 111.2, 116.75, 116.80, 116.9, 117.2, 121.4, 121.7, 121.77, 121.83, 125.0, 125.5, 127.2, 127.8, 128.0, 128.2, 129.4, 131.1, 132.0, 132.4, 133.0, 138.2. ppm. HRMS (ESI⁺): calcd for C₂₂H₁₅N₂⁺ [M–CF₃SO₃⁻]⁺ 307.1230, found 307.1226.

12-(*tert*-butyl)tribenzo[*b*,*de*,*g*]imidazo[1,2,3-*ij*][1,8]naphthyridin-3-ium tetrafluoroborate (4c): A white solid (18.6 mg, 62% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.53$ (s, 9H), 7.87 (t, J = 7.2 Hz, 1H), 8.01 (t, J = 8.0 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 8.30 (t, J = 8.0 Hz, 1H), 8.55 (d, J = 8.8 Hz, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.80 (s, 1H), 8.89 (t, J = 8.0 Hz, 2H), 9.04 (d, J = 8.4 Hz, 1H), 9.52 (d, J = 5.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 31.2$, 35.3, 111.8, 116.9, 117.0, 117.2, 117.4, 121.6, 121.7, 122.0, 122.4, 125.6, 127.7, 128.2, 128.3, 128.4, 128.9, 129.7, 131.2, 133.0, 133.1, 151.3 ppm. HRMS (ESI⁺): calcd for C₂₅H₂₁N₂⁺ [M–BF₄⁻]⁺ 349.1699, found 349.1693.

12-cyanotribenzo[*b,de,g*]imidazo[1,2,3-*ij*][1,8]naphthyridin-3-ium trifluoromethanesulfonate (4d):

A yellow solid (18.9 mg, 63% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.93 (t, *J* = 7.6 Hz, 1H), 8.07 (t, *J* = 8.0 Hz, 1H), 8.45 (t, *J* = 8.0 Hz, 1H), 8.52 (t, *J* = 8.8 Hz, 1H), 8.70 (d, *J* = 8.4 Hz, 1H), 8.87 (d, *J* = 8.4 Hz, 1H), 9.0 (d, *J* = 8.0 Hz, 1H), 9.06-9.12 (m, 2H), 9.59 (s, 1H), 9.65 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.2, 112.3, 117.57, 117.63, 117.7, 118.0, 118.9, 121.9, 122.0, 122.9, 123.3, 125.9, 127.4, 128.5, 128.7, 129.7, 130.9, 131.6, 132.4, 133.8, 134.0, 134.2, 135.1 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₂N₃⁺ [M– CF₃SO₃⁻]⁺ 318.1026, found 318.1024.

12-(ethoxycarbonyl)tribenzo[b,de,g]imidazo[1,2,3-ij][1,8]naphthyridin-3-ium

trifluoromethanesulfonate (**4e**): A light yellow solid (24.6 mg, 82% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.46$ (t, J = 7.2 Hz, 3H), 4.46 (q, J = 7.2 Hz, 2H), 7.87 (t, J = 7.2 Hz, 1H), 8.03 (t, J = 7.2 Hz, 1H), 8.33 (t, J = 8.0 Hz, 1H), 8.39 (dd, J = 1.2 Hz, J = 8.8 Hz, 1H), 8.63-8.69 (m, 2H), 8.88-8.95 (m, 3H), 9.15 (s, 1H), 9.59 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 14.2$, 61.7, 111.7, 117.47, 117.54, 118.1, 119.1, 121.87, 121.93, 122.3, 122.5, 122.8, 125.7, 126.3, 127.6, 128.4, 128.6,

129.4, 129.5, 131.0, 131.5, 132.3, 133.6, 133.7, 164.5 ppm. HRMS (ESI⁺): calcd for $C_{24}H_{17}N_2O_2^+$ [M– $CF_3SO_3^-$]⁺ 365.1285, found 365.1280.

dibenzo[*b,de*]imidazo[1,2,3-*ij*]thieno[3,2-*g*][1,8]naphthyridin-14-ium trifluoromethanesulfonate (4j): A yellow solid (24.0 mg, 80% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.87 (t, *J* = 7.2 Hz, 1H), 8.00-8.05 (m, 2H), 8.30-8.36 (m, 2H), 8.66 (t, *J* = 9.6 Hz, 2H), 8.87 (d, *J* = 8.0 Hz, 1H), 8.92 (d, *J* = 8.8 Hz, 1H), 9.39 (d, *J* = 2.4 Hz, 1H), 9.59 (d, *J* = 2.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.3, 117.3, 117.5, 117.6, 120.7, 122.0, 122.1, 122.3, 122.7, 124.7, 125.7, 126.9, 127.2, 128.35, 128.39, 130.0, 131.3, 133.0, 133.3, 133.6 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₁N₂S⁺ [M-CF₃SO₃⁻]⁺ 299.0637, found 299.0634.

6,9,12-tri-tert-butyltribenzo[b,de,g]imidazo[1,2,3-ij][1,8]naphthyridin-3-ium

trifluoromethanesulfonate (**4k**): A yellow solid (21.0 mg, 70% yield). ¹H NMR (400 MHz, DMSO d_6): $\delta = 1.54$ (s, 18H), 1.68 (s, 9H), 8.08 (d, J = 8.8 Hz, 2H), 8.59 (d, J = 8.8 Hz, 2H), 8.92 (s, 2H), 9.00 (s, 2H), 9.53 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 31.2$, 31.4, 35.3, 36.8, 110.4, 116.7, 117.1, 119.3, 121.8, 121.1, 128.0, 128.45, 128.52, 133.1, 151.1, 157.2 ppm. HRMS (ESI⁺): calcd for C₃₃H₃₇N₂⁺ [M–CF₃SO₃⁻]⁺ 461.2951, found 461.2946.

