Supporting Information

Annulation–Retro-Claisen Cascade of Bifunctional Peroxides for

the Synthesis of Lactone Natural Products

Qianlan Xu, Jialin Li, Xuemin Li, and Lin Hu*

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China

*Corresponding:

<u>lhu@cqu.edu.cn</u>

Table of Contents

1.	General information	2
2.	Optimization of the tandem reaction	2
3.	Preparation of the substrates	5
4.	General procedure for the tandem reactions	13
5.	General procedure for the alkylation reactions	20
6.	Total synthesis of the natural products	25
7.	References	42
8.	NMR spectra for new compounds	43

1. General Information

Unless otherwise stated, all reagents obtained from Adamas, Accela, or Acros were used without further purification. All solvents employed in the reactions were distilled from appropriate drying agents prior to use. ¹H and ¹³C NMR spectra were recorded on Agilent 400MR DD2 (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and tetramethylsilane (TMS) or the residual solvent peak was used as an internal reference: ¹H NMR (TMS, δ 0.00; CDCl₃, δ 7.26; acetone-d₆ δ 2.05), ¹³C NMR (CDCl₃, δ 77.0; acetone- $d_6 \delta$ 29.84, 206.26). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were acquired on a 7 Tesla SolariX FT-ICR MS (Bruker Daltonics, Bremen, Germany) with an ESI source.

Optimization of the tandem reaction 2.

Ph OEt	+ Br(2a	O ^t Bu <u>base (5.0 equiv)</u> EtOAc, T (°C)		DEt Ph OEt
entry	base	T (°C)	time (h)	yield (%) ^b
1	Cs ₂ CO ₃	40	24	8 ^c
2	Cs ₂ CO ₃	50	24	10 ^c
3	Cs ₂ CO ₃	60	24	20 ^c
4	Cs ₂ CO ₃	70	24	29 ^c
5	Cs ₂ CO ₃	80	24	41
6	Cs_2CO_3	90	12	43
7	Cs_2CO_3	100	12	40
8	Cs_2CO_3	110	12	37
9	Cs ₂ CO ₃	120	12	35
10	50% aq. Cs ₂ CO ₃	90	12	13 ^c
11	CsOH	90	4	28 ^c
12	КОН	90	4	26 ^c
13	LiOH	90	24	8 ^{c, d}
14	NaOH	90	4	23 ^c
15	K ₂ CO ₃	90	24	5 ^{c, d}
16	K ₃ PO ₄	90	24	16 ^c
17	K ₃ PO₄·7H ₂ O	80	24	43
18	K ₃ PO₄·7H ₂ O	90	12	50
19	K ₃ PO ₄ ·7H ₂ O	100	12	41
20	50% aq. K₃PO₄	90	24	11 ^c

Table S1. Screening of the temperature and bases^a

^a Reaction conditions: **1a** (0.1 mmol), **2a** (0.1 mmol), and base (5.0 equiv, 0.5 mmol) in EtOAc (1 mL). ^b Isolated yield of **3a**. ^c Intermediate **4** as major product. ^d Starting materials left

	Ph O OEt	base (5.0 equiv) EtOAc, T (°C)	H O 3a	DEt
entry	base	T (°C)	time (h)	yield (%) ^b
1	K₃PO₄·7H₂O	90	12	61
2	K ₃ PO ₄	90	12	19 ^c
3	50% aq K_3PO_4	90	12	12 ^c
4	Cs_2CO_3	90	12	35

Table S2. The influence of base on retro-Claisen reaction

 $^{\rm a}$ Reaction conditions: 4 (0.1 mmol), $\,$ and base (5.0 equiv, 0.5 mmol) in EtOAc (1 mL).

 $^{\rm b}$ Isolated yield of ${\bf 3a.}\ ^{\rm c}$ Starting material was left

R OE	=t ⁺ Br−		^t Bu <u>K₃PO4·7H₂O</u> EtOAc,	(5.0 equiv) 90 °C		R O OEt
1		2a			3a	4
	1a: R = 1	Ph 1b: R e: R = 4-NO ₂	= Me 1c: R = 4 -Ph 1f: R = 4-C	I-MeO-Ph I-Ph 1g: F	1d: R = 4-CF ₃ - R = 4-CN-Ph	Ph
entry	substrate	1 : 2a	base	T (°C)	time (h)	yield (%) ^b
1	1a	1 : 1.5	K ₃ PO ₄ ·7H ₂ O	90	12	60
2	1a	1:2	K ₃ PO ₄ ·7H ₂ O	90	12	56
3	1a	1.5 : 1	K ₃ PO ₄ ·7H ₂ O	90	12	46
4	1b	1:1.5	K ₃ PO ₄ ·7H ₂ O	90	12	15 ^c
5	1c	1 : 1.5	K ₃ PO ₄ ·7H ₂ O	90	12	20 ^c
6	1d	1 : 1.5	K₃PO₄ [.] 7H₂O	90	12	65
7	1e	1 : 1.5	K ₃ PO ₄ ·7H ₂ O	90	12	55
8	1f	1 : 1.5	K ₃ PO ₄ ·7H ₂ O	90	12	62
9	1g	1 : 1.5	K ₃ PO ₄ ·7H ₂ O	90	12	52

Table S3. Screening of the substrates^a

^a Reaction conditions: **1** (0.1 mmol), base ($K_3PO_4 \cdot 7H_2O$, 5 equiv, 0.5 mmol) in EtOAc (1 mL).

^b Isolated yield of **3a**. ^c Intermediate **4** as major product.

Tabl	le S4.	Further	[.] optim	ization ^a
------	--------	---------	--------------------	----------------------

R R 1) [∕] OEt + Br—	Ó 2a	O ^t Bu <u></u> sa R	$X_3PO_4 \cdot 7H_2$ olvent, 90 $X = 4 - CF_3 - F_3$	20 °C Ph	OEt 0 3a	
entry	base	equiv	solvent	T (°C)	1 : 2a	time (h)	yield (%) ^b
1	K ₃ PO ₄ ·7H ₂ O	5.0	EA	90	1 : 1.5	12	65
2	K ₃ PO ₄ ·7H ₂ O	7.0	EA	90	1 : 1.5	12	60
3	K ₃ PO ₄ ·7H ₂ O	10.0	EA	90	1:1.5	12	62
4	K ₃ PO₄ [.] 7H ₂ O	5.0	THF	90	1:1.5	3	19 ^d
5	K ₃ PO₄ [.] 7H ₂ O	5.0	DCM	90	1:1.5	12	10 ^c
6	K ₃ PO ₄ ·7H ₂ O	5.0	DMF	90	1:1.5	4	0 ^d
7	K ₃ PO ₄ ·7H ₂ O	5.0	MeCN	90	1 : 1.5	8	16 ^d

^a Reaction conditions: **1** (0.1 mmol), **2a** (0.15 mmol), and K₃PO₄·7H₂O in solvent (1mL).

^b Isolated yield of **3a**. ^c Intermediate **4** as major product. ^d Peroxide was decomposed.

entry	Х	base	equiv of base	3d : 7	T (°C)	solvent	time (min)	yield (%) ^b
1	Br	t-BuOK (1.0 M)	1	1:1	-78	THF	10	0 ^c
2	Br	LDA (1.0 M)	1	1:1	-78	THF	10	30
3	Br	NaHMDS (1.0 M)	1	1:1	-78	THF	10	35
4	Br	LiHMDS (1.0 M)	1	1:1	-78	THF	10	25
5	Br	KHMDS (1.0 M)	1	1:1	-78	THF	10	32
6	Ι	NaHMDS (1.0 M)	1	1:1	-78	THF	10	37
7	Ι	NaHMDS (0.5 M)	1	1:1	-78	THF	10	40
8	Ι	NaHMDS (0.05 M) 1	1:1	-78	THF	10	54
9	Ι	NaHMDS (0.03 M) 1	1:1	-78	THF	10	51
10	Ι	NaHMDS (0.05 M) 1	1:1	-65	THF	10	50
11	Ι	NaHMDS (0.05 M) 1	1:1	-55	THF	10	43
12	Ι	NaHMDS (0.05 M) 1	1:1	-20	THF	10	0 ^c
13	Ι	NaHMDS (0.05 M) 1.5	1:1	-78	THF	10	48
14	Ι	NaHMDS (0.05 M) 1	1 : 1.5	-78	THF	10	56
15	Ι	NaHMDS (0.05 M) 1	1.5 : 1	-78	THF	10	41
16	1	NaHMDS (0.05 M) 1	1:2	-78	THF	10	60
17	Ι	NaHMDS (0.05 M) 1	1:2	-78	PhMe	10	30
18	Ι	NaHMDS (0.05 M) 1	1:2	-78	Et ₂ O	10	23
19	Ι	NaHMDS (0.05 M) 1	1:2	-78	CH_2CI_2	10	15 ^d
20	Ι	NaHMDS (0.05 M) 1	1:2	-78	DMF	10	0 ^c

^a Reaction conditions: **3d** (0.1 mmol), **7** and base in solvent (2 mL). ^b Isolated yield. ^c **3d** was decomposed.

^d Starting materials left.

=	H H	O OEt + //		base THF, T (°C)	
_	6a		7a		9a
	entry	base (equiv)	T (°C)	time (min)	yield (%) ^b
	1	NaHMDS	-78	10	22%
	2	LiHMDS	-78	10	45%
	3	LiHMDS	-65	10	57%
	4	LiHMDS	-55	10	30%

Table S6. Optimization of the alkylation reaction of 6a and 7a^a

 a Reaction conditions: **6a** (0.1 mmol), **7a** (0.2 mmol) and base (0.1 mmol, 0.05 M in THF, 2mL) in THF (2 mL). b Isolated yield.

3. Preparation of the substrates

3.1 Preparation of the peroxides

To a solution of the S1¹ (0.8 mmol ~ 2.0 mmol, 1.0 equiv), *tert*-butyl hydroperoxide (5.5 M solution in hexane, 0.8 mmol ~ 2.0 mmol, 1.0 equiv), and tetrabutylammonium iodide (0.1 equiv) in DCM (8 mL ~ 20 mL) was added powder KOH (1.0 equiv). The resulting solution was stirred at room temperature for 24 h. After completion, the reaction was quenched by water (10 mL). The organic layer was separated, and the aqueous layer was extracted with DCM (3 x 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether / EtOAc = 200 : 1) to give peroxides **5a-e** as light yellow oils in 50-65% yields.

<u>"Caution! organic peroxides are potentially explosive. All the reactions relating</u> to these compounds should be cautiously conducted in fume hood with a safety shield. <u>Meanwhile, 2-iodomethylallyl peroxides 5 should be stored in a -20 °C fridge and</u> protected from the light."

Following the general procedure (11.5 mmol scale), **5a** was obtained as a light yellow oil (700 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.41 (s, 1H), 5.19 (s, 1H), 4.57 (s, 2H), 4.01 (s, 2H), 1.24 (s, 9H). The spectral data of **5a** was consistent with that reported in the literature.²

Following the general procedure (3.57 mmol scale), **5b** was obtained as a light yellow oil (147 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.56 (s, 2H), 4.08 (s, 2H), 1.76 (s, 3H), 1.71 (s, 3H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 126.2, 80.4, 72.4, 26.4, 21.5, 21.0, 8.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₉INaO₂: 321.0322; Found: 321.0320.

Following the general procedure (11.5 mmol scale), **5c** was obtained as a light yellow oil (948 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.56 (s, 2H), 4.09 (s, 2H), 2.20 – 2.08 (m, 4H), 1.25 (s, 9H), 1.08 (t, J = 7.6 Hz, 3H), 0.97 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 125.8, 80.3, 72.0, 26.4, 25.3, 13.0, 11.6, 8.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₂₃INaO₂: 349.0635; Found: 349.0639.

Following the general procedure (2.9 mmol scale), **5d** was obtained as a light yellow oil (490 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.18 (m, 6H), 7.16 (d, *J* = 7.4 Hz, 2H), 7.10 (d, *J* = 7.4 Hz, 2H), 4.79 (s, 2H), 4.24 (s, 2H), 3.44 (s,

2H), 3.42 (s, 2H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 138.8, 137.8, 130.9, 128.7, 128.5, 128.5, 128.5, 126.3, 126.2, 80.3, 71.9, 37.4, 37.1, 26.4, 6.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₇INaO₂: 473.0948; Found: 473.0940.

Following the general procedure (4.35 mmol scale), **5e** was obtained as a light yellow oil (440 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.17 (m, 10H), 4.71 (s, 2H), 4.22 (s, 2H), 1.26 (s, 9H). The spectral data of **5e** was consistent with that reported in the literature.¹

3.2 Substrates 7a-g were prepared as following procedure

Note: substrates **7a** and **7f** were commercial available, substrates **7b-d** were prepared according to the reported method.³ Substrates **7e** and **7g** were prepared according to the following procedure.⁴

To a solution of aldehyde **S2** (10 mmol, 1.0 equiv) in dry THF (50 mL) was added vinylmagnesium bromide (1.0 M in THF, 15 mmol, 1.5 equiv) dropwise at 0 °C. The mixture was stirred for 2 h at 0 °C and 1 h at room temperature. The reaction was quenched with 20 mL saturated NH₄Cl, extracted with EtOAc (3 x 50 mL), and the combined organic layers were dried with Na₂SO₄, filtered, and concentrated in vacuo to give the allylic alcohol as a viscous oil, which was used for the next step directly without further purification.

To a solution of PPh₃ (15 mmol, 1.5 equiv) in CH_2Cl_2 (15 mL) was added iodine (15 mmol, 1.5 equiv), and the mixture stirred at room temperature for 5 min. A solution of the crude allylic alcohol (10 mmol, 1.0 equiv) in CH_2Cl_2 (30 mL) was added, and the mixture stirred at room temperature overnight. The reaction mixture was extracted with CH_2Cl_2 (3 x 50 mL) and washed with saturated $Na_2S_2O_3$ solution (20 mL), saturated sodium hydrogen carbonate solution (20 mL) and brine (20 mL). The organic layer was dried with Na_2SO_4 filtered, and concentrated in vacuo. Purification of the crude residue by silica gel flash column chromatography (petroleum ether) afforded **7e** and **7g** in 49-57% yields.

Following the general procedure, **7e** was obtained as a light yellow oil (1.4 g, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.73 – 5.68 (m, 2H), 3.89 – 3.85 (m, 2H), 2.05 – 1.98 (m, 2H), 1.36 – 1.20 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H). The spectral data of **7e** was consistent with that reported in the literature.⁵

Following the general procedure, **7g** was obtained as a light yellow oil (1.36 g, 49% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.72 – 5.69 (m, 2H), 3.88 – 3.87 (m, 2H), 2.02 – 1.99 (m, 2H), 1.30 – 1.26 (m, 12H), 0.88 (t, *J* = 6.6 Hz, 3H). The spectral data of **7g** was consistent with that reported in the literature.⁵

3.3 Substrates 1a-k were prepared as following procedure

Note: substrates **1a** and **1b** were commercial available, substrates **1c-d**, **1f-g** were prepared according to the following method A; substrates **1e**, **1h** were prepared according to the following method B; substrate **1i** was prepared according to the following method C.

$$R \xrightarrow{O} + EtO \xrightarrow{O} OEt \xrightarrow{NaH} R \xrightarrow{O} OEt$$

$$S3 \xrightarrow{Ic-d, 1f-g}$$

Method A: To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added NaH (1.1 g, 28 mmol, 60 wt% in mineral oil), diethyl carbonate (2.4 mL, 20 mmol, 2.0 equiv), and toluene (10 mL). The mixture was heated to reflux. A solution of ketone **S3** (10 mmol, 1.0 equiv) in toluene (5 mL) was added dropwise from the dropping funnel over 10 min. After the addition, the mixture was heated to reflux until the evolution of hydrogen ceased (15 ~ 20 min). When the reaction was cooled to room temperature, glacial acetic acid (3 mL) was added dropwise and a heavy, pasty solid appeared. Ice-water was added until the solid was dissolved completely. The toluene layer was separated, and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layer was washed with water (20 mL) and brine (20 mL), then dried over Na₂SO₄. After evaporation of the solvent, the residue was purified by column chromatography on silica gel (petroleum ether / EtOAc = 40:1 ~ 20:1) to give the corresponding β -keto esters **1c-d** and **1f-g** in 60-73% yields.