12-(ethoxycarbonyl)-6,9-difluorotribenzo[*b,de,g*]imidazo[1,2,3-*ij*][1,8]naphthyridin-3-ium trifluoromethanesulfonate (4l): A yellow solid (15.9 mg, 53% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.46$ (t, *J* = 7.2 Hz, 3H), 4.47 (q, *J* = 7.2 Hz, 2H), 8.04-8.09 (m, 1H), 8.50 (d, *J* = 8.8 Hz, 1H), 8.76-8.81 (m, 2H), 8.90 (dd, *J* = 2.8 Hz, *J* = 10.0 Hz, 1H), 9.00 (d, *J* = 10.0 Hz, 1H), 9.13 (d, *J* = 10.0 Hz, 1H), 9.32 (s, 1H), 9.64 (d, *J* = 5.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 14.2$, 61.7, 108.7, 111.1 (d, *J*_{CF} = 10.7 Hz), 111.4 (d, *J*_{CF} = 11.0 Hz), 112.3 (d, *J*_{CF} = 25.2 Hz), 117.6 (d, *J*_{CF} = 26.0

Hz), 118.1, 119.1, 120.1 (d, $J_{CF} = 14.3$ Hz), 120.3, 121.2 (d, $J_{CF} = 3.6$ Hz), 122.3, 123.4 (dd, $J_{CF} = 3.5$ Hz, $J_{CF} = 9.6$ Hz), 126.4, 127.0, 130.0, 130.5 (d, $J_{CF} = 11.2$ Hz), 130.6 (dd, $J_{CF} = 3.0$ Hz, $J_{CF} = 11.1$ Hz), 131.8, 132.3, 132.7, 161.1 (d, $J_{CF} = 245.7$ Hz), 164.2, 165.3 (d, $J_{CF} = 250.3$ Hz) ppm. HRMS (ESI⁺): calcd for C₂₄H₁₅F₂N₂O₂⁺ [M–CF₃SO₃⁻]⁺ 401.1096, found 401.1089.

tribenzo[*b,de,g*]benzo[4,5]imidazo[1,2,3-*ij*][1,8]naphthyridin-5-ium trifluoromethanesulfonate (4m): A white solid (17.1 mg, 57% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.91 (t, *J* = 7.6 Hz, 2H), 8.03-8.10 (m, 4H), 8.40 (t, *J* = 8.0 Hz, 1H), 8.97 (t, *J* = 8.0 Hz, 4H), 9.13 (d, *J* = 8.4 Hz, 2H), 9.27-9.29 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.9, 116.8, 118.4, 122.0, 122.1, 125.8, 128.1, 129.1, 130.0, 131.3, 132.0, 135.2, 138.8 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₅N₂⁺ [M–CF₃SO₃⁻]⁺ 343.1230, found 343.1228.

14-(*tert*-butyl)tribenzo[*b*,*de*,*g*]benzo[4,5]imidazo[1,2,3-*ij*][1,8]naphthyridin-5-ium

trifluoromethanesulfonate (**4n**): A light yellow solid (24.1 mg, 80% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.56$ (s, 9H), 7.91 (t, J = 7.6 Hz, 1H), 8.03-8.12 (m, 4H), 8.41 (t, J = 8.0 Hz, 1H), 8.89 (s, 1H), 8.97 (t, J = 8.8 Hz, 2H), 9.06 (d, J = 8.8 Hz, 1H), 9.11-9.14 (m, 2H), 9.26 (q, J = 4.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 31.1$, 35.1, 111.9, 116.7, 116.8, 118.1, 118.3, 119.1, 121.86, 121.94, 121.97, 122.01, 122.04, 122.3, 122.4, 125.8, 127.99, 128.02, 129.08, 129.11, 129.16, 129.23, 130.0, 130.2, 131.3, 131.9, 135.1, 138.5, 150.8 ppm. HRMS (ESI⁺): calcd for C₂₉H₂₃N₂⁺ [M–CF₃SO₃⁻]⁺ 399.1856, found 399.1852.

14-(methoxycarbonyl)tribenzo[*b,de,g*]benzo[4,5]imidazo[1,2,3-*ij*][1,8]naphthyridin-5-ium trifluoromethanesulfonate (40): A white solid (18.9 mg, 63% yield). ¹H NMR (400 MHz, DMSO d_{δ}): $\delta = 4.04$ (s, 3H), 7.95 (t, J = 7.6 Hz, 1H), 8.06-8.13 (m, 3H), 8.36-8.40 (m, 2H), 8.99-9.02 (m, 3H), 9.16-9.26 (m, 4H), 9.31-9.34 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 52.9$, 111.9, 116.7, 117.1, 118.5, 119.0, 122.0, 122.2, 122.6, 122.8, 125.9, 126.4, 128.4, 128.5, 128.7, 129.0, 129.2, 129.3, 130.2, 131.1, 131.6, 132.2, 133.8, 135.5, 139.1, 164.9 ppm. HRMS (ESI⁺): calcd for C₂₇H₁₇N₂O₂⁺ [M–CF₃SO₃⁻]⁺ 401.1285, found 401.1288.

14-cyanotribenzo[b,de,g]benzo[4,5]imidazo[1,2,3-ij][1,8]naphthyridin-5-ium

trifluoromethanesulfonate (4p): A light yellow solid (14.1 mg, 47% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.00$ (t, J = 7.6 Hz, 1H), 8.11-8.16 (m, 3H), 8.48 (dd, J = 2.0 Hz, J = 8.6 Hz, 1H), 8.57 (t, J = 8.0 Hz, 1H), 9.12-9.27 (m, 4H), 9.35-9.41 (m, 3H), 9.69 (d, J = 2.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 110.9$, 112.6, 116.9, 117.1, 117.8, 118.6, 119.7, 122.2, 123.0, 123.1, 123.3, 126.1, 128.45, 128.48, 129.1, 129.2, 129.4, 130.3, 130.9, 131.3, 132.3, 133.9, 134.5, 135.6, 139.8 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₄N₃⁺ [M–CF₃SO₃⁻]⁺ 368.1182, found 368.1181.