Method B: 50 mL of the dried round bottom flask was taken, and *N*,*O*-dimethylhydroxylamine hydrochloride (1.02 g, 10.5 mmol, 1.05 equiv) in dry DCM (24 mL) was treated dropwise with triethylamine (2.9 mL, 21 mmol, 2.1 equiv) and **S4** (10 mmol, 1.0 equiv) at 0 °C. After the addition was completed, the reaction

mixture was warmed to room temperature and stirred for 3 hours. After the reaction was completed as monitored by TLC plate, the reaction was quenched with 10 mL of NH₄Cl, the organic phase was separated and the aqueous phase was extracted with DCM (3 x 15 mL). The organic phase was combined, washed with brine, dried over Na₂SO₄. The solvent was removed by vacuum, which was used for the next step without further purification.

n-Butyllithium (2.5 M in hexane, 3.1 equiv) was added at -78 °C to THF solution (0.1 M) containing diisopropylamine (3.0 equiv) in a round-bottomed flask filled with N₂. After 30 min at 0 °C, the medium was recooled to -78 °C and freshly distilled *tert*-Butyl acetate (3.0 equiv) was added. After stirred for 30 min at -78 °C, **S5** (1.0 equiv) was added at this temperature. After 1 hour, the reaction was quenched at room temperature with a saturated solution of NaHCO₃, and the mixture was extracted with EtOAc (3 x 20 mL). The combined organic layers were then washed with a saturated solution of NH₄Cl. The organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether / EtOAc = 50 : 1) to give products **1e** and **1h** in 62-70% yields.

Method C: To a round bottom flask charged with **S6** (2.6 mmol, 1.0 equiv), sodium benzenesulfinate dihydrate (508 mg, 3.1 mmol, 1.2 equiv), K_2CO_3 (539 mg, 3.9 mmol, 1.5 equiv), and iodine (1.3 g, 5.2 mmol, 2.0 equiv) was added THF (11 mL). This mixture was stirred at room temperature overnight until the complete consumption of the starting material as monitored by TLC. A solution of Na₂SO₃ (1.3 g, 8.7 mmol) in H₂O (11 mL) was added to the mixture and then the reaction was stirred at 60 °C for 4 h. Upon completion of the reaction, the solution was extracted with ethyl acetate (3 x 10 mL), and the organic layer was separated, dried and concentrated to give a residue, which was purified by flash column chromatography

on silica gel (petroleum ether / EtOAc = 9 : 1) to afford the desired β -keto sulfonate product 1i (544 mg, 65% yield).

Following the general method A, 1c was obtained as a light yellow oil in 1:11 mixture of enol and keto form (1.62 g, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.63 (s, 0.09H), 7.93 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 5.58 (s, 0.09H), 4.21 (q, J = 7.1 Hz, 2H), 3.94 (s, 2H), 3.87 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). The spectral data of 1c was consistent with that reported in the literature.²

Following the general method A, 1d was obtained as a yellow oil in 1:2 mixture of enol and keto form (1.56 g, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.56 (s, 0.5H), 8.06 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 1H), 5.72 (s, 0.5H), 4.29 (q, J = 7.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.01 (s, 2H), 1.35 (t, J = 7.1 Hz, 1.5H), 1.26 (t, J = 7.1 Hz, 3H). The spectral data of 1d was consistent with that reported in the literature.²

Following the general method B, **1e** was obtained as a white solid in 1:4 mixture of enol and keto form (1.47 g, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.57 (s, 0.25H), 8.34 (m, 2H), 8.28 (m. 2H), 5.77 (s, 0.25H), 4.23 (q, *J* = 8.0 Hz. 2H), 4.04 (s, 2H). 1.26 (t, *J* = 8.0 Hz, 3H). The spectral data of **1e** was consistent with that reported in the literature.²

Following the general method A, **1f** was obtained as a light yellow oil in 1:5 mixture of enol and keto form (1.47 g, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.57 (s, 0.2H), 7.89 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 5.63 (s, 0.2H), 4.21 (q, J = 7.1 Hz, 2H), 3.96 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H). The spectral data of **1f** was consistent with that reported in the literature.²

Following the general method A, **1g** was obtained as a light yellow oil in 1:3 mixture of enol and keto form (1.37 g, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.55 (s, 0.3H), 8.10 – 7.99 (m, 2H), 7.83 – 7.77 (m, 2H), 5.72 (s, 0.3H), 4.18 (q, J = 14.3, 7.2 Hz, 2H), 4.00 (s, 2H), 1.34 (t, J = 7.3 Hz, 3H). The spectral data of **1g** was consistent with that reported in the literature.²

Following the general method B, **1h** was obtained as a pink solid in 1:10 mixture of enol and keto form (1.95 g, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 12.71 (s, 0.1H), 8.04 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 8.1 Hz, 2H), 5.63 (s, 0.1H), 3.91 (s, 2H), 1.42 (s, 9H). The spectral data of **1h** was consistent with that reported in the literature.⁶

Following the general method C, 1i was obtained as a white solid (544mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.27 – 7.99 (m, 2H), 7.91 (dt, J = 12.8, 7.1 Hz, 2H), 7.82 – 7.72 (m, 2H), 7.69 (d, J = 6.6 Hz, 1H), 7.59 (dd, J = 15.0, 9.4 Hz, 2H), 4.77 (s, 2H). The spectral data of **1i** was consistent with that reported in the literature.⁷

General procedure for the tandem reactions 4.

4.1 General procedure for the tandem reactions of peroxides 2a-f with 1d, 1h-i

Note: peroxides **2a-f** were prepared according to the reported method.⁸

To a solution of substrates 1d, 1h-i (0.2 mmol, 1.0 equiv) and peroxides 2a-f (0.3 mmol, 1.5 equiv) in ethyl acetate (2 mL) was added K₃PO₄·7H₂O solid (338 mg, 1.0 mmol, 5.0 equiv) at room temperature. The resulting solution was vigorously stirred at 90 °C for 12 h. After completion of the reaction as monitored by the TLC, the reaction mixture was diluted with ethyl acetate (5 mL) and water (5 mL). The ethyl acetate layer was separated and the aqueous layer was extracted with EtOAc (3 x 5 mL). The combined extracts were washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = $100 : 1 \sim 50 : 1$) to afford the desired dihydropyrans products **3a-i** in 61-75% yields.

Following the general procedure, **3a** was prepared from **1d** and **2a** and obtained as a light yellow oil (20.3 mg, 65% yield). ¹H NMR (**400** MHz, CDCl₃) δ 5.89 – 5.79 (m, 1H), 5.78 – 5.67 (m, 1H), 4.37 (d, J = 16.5 Hz, 1H), 4.26 – 4.19 (m, 4H), 2.40 – 2.30 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (**100** MHz, CDCl₃) δ 171.4, 126.0, 122.9, 72.1, 65.6, 61.1, 27.7, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₈H₁₂NaO₃: 179.0679; Found: 179.0675.

Following the general procedure, **3b** was prepared from **1h** and **2a** and obtained as a light yellow oil (25.0 mg, 68% yield). ¹H NMR (**400** MHz, CDCl₃) δ 5.83 – 5.80 (m, 1H), 5.77 – 5.67 (m, 1H), 4.35 (d, *J* = 16.6 Hz, 1H), 4.21 (d, *J* = 16.6 Hz, 1H), 4.09 (dd, *J* = 8.3, 5.3 Hz, 1H), 2.35 – 2.29 (m, 2H), 1.47 (s, 9H). ¹³C NMR (**100** MHz, CDCl₃) δ 170.6, 126.1, 123.0, 81.5, 72.3, 65.4, 28.0, 27.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₆NaO₃: 207.0992; Found: 207.0993.

Following the general procedure, **3c** was prepared from **1d** and **2b** and obtained as a light yellow oil (27.6 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.30 – 4.14 (m, 3H), 4.07 (q, J = 15.6 Hz, 2H), 2.38 – 2.14 (m, 2H), 1.65 (s, 3H), 1.52 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 124.2, 122.4, 72.8, 69.2, 61.0, 33.0, 18.2, 14.2, 13.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₆NaO₃: 207.0992; Found: 207.0991.

Following the general procedure, **3d** was prepared from **1d** and **2c** and obtained as a yellow solid (40.6 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.11 (m, 6H), 7.08 – 6.96 (m, 4H), 4.71 (d, J = 16.4 Hz, 1H), 4.56 – 4.43 (m, 2H), 4.30 (q, J =7.1 Hz, 2H), 2.90 – 2.73 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 140.5, 137.8, 133.7, 130.8, 129.0, 128.7, 128.1, 127.9, 127.0, 126.7, 73.0, 69.2, 61.3, 32.8, 14.3. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₀NaO₃: 331.1305; Found: 331.1307. Melting point: 49.5-49.9 °C.

Following the general procedure, **3e** and **3f** were prepared from **1d** and peroxide mixture **2d** and **2d**' (3 : 1). The formed products were separable and the combined yields were 71%. The major product **3e** was obtained as a light yellow solid (26.6 mg, 54% yield). ¹H NMR (**400** MHz, CDCl₃) δ 7.39 – 7.31 (m, 3H), 7.18 (d, *J* = 7.3 Hz, 2H), 4.39 – 4.33 (m, 1H), 4.32 – 4.18 (m, 4H), 2.63 – 2.60 (m, 2H), 1.55 (s, 3H), 1.30 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (**100** MHz, CDCl₃) δ 171.3, 141.0, 128.5, 128.2, 127.8, 126.8, 73.0, 69.2, 61.1, 32.9, 15.2, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈NaO₃: 269.1148; Found: 269.1139. Melting point: 58.7-59.1 °C.

The minor product **3f** was obtained as a light yellow solid (8.4 mg, 17% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.32 (m, 2H), 7.29 – 7.25 (m, 1H), 7.16 – 7.10 (m, 2H), 4.52 – 4.43 (m, 1H), 4.37 – 4.24 (m, 4H), 2.55 – 2.30 (m, 2H), 1.64 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 138.2, 131.2, 128.7, 128.3, 127.1, 125.9, 72.8, 69.3, 61.2, 32.9, 19.6, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈NaO₃: 269.1148; Found: 269.1139. Melting point: 59.8-60.1 °C.

Following the general procedure, **3g** was prepared from **1d** and **2e** and obtained as a white solid (31.1 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.27 – 4.17 (m, 3H), 4.06 (q, J = 15.5 Hz, 2H), 2.24 – 2.12 (m, 2H), 1.91 – 1.85 (m, 2H), 1.83 – 1.63 (m, 4H), 1.59 – 1.45 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 126.9, 124.8, 72.9, 68.5, 61.0, 29.2, 24.8, 22.5, 22.3, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₈NaO₃: 233.1148; Found: 233.1147. Melting point: 30.1-30.6 °C.

Following the general procedure, **3h** was prepared from **1d** and **2f** and obtained as a light yellow oil (25.2 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.10 (m, 3H), 7.06 – 6.96 (m, 1H), 5.01 (d, *J* = 15.0 Hz, 1H), 4.87 (d, *J* = 15.0 Hz, 1H), 4.37 (dd, *J* = 8.6, 5.9 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.13 – 3.04 (m, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 133.6, 131.6, 128.7, 126.7, 126.4, 124.2, 73.3, 67.9, 61.3, 30.8, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₄NaO₃: 229.0835; Found: 229.0836.

Following the general procedure, **3i** was prepared from **1i** and **2b** and obtained as a white solid (32.7 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.5 Hz, 2H), 4.64 (dd, J = 8.4, 4.7 Hz, 1H), 4.15 (d, J = 15.3 Hz, 1H), 4.00 (d, J = 15.3 Hz, 1H), 2.52 – 2.33 (m, 2H), 1.67 (s, 3H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 133.9, 129.5, 128.9, 123.8, 121.2, 88.8, 69.4, 28.0, 18.3, 13.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₆NaO₃S: 275.0712; Found: 275.0704. Melting point: 64.3-64.5 °C.

4.2 General procedure for the tandem reactions of peroxides 5a-e with 1d, 1h-i

To a solution of substrates **1d**, **1h-i** (0.2 mmol, 1.0 equiv) and peroxides **5a-e** (0.3 mmol, 1.5 equiv) in ethyl acetate (2 mL) was added K_3PO_4 '7H₂O solid (338 mg, 1.0 mmol, 5.0 equiv) at room temperature. The resulting solution was vigorously stirred at 90 °C for 12 h. After completion of the reaction as monitored by the TLC, the reaction mixture was diluted with ethyl acetate (5 mL) and water (5 mL). The ethyl acetate layer was separated and the aqueous layer was extracted with EtOAc (3 x 5 mL). The combined extracts were washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 100 : 1 ~ 50 : 1) to afford the desired dihydropyrans products **6a-g** in 63-74% yields.

Following the general procedure, **6a** was prepared from **1d** and **5a** and obtained as a light yellow oil (20.6 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.04 (s, 1H), 4.97 (s, 1H), 4.62 – 4.50 (m, 2H), 4.39 (d, J = 12.9 Hz, 1H), 4.25 – 4.17 (m, 2H), 2.92 (dd, J = 15.9, 8.4 Hz, 1H), 2.70 (dd, J = 15.9, 8.4 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 145.1, 105.4, 77.2, 71.5, 61.1, 36.4, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₈H₁₂NaO₃: 179.0679; Found: 179.0676.

Following the general procedure, **6b** was prepared from **1h** and **5a** and obtained as a light yellow oil (24.7 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.02 (s, 1H), 4.95 (s, 1H), 4.54 (d, J = 12.9 Hz, 1H), 4.47 (dd, J = 8.3, 5.1 Hz, 1H), 4.37 (d, J =12.9 Hz, 1H), 2.88 (dd, J = 15.9, 8.4 Hz, 1H), 2.65 (dd, J = 15.9, 8.4 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 145.5, 105.0, 81.4, 77.5, 71.4, 36.4, 27.9.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₆NaO₃: 207.0992; Found: 207.0992.

Following the general procedure, **6c** was prepared from **1d** and **5b** and obtained as a light yellow oil (27.2 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.64 – 4.47 (m, 2H), 4.36 (d, J = 12.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.81 (dd, J = 15.1, 8.0 Hz, 1H), 2.60 (dd, J = 15.1, 8.0 Hz, 1H), 1.65 (s, 3H), 1.57 (s, 3H), 1.28 (t, J = 7.1Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 129.0, 122.5, 77.5, 70.5, 61.0, 34.1, 21.5, 20.9, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₆NaO₃: 207.0992; Found: 207.0990.

Following the general procedure, **6d** was prepared from **1d** and **5c** and obtained as a light yellow oil (29.7 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.55 (dd, J =8.3, 5.7 Hz, 2H), 4.38 (d, J = 12.4 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.83 (dd, J =15.7, 8.3 Hz, 1H), 2.61 (dd, J = 15.8, 5.3 Hz, 1H), 2.01 (q, J = 7.5 Hz, 2H), 1.91 (q, J =7.5 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H), 0.95 (q, J = 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 134.3, 128.4, 77.3, 70.0, 61.0, 33.5, 25.8, 25.5, 14.2, 12.4, 12.3. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₂₀NaO₃: 235.1305; Found: 235.1304.

Following the general procedure, **6e** was prepared from **1d** and **5d** and obtained as a light yellow oil (47.7 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.17

(m, 6H), 7.12 – 7.04 (m, 4H), 4.80 (d, J = 12.8 Hz, 1H), 4.69 (dd, J = 8.3, 5.1 Hz, 1H), 4.61 (d, J = 12.8 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.30 (s, 2H), 3.18 (s, 2H), 3.05 (dd, J = 16.0, 8.3 Hz, 1H), 2.86 (dd, J = 16.0, 5.1 Hz, 1H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 139.0, 138.8, 133.7, 128.9, 128.6, 128.5, 128.5, 126.2, 126.2, 77.5, 70.5, 61.2, 38.7, 38.4, 34.5, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₄NaO₃: 359.1618; Found: 359.1618.

Following the general procedure, **6f** was prepared from **1d** and **5e** and obtained as a yellow solid (44.4 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.03 (m, 10H), 4.71 (d, J = 13.6 Hz, 1H), 4.65 – 4.58 (m, 1H), 4.51 (d, J = 13.6 Hz, 1H), 4.33 – 4.11 (m, 2H), 3.07 (dd, J = 16.5, 8.1 Hz, 1H), 2.84 (dd, J = 16.5, 5.1 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 141.7, 141.3, 135.7, 134.2, 128.7, 128.5, 128.3, 127.1, 126.9, 77.1, 71.3, 61.1, 36.0, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₀NaO₃: 331.1305; Found: 331.1305. Melting point: 64.5-64.8 °C.

Following the general procedure, **6g** was prepared from **1i** and **5b** and obtained as a white solid (31.8 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.5 Hz, 2H), 7.67 (t, *J* = 7.2 Hz, 1H), 7.57 (t, *J* = 7.3 Hz, 2H), 5.04 (d, *J* = 8.5 Hz, 1H), 4.63 (d, *J* = 11.7 Hz, 1H), 4.45 (d, *J* = 11.7 Hz, 1H), 3.26 (dd, *J* = 16.7, 7.8 Hz, 1H), 2.90 (dd, *J* = 16.7, 7.8 Hz, 1H), 1.69 (s, 3H), 1.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 133.9, 129.3, 129.0, 126.9, 123.7, 95.0, 71.9, 29.6, 21.6, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₆NaO₃S: 275.0712; Found: 275.0704. Melting point: 67.8-68.4 °C.