8,11,14-tri-*tert*-butyltribenzo[*b*,*de*,*g*]benzo[4,5]imidazo[1,2,3-*ij*][1,8]naphthyridin-5-ium trifluoromethanesulfonate (4q): A white solid (18.8 mg, 63% yield). ¹H NMR (400 MHz, DMSO*d*₆): $\delta = 1.57$ (s, 18H), 1.71 (s, 9H), 8.08-8.11 (m, 4H), 9.02 (d, J = 2.0 Hz, 2H), 9.07 (s, 2H), 9.14 (t, J = 8.8 Hz, 2H), 9.30-9.32 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 31.2$, 31.3, 35.2, 36.9, 39.5, 110.7, 116.6, 118.1, 119.2, 122.2, 127.7, 128.9, 129.3, 129.6, 130.3, 138.7, 150.6, 159.2 ppm. HRMS (ESI⁺): calcd for C₃₇H₃₉N₂⁺ [M–CF₃SO₃⁻]⁺ 511.3108, found 511.3103.

8,11-difluoro-14-(methoxycarbonyl)tribenzo[b,de,g]benzo[4,5]imidazo[1,2,3-

ij][1,8]naphthyridin-5-ium trifluoromethanesulfonate (4r): A light yellow solid (26.1 mg, 87% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 4.02 (s, 3H), 7.98 (t, *J* = 8.4 Hz, 1H), 8.11-8.13 (m, 2H), 8.43 (d, *J* = 8.8 Hz, 1H), 8.95-9.01 (m, 2H), 9.10 (d, *J* = 10.0 Hz, 1H), 9.21-9.31 (m, 5H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 52.9, 109.3, 111.3 (d, *J*_{CF} = 26.7 Hz), 111.5 (d, *J*_{CF} = 26.7 Hz), 112.8 (d, *J*_{CF} = 25.3 Hz), 116.7, 116.8, 119.0, 119.1, 120.4 (d, *J*_{CF} = 23.7 Hz), 121.3 (d, *J*_{CF} = 9.3 Hz), 121.6 (d, *J*_{CF} = 3.5 Hz), 122.3, 127.2, 128.02, 128.04, 128.6 (d, *J*_{CF} = 3.0 Hz), 128.8, 129.0 (d, *J*_{CF} = 12.5 Hz), 132.4, 132.8 (d, *J*_{CF} = 11.7 Hz), 134.0, 138.5, 160.7 (d, *J*_{CF} = 246.2 Hz), 164.8, 166.5 (d, *J*_{CF} = 252.8 Hz) ppm. HRMS (ESI⁺): calcd for C₂₅H₁₇F₂N₂O₂⁺ [M–CF₃SO₃⁻]⁺ 437.1096, found 437.1089.

dibenzo[*b,de*]benzo[4,5]imidazo[1,2,3-*ij*]benzo[4,5]thieno[2,3-*g*][1,8]naphthyridin-5-ium tetrafluoroborate (4s): A yellow solid (16.8 mg, 56% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.78-7.84 (m, 2H), 7.92 (t, *J* = 7.6 Hz, 1H), 8.07-8.15 (m, 3H), 8.40-8.45 (m, 3H), 8.80 (d, *J* = 8.0 Hz, 1H), 8.96-9.00 (m, 3H), 9.16 (d, *J* = 8.4 Hz, 1H), 9.28 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.8, 116.5, 116.9, 118.6, 121.9, 122.0, 122.0, 123.8, 124.7, 125.9, 126.0, 126.8, 126.8, 127.96, 128.04, 128.09, 128.13, 128.6, 128.9, 129.1, 129.2, 130.3, 131.4, 132.2, 135.7, 138.1, 139.3 ppm. HRMS (ESI⁺): calcd for C₂₇H₁₅N₂S⁺ [M–BF₄⁻]⁺ 399.0950, found 399.0948.

dibenzo[b,de]benzo[4,5]imidazo[1,2,3-ij]benzo[4,5]thieno[3,2-g][1,8]naphthyridin-5-ium

tetrafluoroborate (4t): A light yellow solid (18.0 mg, 60% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.65-7.72$ (m, 2H), 7.91 (t, *J* = 7.6 Hz, 1H), 8.05 (t, *J* = 8.0 Hz, 1H), 8.16-8.21 (m, 2H), 8.30-8.36 (m, 2H), 8.68-8.71 (m, 1H), 8.77 (d, *J* = 6.8 Hz, 1H), 8.90 (d, *J* = 8.0 Hz, 1H), 8.96 (d, *J* = 8.0 Hz, 2H), 9.09 (d, *J* = 8.4 Hz, 1H), 9.29-9.32 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 111.3$, 114.4, 117.0, 118.2, 119.1, 120.6, 121.4, 122.0, 124.0, 124.2, 126.0, 127.0, 127.2, 127.3, 128.15, 128.19, 128.5, 128.6, 129.0, 130.6, 131.2, 131.9, 132.3, 134.1, 134.7, 135.7, 137.2 ppm. HRMS (ESI⁺): calcd for C₂₇H₁₅N₂S⁺ [M–BF₄⁻]⁺ 399.0950, found 399.0946.