5. General procedure for the alkylation reactions

5.1 General procedure for the alkylation of iodides 7 with 3c

To a solution of the **3c** (36.8 mg, 0.2 mmol, 1.0 equiv) in dry THF (4 mL) at N₂ atmosphere was added iodides **7** (0.4 mmol, 2.0 equiv) at -78 °C. Then, a solution of NaHMDS (0.05 M in THF, 4 mL, 1.0 equiv) was slowly added to the mixture, and the reaction was kept stirring at -78 °C for 10 minutes. After completion, the reaction mixture was quenched with saturated NH₄Cl solution (5 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether / EtOAc = 50 : 1) to afford the the products **8a-f** in 52-65% yields.

Following the general procedure, **8a** was prepared from **3c** and **7a** and obtained as a light yellow oil (26.9 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.86 – 5.76 (m, 1H), 5.15 – 5.01 (m, 2H), 4.29 – 4.10 (m, 3H), 3.98 (d, *J* = 16.0 Hz, 1H), 2.48 (d, *J* = 7.1 Hz, 2H), 2.40 (d, *J* = 16.7 Hz, 1H), 2.13 (d, *J* = 16.7 Hz, 1H), 1.63 (s, 3H), 1.49 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 132.2, 123.1, 121.9, 118.5, 78.2, 66.7, 60.8, 43.1, 36.5, 18.5, 14.3, 13.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₂₀NaO₃: 247.1305; Found: 247.1296.

Following the general procedure, **8b** was prepared from **3c** and **7b** and obtained as a light yellow oil (27.2 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.17 (t, J =7.3 Hz, 1H), 4.21 – 4.14 (m, 3H), 3.97 (d, J = 15.8 Hz, 1H), 2.51 – 2.35 (m, 3H), 2.11 (d, J = 16.4 Hz, 1H), 1.70 (s, 3H), 1.64 (s, 3H), 1.59 (s, 3H), 1.50 (s, 3H), 1.25 (t, J =7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 134.8, 123.1, 122.1, 117.5, 78.7, 66.7, 60.8, 37.3, 36.5, 25.9, 18.5, 17.9, 14.3, 13.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₄NaO₃: 275.1618; Found: 275.1609.

Following the general procedure, **8c** was prepared from **3c** and **7c** and obtained as a light yellow oil (32.4 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.13 (t, J = 7.3 Hz, 1H), 4.24 – 4.11 (m, 3H), 3.97 (d, J = 15.9 Hz, 1H), 2.54 – 2.37 (m, 3H), 2.12 (d, J = 16.7 Hz, 1H), 2.02 (q, J = 7.5 Hz, 4H), 1.64 (s, 3H), 1.50 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 0.95 (dt, J = 16.7, 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 145.9, 123.1, 122.2, 115.5, 78.6, 66.7, 60.7, 36.7, 36.5, 29.3, 23.1, 18.5, 14.3, 13.7, 13.0, 12.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₂₈NaO₃: 303.1931; Found: 303.1919.

Following the general procedure, **8d** was prepared from **3c** and **7d** and obtained as a light yellow oil (32.7 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.11 (t, J =7.5 Hz, 1H), 4.25 – 4.09 (m, 3H), 3.97 (d, J = 15.8 Hz, 1H), 2.52 – 2.36 (m, 3H), 2.13 – 2.08 (m, 5H), 1.64 (s, 3H), 1.55 – 1.40 (m, 9H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 142.9, 123.0, 122.2, 114.1, 78.7, 66.7, 60.7, 37.3, 36.4, 36.2, 28.8, 28.5, 27.7, 26.8, 18.5, 14.3, 13.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₈NaO₃: 315.1931; Found: 315.1917.

Following the general procedure, **8e** was prepared from **3c** and **7e** and obtained as a light yellow oil (32.0 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.51 – 5.35 (m, 2H), 4.21 – 4.14 (m, 3H), 3.97 (d, *J* = 15.8 Hz, 1H), 2.50 – 2.32 (m, 3H), 2.10 (d, *J* = 16.5 Hz, 1H), 2.00 (d, *J* = 6.6 Hz, 1H), 1.96 (d, *J* = 6.6 Hz, 1H), 1.63 (s, 3H), 1.49 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 11H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 134.9, 123.1, 123.0, 122.0, 78.6, 66.7, 60.7, 42.0, 36.4, 32.6, 31.7, 29.3, 28.8, 22.6, 18.5, 14.3, 14.1, 13.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₃₂NaO₃: 331.2244; Found: 331.2232.

Following the general procedure, **8f** was prepared from **3c** and **7f** and obtained as a light yellow oil (35.6 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.09 (m, 5H), 4.22 (d, *J* = 15.6 Hz, 1H), 4.14 – 3.96 (m, 3H), 3.01 (s, 2H), 2.39 (d, *J* = 16.5 Hz, 1H), 2.15 (d, *J* = 16.5 Hz, 1H), 1.61 (s, 3H), 1.47 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 135.8, 130.3, 127.9, 126.7, 123.1, 122.1, 79.1, 66.9, 60.7, 45.0, 36.4, 18.5, 14.1, 13.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₂₂NaO₃: 297.1461; Found: 297.1449.

5.2 General procedure for the alkylation of iodides 7 with 6a

To a solution of the **6a** (31.2 mg, 0.2 mmol, 1.0 equiv) in dry THF (4 mL) at N_2 atmosphere was added iodides **7** (0.2 mmol, 2.0 equiv) at -65 °C. Then a solution of LiHMDS (0.05 M in THF, 2 mL, 1.0 equiv) was slowly added to the mixture, and the

reaction was kept stirring at -65 °C for 10 minutes. After completion, the solution mixture was quenched with saturated NH₄Cl solution (5 mL) and extracted with EtOAc (3 x 5 mL), The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether / EtOAc = 50 : 1) to afford the the products **9a-f** in 51-63% yields

Following the general procedure, **9a** was prepared from **6a** and **7a** and obtained as a light yellow oil (22.4 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.86 – 5.75 (m, 1H), 5.17 – 5.07 (m, 2H), 4.99 (s, 1H), 4.92 (s, 1H), 4.46 (s, 2H), 4.19 (q, J = 7.1Hz, 2H), 2.91 (d, J = 16.0 Hz, 1H), 2.70 – 2.47 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 145.7, 132.2, 118.9, 105.3, 86.3, 71.4, 61.2, 41.6, 41.1, 14.3. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₆NaO₃: 219.0992; Found: 219.0987.

Following the general procedure, **9b** was prepared from **6a** and **7b** and obtained as a light yellow oil (23.7 mg, 53% yield). ¹H NMR (**400** MHz, CDCl₃) δ 5.15 (t, J =6.7 Hz, 1H), 4.98 (s, 1H), 4.90 (s, 1H), 4.45 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 2.91 (d, J = 15.9 Hz, 1H), 2.64 –2.54 (m, 2H), 2.49 – 2.43 (m, 1H), 1.70 (s, 3H), 1.61 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (**100** MHz, CDCl₃) δ 173.8, 146.2, 135.3, 117.8, 105.0, 87.0, 71.3, 61.1, 41.2, 36.0, 25.9, 17.9, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₂₀NaO₃: 247.1305; Found: 247.1296.

Following the general procedure, **9c** was prepared from **6a** and **7c** and obtained as a light yellow oil (31.7 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.12 (t, J = 7.2 Hz, 1H), 4.98 (s, 1H), 4.91 (s, 1H), 4.45 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 2.92 (d, J = 15.9 Hz, 1H), 2.69 – 2.42 (m, 3H), 2.03 (dq, J = 14.1, 7.5 Hz, 4H), 1.26 (t, J = 7.1 Hz, 3H), 0.96 (q, J = 7.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 146.4, 146.2, 115.7, 105.0, 86.9, 71.3, 61.0, 41.1, 35.4, 29.3, 23.2, 14.2, 13.0, 12.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₄NaO₃: 275.1618; Found: 275.1608.

Following the general procedure, **9d** was prepared from **6a** and **7d** and obtained as a light yellow oil (29.0 mg, 55% yield). ¹H NMR (**400** MHz, CDCl₃) δ 5.11 (t, J =7.4 Hz, 1H), 4.98 (s, 1H), 4.91 (s, 1H), 4.45 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 2.91 (d, J = 15.9 Hz, 1H), 2.69 – 2.53 (m, 2H), 2.47 (dd, J = 14.4, 7.1 Hz, 1H), 2.12 – 2.08 (m, 4H), 1.55 – 1.41 (m, 6H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (**100** MHz, CDCl₃) δ 173.8, 146.2, 143.4, 114.3, 105.0, 87.0, 71.3, 61.1, 41.0, 37.3, 34.9, 28.9, 28.5, 27.8, 26.8, 14.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₂₄NaO₃: 287.1618; Found: 287.1608.

Following the general procedure, **9e** was prepared from **6a** and **7e** and obtained as a light yellow oil (28.6 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.55 – 5.48 (m, 1H), 5.46 – 5.34 (m, 1H), 4.98 (s, 1H), 4.90 (s, 1H), 4.45 (s, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 2.91 – 2.87 (m, 1H), 2.68 – 2.41 (m, 3H), 2.03 – 1.95 (m, 2H), 1.33 – 1.20 (m, 11H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 146.0, 135.3,

123.3, 105.1, 86.9, 71.4, 61.1, 41.0, 40.6, 32.6, 31.7, 29.3, 28.8, 22.6, 14.3, 14.1. **HRMS (ESI)** m/z: [M + Na]⁺ Calcd for C₁₇H₂₈NaO₃: 303.1931; Found: 303.1919.

Following the general procedure, **9f** was prepared from **6a** and **7f** and obtained as a light yellow oil (30.5 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.18 (m, 5H), 4.96 (s, 1H), 4.88 (s, 1H), 4.45 (s, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.22 (d, *J* = 13.9 Hz, 1H), 3.05 (d, *J* = 13.9 Hz, 1H), 2.94 (d, *J* = 15.9 Hz, 1H), 2.61 (d, *J* = 15.9 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 145.6, 135.9, 130.2, 128.1, 126.7, 105.2, 87.2, 71.4, 61.2, 42.9, 41.4, 14.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈NaO₃: 269.1148; Found: 269.1139.

6. Total Synthesis of the natural products

6.1 Synthesis of (±)-tanikolide 12

To a solution of the **3a** (1.56 g, 10.0 mmol, 1.0 equiv) in dry THF (100 mL) at N₂ atmosphere was added allylic iodide **7g** (20.0 mmol, 2.0 equiv) at -78 °C. Then, a solution of NaHMDS (0.05 M in THF, 1.0 equiv) was slowly added to the mixture, and the reaction was kept stirring at -78 °C for 10 minutes. After completion, the reaction was quenched with saturated NH₄Cl solution (20 mL) and extracted with EtOAc (3 x 40 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether / EtOAc = 50 : 1) to afford the product **8g** (1.63 g, 53% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 5.80 – 5.75 (m, 1H), 5.70 – 5.66 (m, 1H), 5.54 – 5.36 (m, 2H), 4.47 – 4.41 (m, 1H), 4.24 – 4.15 (m, 3H), 2.59 – 2.38 (m, 3H), 2.25 –

2.16 (m, 1H), 2.01 – 1.96 (m, 2H), 1.33 – 1.18 (m, 15H), 0.87 (t, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 134.9, 125.2, 123.0, 122.3, 77.7, 63.0, 60.8, 42.1, 32.5, 31.8, 31.1, 29.4, 29.3, 29.2, 29.1, 22.6, 14.3, 14.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₃₂NaO₃: 331.2244; Found: 331.2230.

To a solution of pyridine (0.94 mL, 11.7 mmol, 18.0 equiv) and CrO₃ (714 mg, 7.2 mmol, 11.0 equiv) in CH₂Cl₂ (13 mL) was stirred for 20 minutes at 0 °C, whereupon a solution of compound 8g (200 mg, 0.65 mmol, 1.0 equiv) in CH₂Cl₂ (2 mL) was added slowly for 5 minutes and then refluxed at 60 °C for 12 h. After completion of the reaction as monitored by the TLC. The solution was filtered through a pad of celite and of the diatomite was subsequently washed with 50 mL of CH_2Cl_2 . Then the filtrate was washed with saturated NaHCO₃ (3 x 10 mL) and 2 M HCl (2 x 10 mL) and brine (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = $10 : 1 \sim 5 : 1$) to afford product 10 (146.7 mg, 70% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.77 – 6.73(m, 1H), 6.02 – 5.99 (m, 1H), 5.60 – 5.48 (m, 2H), 4.19 (q, *J* = 7.1, 6.6 Hz, 2H), 2.97 – 2.44 (m, 4H), 2.00 (q, J = 7.7, 7.1 Hz, 2H), 1.35 – 1.23 (m, 15H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 162.9, 142.9, 136.7, 121.6, 121.6, 84.3, 62.2, 41.1, 32.5, 31.8, 31.1, 29.4, 29.2, 29.1, 22.6, 14.1, 14.1. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{30}NaO_4$: 345.2036; Found: 345.2031.

To a solution of **10** (80 mg, 0.25 mmol) in MeOH (2.5 mL) was added 5% Pd/C (16 mg, 20 wt%) and the mixture was stirred for 12 h at room temperature under H_2

atmosphere (balloon). The reaction was filtered through a pad of celite and the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 5 : 1) to afford **11** (76.1 mg, 94% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.27 – 4.17 (m, 2H), 2.61 (dd, *J* = 18.7, 6.4 Hz, 1H), 2.45 (dd, *J* = 18.7, 6.4 Hz, 1H), 2.23 – 2.10 (m, 1H), 2.03 – 1.71 (m, 3H), 1.32 – 1.18 (m, 23H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 170.3, 86.1, 62.0, 38.8, 31.9, 30.5, 29.6, 29.5, 29.5, 29.3, 28.8, 23.0, 22.7, 17.2, 14.2, 14.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₃₄NaO₄: 349.2349; Found: 349.2347.

To a cold (0 °C) mixture of 11 (80 mg, 0.25 mmol) and THF / H_2O (1:1, 3 mL) was added LiOH_{H2}O (11.8 mg, 0.28 mmol). The mixture was stirred at same temperature for 4 h. After completion of the reaction, the mixture was acidified (pH = 2-3) with 2 M HCl, and then extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over Na₂SO₄, and the volatiles were evaporated to give the crude product was sufficiently pure and used directly in the next reaction. A mixture of KOH (32.5 mg, 0.58 mmol), CaCl₂ (129 mg, 1.16 mmol) and the crude product (50 mg, 0.145 mmol) in anhydrous EtOH (2.5 mL) was cooled to 0 °C, then NaBH₄ (44 mg, 1.16 mmol) was added in one portion. After stirring at room temperature for 26 h, the mixture was cooled to 0 °C, acidified (pH = 1) with 2 M HCl, and stirred at room temperature for additional 14 h. The volatiles were evaporated and the residue was diluted with saturated NaCl solution. The aqueous solution was extracted with EtOAc (3 x 15 mL). The combined organic layers were separated, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 1 : 1) to provide 12 (47.4 mg, 68% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.65 (d, J = 11.9 Hz, 1H), 3.54 (d, J = 11.9 Hz, 1H), 2.48 (q, J = 6.2 Hz, 2H), 2.08 – 1.54 (m, 8H), 1.33 – 1.25 (m, 16H), 0.87 (t, J =

6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 86.5, 67.5, 36.6, 31.9, 30.0, 29.8, 29.6, 29.6, 29.5, 29.4, 29.3, 26.6, 23.4, 22.7, 16.6, 14.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₃₂NaO₃: 307.2244; Found: 307.2251. The spectral data of **12** was consistent with that reported in the literature.⁹

Table S7. Comparison of ¹H NMR data of synthetic 12 and natural tanikolide

Н	Natural ⁹	Synthetic	
2	2.48 (m, 2H)	2.48 (q, <i>J</i> = 6.2 Hz, 2H)	
	1.94 – 1.85 (m, 3H)		
	1.75 – 1.71 (m, 2H)		
	1.63 (m, 1H)	2.09 + 1.54 (m 911)	
3-15	1.34 (m, 1H)	2.08 - 1.34 (m, 811)	
	1.29 (m 1H)	1.55 – 1.25 (III, 10H)	
	1.28 (m,2H)		
	1.26 (bs, 14H)		
16	0.88 (t, <i>J</i> = 7.1 Hz, 3H)	0.87 (t, J = 6.7 Hz, 3H)	
17	3.66 (dd, <i>J</i> = 12, 6.4 Hz, 1H)	3.65 (d, <i>J</i> = 11.9 Hz, 1H)	
1/	3.56 (dd, <i>J</i> = 12, 6.4 Hz, 1H)	3.54 (d, <i>J</i> = 11.9 Hz, 1H)	

Table S8. Comparison of ¹³C NMR data of synthetic 12 and natural tanikolide

Ő	~	ŅН						
$\frac{1}{2}$	U 5	/ 17	7	9	11	13	15	
٢\		\checkmark	\sim	\sim	\sim	\sim	\frown	`16
3	4	6	8	10	12	14		