2-(4-(*tert***-butyl)phenyl)-1,3-diphenyl-1***H***-imidazol-3-ium trifluoromethanesulfonate (5b): A light yellow solid (87.4 mg, 87% yield). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 1.16 (s, 9H), 7.32 (q,** *J* **= 10.4 Hz, 4H), 7.48-7.55 (m, 10H), 8.39 (d,** *J* **= 0.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 30.6, 34.7, 118.6, 124.0, 125.4, 126.4, 129.7, 130.3, 131.0, 135.1, 144.6, 154.5 ppm. HRMS (ESI⁺): calcd for C₂₅H₂₅N₂ [M–CF₃SO₃⁻]⁺ 353.2012, found 353.2010.**

2-(4-cyanophenyl)-1,3-diphenyl-1*H***-imidazol-3-ium trifluoromethanesulfonate (5c):** A yellow solid (87.6 mg, 93% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.48-7.55 (m, 10H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.87 (s, *J* = 8.0 Hz, 2H), 8.49 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 114.4, 117.6, 124.5, 126.2, 126.4, 129.9, 130.6, 132.40, 132.44, 134.6, 142.7 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₆N₃ [M–CF₃SO₃⁻]⁺ 322.1339, found 322.1340.

2-(4-methoxyphenyl)-1,3-diphenyl-1*H*-benzo[*d*]imidazol-3-ium trifluoromethanesulfonate (5d): A white solid (97.9 mg, 93% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.70 (s, 3H), 6.91 (d, *J* = 8.8 Hz, 2H), 7.41 (q, *J* = 8.8 Hz, 2H), 7.62-7.69 (m, 12H), 7.74-7.79 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.4, 112.8, 113.2, 114.1, 127.5, 127.6, 130.3, 130.8, 132.4, 132.7, 133.1, 150.9, 161.8 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₁N₂O [M–CF₃SO₃⁻]⁺ 377.1648, found 377.1644.

2-(4-cyanophenyl)-1,3-diphenyl-1*H*-benzo[*d*]imidazol-3-ium trifluoromethanesulfonate (5e): A light yellow solid (99.0 mg, 95% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.66 (br, 10H), 7.70-7.73 (m, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.81-7.85 (m, 2H), 7.92 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 113.6, 114.9, 117.4, 126.0, 127.4, 128.2, 130.5, 131.2, 132.0, 132.2, 132.5, 148.8 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₈N₃ [M-CF₃SO₃⁻]⁺ 372.1495, found 372.1496.

1,3-bis(4-(methoxycarbonyl)phenyl)-2-(p-tolyl)-1H-benzo[d]imidazol-3-ium

trifluoromethanesulfonate (5f): A light yellow solid (110.2 mg, 88% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.23 (s, 3H), 3.90 (s, 6H), 7.18 (d, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.71-7.75 (m, 2H), 7.78-7.83 (m, 6H), 8.20-8.22 (m, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 21.0, 52.6, 113.4, 117.8, 127.9, 128.1, 129.3, 131.1, 131.2, 131.7, 132.3, 136.2, 143.0, 150.8, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₅N₂O₄ [M–CF₃SO₃⁻]⁺ 477.1809, found 477.1813.

1,3-bis(4-(methoxycarbonyl)phenyl)-2-(4-methoxyphenyl)-1*H*-benzo[*d*]imidazol-3-ium

trifluoromethanesulfonate (5g): A light yellow solid (105.3 mg, 82% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.70 (s, 3H), 3.90 (s, 6H), 6.92 (d, *J* = 8.8 Hz, 2H), 7.38 (d, *J* = 8.8 Hz, 2H), 7.70-7.73 (m, 2H), 7.77-7.80 (m, 6H), 8.23 (d, *J* = 8.4 Hz, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 52.6, 55.4, 112.2, 113.3, 114.4, 127.8, 128.1, 131.2, 131.6, 132.2, 133.2, 136.4, 150.8, 162.0, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₅N₂O₅ [M–CF₃SO₃⁻]⁺ 493.1758, found 493.1755.

1,2,3-tris(4-(methoxycarbonyl)phenyl)-1*H*-benzo[*d*]imidazol-3-ium trifluoromethanesulfonate (**5h**): A light yellow solid (122.0 mg, 91% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.79 (s, 3H), 3.89 (s, 6H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.76-7.86 (m, 8H), 7.92 (d, *J* = 8.4 Hz, 2H), 8.20 (d, *J* = 8.8 Hz, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 52.6, 52.7, 128.0, 128.1, 128.3, 129.3, 129.6, 131.3, 131.8, 131.87, 131.90, 132.3, 133.0, 135.8, 165.0, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₅N₂O₆ [M–CF₃SO₃⁻]⁺ 521.1707, found 521.1705.

1,2,3-tris(4-cyanophenyl)-1*H*-benzo[*d*]imidazol-3-ium tetrafluoroborate (5i): A light yellow solid (97.7 mg, 96% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.71 (d, *J* = 8.0 Hz, 2H), 7.81-7.88 (m, 8H), 7.95 (d, *J* = 8.4 Hz, 2H), 8.18 (d, *J* = 8.4 Hz, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 113.7, 114.1, 115.4, 117.4, 117.5, 124.9, 128.6, 128.7, 132.1, 132.3, 132.9, 134.8, 135.5, 148.8 ppm. HRMS (ESI⁺): calcd for C₂₈H₁₆N₅ [M–BF₄⁻]⁺ 422.1400, found 422.1397.

9-(tert-butyl)tribenzo[b,de,g]imidazo[1,2,3-ij][1,8]naphthyridin-3-ium

trifluoromethanesulfonate (6b): A yellow solid (15.9 mg, 53% yield). ¹H NMR (400 MHz, DMSO d_6): $\delta = 1.64$ (s, 9H), 7.91 (t, J = 7.2 Hz, 2H), 8.04 (t, J = 7.6 Hz, 2H), 8.68 (d, J = 8.4 Hz, 2H), 9.02 (s, 2H), 9.19 (d, J = 8.0 Hz, 2H), 9.56 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 31.4$, 36.7, 110.0, 116.9, 117.3, 119.4, 122.1, 125.9, 128.1, 128.2, 129.8, 131.0, 133.3, 157.5 ppm. HRMS (ESI⁺): calcd for C₂₅H₂₁N₂⁺ [M–CF₃SO₃⁻]⁺ 349.1699, found 349.1699.

9-cyanotribenzo[*b,de,g*]**imidazo**[**1,2,3-***ij*][**1,8**]**naphthyridin-3-ium** trifluoromethanesulfonate (**6c**): A light yellow solid (11.1 mg, 37% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.98 (t, *J* = 8.0 Hz, 2H), 8.14 (t, *J* = 8.0 Hz, 2H), 8.77 (d, *J* = 8.4 Hz, 2H), 9.11 (d, *J* = 8.4 Hz, 2H), 9.57 (s, 2H), 9.74 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 114.1, 115.5, 117.7, 118.0, 118.4, 121.3, 125.8, 126.3, 128.8, 129.1, 130.1, 132.3, 132.7 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₂N₃⁺ [M–CF₃SO₃⁻]⁺ 318.1026, found 318.1023.

tribenzo[*b,de,g*]benzo[4,5]imidazo[1,2,3-*ij*][1,8]naphthyridin-5-ium tetrafluoroborate (4m'): A light yellow solid (15.1 mg, 50% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.95 (t, *J* = 7.2 Hz, 2H), 8.06-8.12 (m, 4H), 8.48 (t, *J* = 8.0 Hz, 1H), 9.04-9.07 (m, 4H), 9.20 (d, *J* = 8.4 Hz, 2H), 9.32-9.35 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.6, 116.7, 118.3, 121.9, 122.0, 125.7, 128.1, 129.0, 129.9, 131.1, 132.0, 135.2, 138.5 ppm. HRMS (ESI⁺): calcd for C₂₅H₁₅N₂⁺ [M⁻ BF₄⁻]⁺ 343.1230, found 343.1226.

11-methoxytribenzo[b,de,g]benzo[4,5]imidazo[1,2,3-ij][1,8]naphthyridin-5-ium

trifluoromethanesulfonate (6d): A red solid (14.1 mg, 47% yield). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 4.09$ (s, 3H), 7.75 (t, J = 7.6 Hz, 2H), 7.94 (t, J = 8.0 Hz, 2H), 7.99-8.01 (m, 2H), 8.16 (s, 2H), 8.79 (d, J = 8.0 Hz, 2H), 8.92 (s, J = 8.4 Hz, 2H), 9.08-9.10 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 56.9$, 105.4, 107.9, 116.5, 118.1, 121.2, 126.0, 127.65, 127.74, 128.8, 131.1, 132.06, 132.11, 137.9, 165.0 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₇N₂O⁺ [M–CF₃SO₃⁻]⁺373.1335, found 373.1325.

11-cyanotribenzo[b,de,g]benzo[4,5]imidazo[1,2,3-ij][1,8]naphthyridin-5-ium

trifluoromethanesulfonate (6e): A yellow solid (18.9 mg, 63% yield). ¹H NMR (400 MHz, DMSO*d*₆): δ = 8.00 (t, *J* = 7.6 Hz, 2H), 8.14-8.18 (m, 4H), 9.17 (d, *J* = 8.0 Hz, 2H), 9.27 (d, *J* = 8.8 Hz, 2H), 9.39-9.42 (m, 2H), 9.60 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 114.1, 117.1, 117.2, 118.1, 118.6, 121.3, 125.5, 126.4, 128.5, 128.7, 129.3, 130.8, 131.6, 133.0, 138.2 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₄N₃⁺ [M–CF₃SO₃⁻]⁺ 368.1182, found 368.1185.

8,14-bis(methoxycarbonyl)-11-methyltribenzo[b,de,g]benzo[4,5]imidazo[1,2,3-

ij][1,8]naphthyridin-5-ium trifluoromethanesulfonate (6f): A light yellow solid (15.9 mg, 53% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.46 (s, 3H), 4.03 (s, 6H), 8.11-8.13 (m, 2H), 8.30 (d, *J* = 8.8 Hz, 2H), 8.59 (s, 2H), 8.93 (s, 2H), 9.08 (d, *J* = 9.2 Hz, 2H), 9.16-9.18 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 22.2, 52.9, 116.8, 119.0, 121.8, 123.6, 123.7, 126.2, 126.3, 128.6, 128.8, 128.9, 129.0, 131.7, 133.6, 148.0, 164.8 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₁N₂O₄⁺ [M–CF₃SO₃⁻]⁺ 473.1496, found 473.1493.

11-methoxy-8,14-bis(methoxycarbonyl)tribenzo[b,de,g]benzo[4,5]imidazo[1,2,3-

ij][1,8]naphthyridin-5-ium trifluoromethanesulfonate (6g): A light yellow solid (12.0 mg, 40% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 4.02-4.03 (m, 9H), 8.04-8.06 (m, 2H), 8.13 (s, 2H), 8.29 (d, *J* = 9.2 Hz, 2H), 9.00-9.02 (m, 4H), 9.06-9.09 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ =

52.8, 57.1, 105.3, 108.9, 116.5, 118.7, 121.2, 126.6, 128.3, 128.5, 128.7, 131.4, 131.9, 133.5, 138.4, 164.7, 165.3 ppm. HRMS (ESI⁺): calcd for $C_{30}H_{21}N_2O_5^+$ [M–CF₃SO₃⁻]⁺ 489.1445, found 489.1442.