С	Natural ⁹	Synthetic
1	171.6	171.7
2	29.7	30.0
3	16.6	16.6
4	26.6	26.6
	S28	

5	86.4	86.5
6	36.6	36.6
7	23.4	23.4
8	29.9	29.8
9	29.6	29.6
10	29.5	29.6
11	29.5	29.5
12	29.4	29.4
13	29.3	29.3
14	31.8	31.9
15	22.6	22.7
16	14.1	14.1
17	67.5	67.5

6.2 Synthesis of (±)-goniothalamins 18 and 19

To a solution of pyridine (9.4 mL, 117.0 mmol, 18.0 equiv) and CrO₃ (7.1 g, 71.5 mmol, 11.0 equiv) in CH₂Cl₂ (60 mL) was stirred for 20 minutes at 0 °C, whereupon a solution of compound **3b** (1.2 g, 6.5 mmol, 1.0 equiv) in CH₂Cl₂ (10 mL) was added slowly for 5 minutes and then refluxed at 60 °C for 12 h. After completion of the reaction as monitored by the TLC, the solution was filtered through a pad of celite and of the diatomite was subsequently washed with 100 mL of CH₂Cl₂. Then the filtrate was washed with saturated NaHCO₃ (3 x 30 mL) and 2 M HCl (2 x 30 mL) and brine (30 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 5 : 1) to afford product **13** (876.1 mg, 68% yield) as a white solid. ¹H NMR (**400 MHz, CDCl₃**) δ 6.85 – 6.75 (m, 1H), 6.05 (d, *J*)

= 9.9 Hz, 1H), 4.92 (t, J = 5.7 Hz, 1H), 2.84 – 2.67 (m, 2H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 162.0, 142.4, 122.0, 83.4, 74.6, 27.8, 26.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₄NaO₄: 221.0784; Found: 221.0775. Melting point: 87.5-87.9 °C.

To a solution of **13** (600 mg, 3.0 mmol) in CH₂Cl₂ (30 mL) at 0 °C was added TFA (3.0 mL) dropwise. The reaction mixture was allowed to warm up to room temperature and stirred for 2 hours. The mixture was concentrated under reduced pressure, and the crude acid **14** was sufficiently pure and used directly in next step. ¹³H NMR (400 MHz, acetone- d_6) δ 6.95 (dt, J = 9.1, 4.1 Hz, 1H), 5.95 (d, J = 9.9 Hz, 1H), 5.14 (t, J = 5.5 Hz, 1H), 2.91 (ddt, J = 19.0, 6.1, 2.8 Hz, 1H), 2.75 (dt, J = 18.8, 5.0 Hz, 1H). ¹³C NMR (100 MHz, acetone- d_6) δ 206.4, 162.6, 144.4, 122.1, 74.7, 27.2. HRMS (ESI) m/z: [M - H]⁻ Calcd for C₆H₅O₄: 141.0193; Found: 141.0187. Melting point: 113.5-114.0 °C.

BH₃·Me₂S (0.6 mL, 10.0 M in THF, 6.0 mmol) was added dropwise to a solution of the crude acid **14** in THF (30 mL) at 0 °C. The mixture was allowed to warm up to room temperature and stirred for another 1 ~ 2 h. After completion of the reaction as monitored by the TLC. MeOH (15 mL) was then added to the mixture dropwise, and the solvent was removed. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 3 : 1 ~ 1 : 1) to afford **15** (234.5 mg, 61% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.96 – 6.92 (m, 1H), 6.04 (d, J = 9.8 Hz, 1H), 4.58 – 4.52 (m, 1H), 3.89 (dd, J = 12.4, 3.2 Hz, 1H), 3.75 (dd, J = 12.4, 3.2 Hz, 1H), 2.74 (br s, 1H), 2.65 – 2.56 (m, 1H), 2.35 – 2.28 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 145.5, 120.9, 78.4, 63.8, 25.2. HRMS (ESI) m/z: [M - H]⁻ Calcd for C₆H₇O₃: 127.0401; Found: 127.0401.

Compound **15** (128.1 mg, 1.0 mmol) was dissolved in 5 mL of CH_2Cl_2 and Dess-Martin reagent (848.3 mg, 2.0 mmol) were added to the solution. The solution was stirred at room temperature for 30 min. The reaction mixture was diluted with 10 mL of Et_2O . The solution was filtered through a pad of celite and of the diatomite was subsequently washed with 50 mL of Et_2O . The organic fraction was concentrated and the crude aldehyde **16** was used directly in next step without further purification.

A solution of **17** (1.7 g, 3.9 mmol) in THF (10 mL) was cooled to -10 °C, and *t*-BuOK (2.9 mL, 1.0 M in THF, 2.9 mmol) was added. The mixture was stirred for 30 minutes to obtain an orange solution, and then the crude aldehyde **16** in 2 mL THF was dropwise added. After stirring for 30 minutes at -10 °C, the reaction was quenched quickly with H₂O (5 mL), and then extracted with EtOAc (3×20 mL). The organic layer was washed with water and brine, dried over Na₂SO₄, and concentrated, the residue was purified by flash chromatography on silica gel (petroleum ether / EtOAc = 10 : 1 ~ 7 : 1) to give **18** (114.1 mg, 57% yield) and **19** (22.0 mg, 11% yield) as a colorless oil. Data of compound **18**: ¹H NMR (**400** MHz, CDCl₃) δ 7.40 – 7.24 (m, 5H), 6.90 (ddd, *J* = 9.9, 5.5, 3.0 Hz, 1H), 6.77 (d, *J* = 11.5 Hz, 1H), 6.05 (d, *J* = 9.8 Hz, 1H), 5.83 (dd, *J* = 11.5, 9.3 Hz, 1H), 5.30 (td, *J* = 9.8, 4.8 Hz, 1H), 2.60 – 2.38 (m, 2H). ¹³C NMR (**100** MHz, CDCl₃) δ 163.9, 144.6, 135.6, 134.8, 128.6, 128.5, 127.9, 127.8, 121.6, 74.1, 29.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₂NaO₂: 223.0730; Found: 223.0731. The spectral data of **18** was consistent with that reported in the literature.¹⁰

A solution of **18** (35 mg, 0.17 mmol) and I₂ (17.7 mg, 0.07 mmol) in toluene (2 mL) was refluxed at 120 °C for 2 hours. After completion, the reaction mixture was diluted with H₂O (5 mL), and then extracted with EtOAc (3 x 5 mL). The organic layer was washed with saturated Na₂S₂O₃ (5 mL) and brine (5 mL), dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 5 : 1) to afford **19** (34.3 mg, 98% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.24 (m, 5H), 7.00 – 6.87 (m, 1H), 6.73 (d, *J* = 16.1 Hz, 1H), 6.28 (dd, *J* = 15.9, 6.3 Hz, 1H), 6.09 (d, *J* = 9.9 Hz, 1H), 5.10 (ddd, *J* = 8.5, 7.2, 5.8 Hz, 1H), 2.56 – 2.53 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 144.6, 135.7, 133.1, 128.7, 128.3, 126.7, 125.6, 121.7, 77.9, 29.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₂NaO₂: 223.0730; Found: 223.0731. The spectral data of **19** was consistent with that reported in the literature.¹⁰

Table S9. Comparison of ¹H NMR data of synthetic 18 and natural (Z)-

goniothalamin

Н	Natural ¹⁰	Synthetic
3	6.03 (ddd, <i>J</i> = 9.8, 2.4, 1.2 Hz)	6.05 (d, J = 9.8 Hz, 1H)
4	6.85 (ddd, <i>J</i> = 9.8, 5.6, 2.9 Hz, 1H)	6.90 (ddd, <i>J</i> = 9.9, 5.5, 3.0 Hz, 1H)
5	2.47 (m, 2H)	2.60 – 2.38 (m, 2H)
6	5.28 (td, <i>J</i> = 9.9, 4.6 Hz, 1H)	5.30 (td, <i>J</i> = 9.8, 4.8 Hz, 1H),
7	5.81(dd, <i>J</i> = 11.5, 9.3 Hz, 1H)	5.83 (dd, <i>J</i> = 11.5, 9.3 Hz, 1H)
8	6.75 (d, <i>J</i> = 11.5 Hz, 1H)	6.77 (d, <i>J</i> = 11.5 Hz, 1H)
10-14	7.34 – 7.27 (m, 5H)	7.40 – 7.24 (m, 5H)