8,11,14-tris(methoxycarbonyl)tribenzo[*b,de,g*]benzo[4,5]imidazo[1,2,3-*ij*][1,8]naphthyridin-5ium trifluoromethanesulfonate (6h): A yellow solid (15.3 mg, 51% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 4.07 (s, 6H), 4.10 (s, 3H), 8.21-8.23 (m, 2H), 8.52 (dd, *J* = 2.0 Hz, *J* = 8.8 Hz, 2H), 9.33-9.38 (m, 8H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 52.9, 53.0, 114.9, 117.0, 119.3, 122.1, 122.9, 126.8, 128.9, 129.2, 129.3, 130.0, 132.3, 134.1, 135.7, 139.6, 164.9, 165.3 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₁N₂O₆⁺ [M–CF₃SO₃⁻]⁺ 517.1394, found 517.1393.

8,11,14-tricyanotribenzo[b,de,g]benzo[4,5]imidazo[1,2,3-ij][1,8]naphthyridin-5-ium

tetrafluoroborate (6i):

Filtration with a funnel and washing with dichloromethane and methanol to provide **6i** as a yellow solid (24.3 mg, 81% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.24 (d, *J* = 6.4 Hz, 2H), 8.61 (d, *J* = 8.8 Hz, 2H), 9.47-9.51 (m, 4H), 9.82 (d, *J* = 5.2 Hz, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 111.5, 115.0, 117.3, 117.4, 117.6, 117.7, 120.1, 122.2, 127.2, 129.3, 129.7, 131.5, 133.9, 135.4, 139.7 ppm. HRMS (ESI⁺): calcd for C₂₈H₁₂N₅⁺ [M–BF₄⁻]⁺ 418.1087, found 418.1089.

tribenzo[*b,de,g*]phenanthro[9',10':4,5]imidazo[1,2,3-*ij*][1,8]naphthyridin-17-ium trifluoromethanesulfonate (4x): A light yellow solid (30.8 mg, 52% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.94-8.04 (m, 8H), 8.52 (t, *J* = 8.0 Hz, 1H), 8.64 (d, *J* = 7.6 Hz, 4H), 9.11-9.18 (m, 6H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 112.1, 120.0, 120.9, 122.5, 123.0, 123.8, 125.2, 126.1, 126.3, 127.7, 128.6, 128.9, 129.98, 130.03, 130.1, 131.1, 134.5, 138.9 ppm. HRMS (ESI⁺): calcd for C₂₈H₁₂N₅⁺ [M–CF₃SO₃⁻]⁺ 443.1543, found 443.1590.

IV. DFT Calculations

Density functional theory (DFT) calculations were performed using the Gaussian 09 program. The configuration optimizations were finished using B3LYP level of density functional theory with the 6-31G(d) basis. The counter anion was deleted. Electron-density difference maps of the lowest lying relaxed singlet excited state (S1) as compared to the ground state (S0) at the same geometry for **5a** (a), **3f** (b) and **5x** (c); isocontour value = 0.001 au. The green (red) color indicates an increase (decrease) of electron density in a given molecular region upon excitation.

Fig. S1 Electron-density difference maps of 5a (a), 3f (b) and 5x (c).

Table S3 Cartesian coordinates of optimized species

Symbolic	Z-matrix		
Charge = 1	Multiplicity	= 1	
С	-4.57772	1.77229	-0.47557
С	-3.44963	2.50897	-0.67039
Ν	-2.34822	1.6903	-0.45041
С	-2.84132	0.46412	-0.12428
Ν	-4.20242	0.47931	-0.13033
С	-5.17652	-0.62273	0.16198

-1.97389	-0.77652	0.20783
-0.92688	2.15268	-0.57145
0.1696	1.32472	-0.35001
1.47706	1.81583	-0.47886
1.70218	3.14039	-0.83066
0.61869	3.9784	-1.05479
-0.68718	3.48879	-0.92627
-1.58192	-1.02643	1.53303
-0.80218	-2.14431	1.8275
-0.41275	-3.01204	0.80625
-0.79909	-2.76854	-0.51247
-1.57883	-1.65304	-0.81584
-4.79085	-1.91461	0.50703
-5.74987	-2.90386	0.76918
-7.1053	-2.61169	0.68909
-7.5055	-1.3279	0.34623
-6.54846	-0.33946	0.08427
-5.60911	2.06541	-0.55522
-3.34639	3.54314	-0.94611
0.10885	0.28768	-0.07457
2.32387	1.15418	-0.30192
2.71837	3.51645	-0.92934
0.78885	5.01742	-1.33076
-1.47457	4.20468	-1.11743
-1.88164	-0.35472	2.33514
-0.49526	-2.34367	2.85277
0.1961	-3.88418	1.03971
-0.48976	-3.45187	-1.30145
-1.87613	-1.4703	-1.84668
-3.77274	-2.24684	0.59731
-5.4306	-3.90985	1.03787
-7.84536	-3.38278	0.89345
-8.56642	-1.09293	0.2819
-6.94188	0.63348	-0.17574
	-1.97389 -0.92688 0.1696 1.47706 1.70218 0.61869 -0.68718 -1.58192 -0.80218 -0.41275 -0.79909 -1.57883 -4.79085 -5.74987 -7.1053 -7.5055 -6.54846 -5.60911 -3.34639 0.10885 2.32387 2.71837 0.78885 -1.47457 -1.88164 -0.49526 0.1961 -0.48976 -1.87613 -3.77274 -5.4306 -7.84536 -8.56642 -6.94188	-1.97389 -0.77652 -0.92688 2.15268 0.1696 1.32472 1.47706 1.81583 1.70218 3.14039 0.61869 3.9784 -0.68718 3.48879 -1.58192 -1.02643 -0.80218 -2.14431 -0.41275 -3.01204 -0.79909 -2.76854 -1.57883 -1.65304 -4.79085 -1.91461 -5.74987 -2.90386 -7.1053 -2.61169 -7.5055 -1.3279 -6.54846 -0.33946 -5.60911 2.06541 -3.34639 3.54314 0.10885 0.28768 2.32387 1.15418 2.71837 3.51645 0.78885 5.01742 -1.47457 4.20468 -1.88164 -0.35472 -0.49526 -2.34367 0.1961 -3.88418 -0.48976 -3.45187 -1.87613 -1.4703 -3.77274 -2.24684 -5.4306 -3.90985 -7.84536 -3.38278 -8.56642 -1.09293 -6.94188 0.63348

Symbolic	Z-matrix		
Charge $= 1$	Multiplicit	y = 1	
С	-16.72662	-0.06214	0.01059
С	-16.70736	-1.42822	0.0246
Ν	-15.38258	-1.79333	0.08476
С	-14.60091	-0.70706	0.11265
Ν	-15.40701	0.36999	0.06257
С	-15.01684	1.7527	0.05622

С	-13.04662	-0.84143	0.18596
С	-14.8076	-3.16734	0.11482
С	-15.66819	-4.27645	0.08037
С	-15.15256	-5.56756	0.09951
С	-13.78088	-5.75044	0.15245
С	-12.92577	-4.64277	0.18944
С	-13.39778	-3.30525	0.17389
С	-12.52308	-2.16069	0.21344
С	-11.11021	-2.2717	0.28125
С	-10.26455	-1.1613	0.31994
С	-10.80228	0.11082	0.29116
С	-12.18308	0.2689	0.22393
С	-14.88529	2.40634	1.27176
С	-14.4962	3.74422	1.25079
С	-14.25148	4.40072	0.03502
С	-14.42678	3.71673	-1.17388
С	-14.818	2.37612	-1.16878
0	-13.8559	5.70157	0.16642
С	-13.3924	6.36195	-1.00653
Н	-17.51593	0.67013	-0.03074
Н	-17.49419	-2.16026	-0.00318
Н	-16.74507	-4.16955	0.03724
Н	-15.81652	-6.42944	0.07199
Н	-13.36478	-6.75711	0.16531
Н	-11.86242	-4.86896	0.22923
Н	-10.61611	-3.24055	0.30871
Н	-9.18617	-1.29858	0.37352
Н	-10.14869	0.98031	0.32216
Н	-12.54599	1.28772	0.20474
Н	-15.06419	1.90101	2.21436
Н	-14.37056	4.28841	2.18584
Н	-14.26794	4.20576	-2.13082
Н	-14.95111	1.84188	-2.10367
Н	-13.02432	7.34927	-0.71165
Н	-12.55895	5.81786	-1.46366
Н	-14.2082	6.50773	-1.7217

Symbolic	Z-matrix		
Charge $= 1$	Multiplicity	= 1	
С	-3.05049	1.77632	-3.89376
С	-2.4412	0.63616	-4.52797
Ν	-1.69667	-0.08299	-3.52596

С	-1.80916	0.6092	-2.37535
Ν	-2.595	1.81749	-2.58245
С	-2.474	2.93542	-1.73319
С	-1.04293	0.23698	-1.07382
С	-0.84468	-1.23934	-3.6565
С	-1.32039	-2.46227	-3.20197
С	-0.48847	-3.57364	-3.31147
С	0.7903	-3.43704	-3.86361
С	1.24534	-2.18989	-4.30758
С	0.42183	-1.07139	-4.20278
С	0.21715	0.79388	-0.82642
С	0.91778	0.45613	0.33062
С	0.36498	-0.44338	1.24088
С	-0.88856	-1.00466	0.99737
С	-1.5931	-0.66567	-0.15815
С	-2.04112	4.16662	-2.24133
С	-1.90964	5.25925	-1.38365
С	-2.20252	5.12376	-0.02699
С	-2.6263	3.89515	0.47809
С	-2.7601	2.79647	-0.37162
С	-3.95245	2.62442	-4.5514
С	-4.10173	2.42876	-5.95092
С	-3.44103	1.33123	-6.62274
С	-2.6478	0.39051	-5.90348
С	-4.71054	3.59235	-3.86874
С	-5.55334	4.45699	-4.56073
С	-5.6639	4.3469	-5.93537
С	-4.95978	3.34586	-6.61147
С	-3.57007	1.09262	-8.01505
С	-2.99155	-0.00837	-8.65213
С	-2.26711	-0.92695	-7.91476
C	-2.09898	-0.73188	-6.54597
Н	-2.31452	-2.5529	-2.78017
Н	-0.82917	-4.54746	-2.96687
Н	1.43841	-4.30827	-3.94433
Н	2.24324	-2.09651	-4.73014
Н	0.76169	-0.09758	-4.53624
Н	0.65274	1.49784	-1.53147
Н	1.89382	0.89472	0.52412
Н	0.91305	-0.70737	2.14257
Н	-1.31384	-1.70711	1.71035
Н	-2.56845	-1.10857	-0.3417
Н	-1.78872	4.29374	-3.29149
Н	-1.5757	6.21863	-1.77218
Н	-2.09967	5.97755	0.63895
Н	-2.85712	3.79502	1.53603
Н	-3.11745	1.85911	0.04559
Н	-4.68733	3.69411	-2.78822
Н	-6.12294	5.21168	-4.02382

Н	-6.3159	5.02065	-6.48651
Н	-5.12145	3.29355	-7.68476
Н	-4.14256	1.76301	-8.65067
Н	-3.12595	-0.1499	-9.72211
Н	-1.83279	-1.79734	-8.40104
Н	-1.54156	-1.49462	-6.02125

V. Single Crystal X-ray Crystallographic Data

Fig. S2 Wireframe model of the packing structures of 4m' (a) and 4x (b)

Table S4. Crystal data and structure refinement for 4m'

Identification code	2114143
Empirical formula	$C_{25}H_{15}BF_4N_2$
Formula weight	430.20
Temperature/K	301.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	8.4814(4)

b/Å	14.5840(9)
c/Å	16.2845(10)
α/°	90
β/°	103.547(2)
γ/°	90
Volume/Å ³	1958.23(19)
Ζ	4
$\rho_{calc}g/cm^3$	1.459
µ/mm ⁻¹	0.112
F(000)	880.0
Crystal size/mm ³	0.38 imes 0.34 imes 0.29
Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	5.008 to 55.074
Index ranges	$-10 \le h \le 11, -18 \le k \le 18, -21 \le l \le 21$
Reflections collected	90776
Independent reflections	4495 [$R_{int} = 0.0999, R_{sigma} = 0.0298$]
Data/restraints/parameters	4495/4/289
Goodness-of-fit on F ²	1.032
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0718, wR_2 = 0.2064$
Final R indexes [all data]	$R_1 = 0.1228, wR_2 = 0.2533$
Largest diff. peak/hole/eÅ ⁻³	0.72/-0.31

Table S5. Crystal data and structure refinement for 4x

Identification code	2114141
Empirical formula	$C_{34}H_{19}F_3N_2O_3S$
Formula weight	592.57
Temperature/K	293.15
Crystal system	triclinic
Space group	P-1
a/Å	9.3567(6)
b/Å	10.7079(6)
c/Å	14.3234(8)
α/°	81.633(5)
β/°	87.519(5)
γ/°	83.289(5)
Volume/Å ³	1409.56(14)
Ζ	2
$\rho_{calc}g/cm^3$	1.396
µ/mm ⁻¹	0.174
F(000)	608.0
Crystal size/mm ³	0.35 imes 0.3 imes 0.25
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	5.904 to 52.742
Index ranges	$-8 \le h \le 11, -13 \le k \le 13, -17 \le 1 \le 16$
Reflections collected	11362
Independent reflections	5757 [$R_{int} = 0.0249, R_{sigma} = 0.0506$]
Data/restraints/parameters	5757/0/388
Goodness-of-fit on F ²	1.094
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0749, wR_2 = 0.2067$
Final R indexes [all data]	$R_1 = 0.1117, wR_2 = 0.2298$
Largest diff. peak/hole/eÅ ⁻³	0.99/-0.35

VI. Optical Properties of Selected Compounds

Fig. S3 UV-visible absorption and emission spectra of 4a (a), 4m (b) and 4x (c) in different solvents.

Compd.	$\lambda_{abs}{}^{a}$ (nm)	$\varepsilon (\mathrm{M^{-1}\ cm^{-1}})$	λ_{em}^{b} (nm)	${\it \Phi_{ m F}}^c$
4 a	361	11100	364, 384, 406, 430	0.29
4c	362	22900	366, 386, 408, 433	0.34
4d	393	11200	398, 422, 447, 477	0.27
4j	368	17400	373, 394, 416, 443	0.14
4m	393	19900	398, 422, 447, 477	0.29
4n	396	25800	401, 425, 451, 483	0.30
4p	363	10200	368, 387, 409, 433	0.29
4q	393	24200	398, 422, 448, 480	0.46

Table S6 UV-visible absorption and emission data of some selected compounds

4s	306	30300	434, 459, 489	0.34
4t	418	26100	430, 454, 485	0.12
4x	302	30600	392, 414, 437	0.30
6c	376	12800	379, 401, 424, 451	0.18
6d	310	35400	379, 401, 425, 451	0.21
6e	312	20800	415, 441, 470, 504	0.18
6h	408	11400	413, 438, 467, 501	0.22

^{*a*}The maximum absorption band over 300 nm. ^{*b*}Emission bands excited at the longest maximum absorption band. ^{*c*}Absolute quantum yield. Concentration: 1.0×10^{-5} M in CH₂Cl₂.

VII. References

[1] (a) H. Zhang, Q. Cai, D. Ma, J. Org. Chem., 2005, 70, 5164. (b) L. Zhu, L. Cheng, Y. Zhang, R. Xie, J. You, J. Org. Chem., 2007, 72, 2737. (c) L. Zhu, P. Guo, G. Li, J. Lan, R. Xie, J. You, J. Org. Chem., 2007, 72, 8535.

[2] (a) T. Lv, Z. Wang, J. You, J. Lan, G. Gao, J. Org. Chem., 2013, 78, 5723. (b) T.-Y. Lv, L. Yang,
Y.-S. Zhao, F.-J. Song, J.-B. Lan, J.-S. You, G. Gao, Chin. Chem. Lett., 2013, 24, 773; (c) S. Li, J.
Tang, Y. Zhao, R. Jiang, T. Wang, G. Gao, J. You, Chem. Commun., 2017, 53, 3489. (d) S. Li, H. Lv,
Y. Yu, X. Ye, B. Li, S. Yang, Y. Mo, X. Kong, Chem. Commun., 2019, 55, 11267.

[3] (a) D. Zhu, Q. Liu, B. Luo, M. Chen, P. Huang, R. Pi, S. Wen, *Adv. Synth. Catal.*, 2013, 355, 2172.
(b) G. Akimoto, M. Otsuka, K. Miyamoto, A. Muranaka, D. Hashizume, R. Takita, M. Uchiyama, *Chem. Asian J.*, 2018, 13, 913. (c) W. Liang, Y. Yang, M. Yang, M. Zhang, C. Li, Y. Ran, J. Lan, Z. Bin, J. You, *Angew. Chem. Int. Ed.*, 2021, 60, 3493.

VIII. Copies of ¹H and ¹³C NMR Spectra

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

111