Table S10. Comparison of ¹³C NMR data of synthetic 18 and natural (Z)-

goniothalamin

8 7

$11 \sqrt[9]{14} \sqrt[6]{2} 0$ $11 \sqrt[9]{14} \sqrt[5]{2} 0$					
С	Natural ¹⁰	Synthetic			
2	163.8	163.9,			
3	121.7	121.6			
4	144.4	144.6			
5	29.8	29.7			
6	74.1	74.1			
7	128.6	128.5			
8	134.8	134.8			
9	135.7	135.6			
10-14	128.6	128.6, 127.9, 127.8			

Table S11. Comparison of ¹H NMR data of synthetic 19 and natural (E)-

goniothalamin

Η	Natural ¹⁰	Synthetic
3	6.08 (dt, J = 10, 1.5 Hz, 1H)	6.09 (d, <i>J</i> = 9.9 Hz, 1H)
4	6.91 (ddd, <i>J</i> = 9.8, 6.3, 2.4 Hz, 1H)	7.00 – 6.87 (m, 1H)
5	2.53 (m, 2H)	2.56 – 2.53 (m, 2H)
6	5.09 (m, 1H)	5.10 (ddd, <i>J</i> = 8.5, 7.2, 5.8 Hz, 1H)
7	6.26 (dd, <i>J</i> = 16.0, 6.3 Hz, 1H)	6.28 (dd, <i>J</i> = 15.9, 6.3 Hz, 1H)
8	6.71 (d, <i>J</i> = 16.1 Hz, 1H,)	6.73 (d, <i>J</i> = 16.1 Hz, 1H)
10-14	7.40 -7.28 (m, 5H)	7.43 – 7.24 (m, 5H)

, <u> </u>				
С	Natural ¹⁰	Synthetic		
2	163.8	163.9		
3	121.8	121.7		
4	144.6	144.6		
5	29.9	29.9		
6	77.9	77.9		
7	125.7	125.6		
8	133.2	133.1		
9	135.8	135.7		
10-14	128.7, 128.4, 126.7	128.7, 128.3, 126.7		

Table S12. Comparison of ¹³C NMR data of synthetic 19 and natural (E)-

goniothalamin

6.3 Synthesis of (±)-7-epi-goniodiole 21

Compound **18** (31 mg, 0.15 mmol) was dissolved in 2 mL of CH₂Cl₂, then *m*-CPBA (106.9 mg, 0.62 mmol) were added to the solution at 0 °C. The reaction was stirred at room temperature for 6 hours. After completion, the reaction mixture was diluted with 10 mL of Et₂O and 10 mL of saturated NaHCO₃ solution. The organic phase was separated and the aqueous layer was extracted with EtOAc (5 x 10 mL). The organic layer was washed with 20% Na₂S₂O₃ solution and brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 5 : 1) to give **20** (23.0 mg, 71%). The diastereoselectivity for this reaction was determined to be 7:1 on the basis

of crude ¹H NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 6.87 (ddd, J = 9.3, 5.6, 2.9 Hz, 1H), 5.96 (d, J = 9.8 Hz, 1H), 4.27 (d, J = 3.9 Hz, 1H), 3.88 (ddd, J = 10.3, 8.2, 4.5 Hz, 1H), 3.45 (dd, J = 8.2, 3.9 Hz, 1H), 2.64 – 2.61 (m, 1H), 2.56 – 2.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 144.3, 133.5, 128.5, 128.3, 126.4, 121.5, 73.1, 58.1, 57.6, 27.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₂NaO₃: 239.0679; Found: 239.0682.

A suspension of compound **20** (30 mg, 0.14 mmol) in distilled H₂O (2.4 mL) and HClO₄ (0.14 mmol) was stirred at 60 °C for 3 h. The mixture was extracted with EtOAc (2 x 5 mL), and the organic phase was washed with brine (5 mL), dried over Na₂SO₄, concentrated. The mixture of diastereomers product could be separated and was purified by silica gel flash column chromatography (petroleum ether / Et₂O = 1 : $1 \sim 1 : 2$) to afford **21** (25.2 mg, 77%) as a colorless oil. ¹H NMR (**400 MHz, CDCl₃**) δ 7.46 – 7.28 (m, 5H), 6.91 (ddd, J = 10.7, 7.2, 4.7, 3.5 Hz, 1H), 5.98 (dd, J = 9.7, 2.8 Hz, 1H), 4.90 (d, J = 4.4 Hz, 1H), 4.41 (dt, J = 11.4, 4.9 Hz, 1H), 3.95 (dd, J = 5.2, 4.2 Hz, 1H), 2.60 (ddt, J = 17.2, 11.7, 2.7 Hz, 1H), 2.48 (dt, J = 18.7, 5.1 Hz, 1H). ¹³C NMR (**100 MHz, CDCl₃**) δ 163.9, 145.7, 140.1, 128.8, 128.3, 126.4, 120.9, 77.3, 76.1, 71.9, 24.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₄NaO₄: 257.0784; Found: 257.0773. The spectral data of **21** was consistent with that reported in the literature.¹¹
Table S13. Comparison of ¹H NMR data of synthetic 21 and natural 7-epi-

goniodiol

Table S14. Comparison of ¹³C NMR data of synthetic 21 and natural 7-epi-

goniodiol

C	natural ¹¹	Synthetic		
2	163.9	163.9,		
3	120.9	120.9		
4	145.7	145.7		
5	24.9	24.9		
6	77.3	77.3		
7	71.9	71.9		
8	76.1	76.1		
9	140.2	140.1		
10-14	128.7, 128.3, 126.4	128.8, 128.3, 126.4		

6.4 Synthesis of (±)-plakolide A 28

To a solution of the **6b** (1.26 g, 6.8 mmol, 1.0 equiv) in dry THF (70 mL) at N₂ atmosphere at -60 °C. Then, a solution of NaHMDS (2.0 M in THF, 1.0 equiv) was slowly added to the mixture, and the reaction was kept stirring at -60 °C for 10 minutes. Then methyl iodide (13.6 mmol, 2.0 equiv) was added, and the reaction was kept stirring at -60 °C for 2 hour. After completion, the solution was quenched with saturated NH₄Cl (20 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether / EtOAc = 50 : 1) to afford the the product **22** (888.6 mg, 66% yield). ¹H NMR (**400 MHz**, **CDCl₃**) δ 4.98 (s, 1H), 4.90 (s, 1H), 4.45 (s, 2H), 2.90 (d, *J* = 15.8 Hz, 1H), 2.46 (d, *J* = 15.8 Hz, 1H), 1.48 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, **CDCl₃**) δ 173.5, 146.7, 104.8, 84.0, 81.3, 71.3, 43.2, 27.9, 23.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₈NaO₃: 221.1148; Found: 221.1152.

To a solution of pyridine (5.3 mL, 65.3 mmol, 18.0 equiv) and CrO_3 (4.0 g, 39.6 mmol, 11.0 equiv) in CH_2Cl_2 (30 mL) was stirred for 20 minutes at 0 °C, whereupon a solution of compound **22** (720 mg, 3.6 mmol, 1.0 equiv) in CH_2Cl_2 (6 mL) was added slowly for 5 minutes and then refluxed at 60 °C for 12 h. After completion of the reaction as monitored by the TLC, the solution was filtered through a pad of celite and of the diatomite was subsequently washed with 100 mL of CH_2Cl_2 . Then the filtrate was washed with saturated NaHCO₃ (3 x 20 mL) and 2 M HCl (2 x 20 mL) and brine (20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and

concentrated in vacuum. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 5 : 1) to afford product **23** (458.5 mg, 60% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 5.63 (s, 1H), 3.16 (d, *J* = 17.2 Hz, 1H), 2.77 (d, *J* = 17.2 Hz, 1H), 1.62 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 169.2, 133.9, 122.3, 83.1, 81.1, 38.7, 27.7, 23.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₆NaO₄: 235.0941; Found: 235.0933.

To a solution of **23** (212.2 mg, 1.0 mmol) in CH_2Cl_2 (10 mL) at 0 °C was added TFA (1.0 mL) dropwise. The reaction mixture was allowed to warm up to room temperature and stirred for 2 hours. The mixture was concentrated under reduced pressure, and the crude free acid was sufficiently pure and used directly in next step.

BH₃·Me₂S (0.2 mL, 10 M in THF, 2.0 mmol) was added dropwise to a solution of the crude acid in THF (10 mL) at 0 °C. The mixture was allowed to warm up to room temperature and stirred for another 1 ~ 2 h. After completion of the reaction as monitored by the TLC, MeOH (5 mL) was then added to the mixture dropwise, and the solvent was removed. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 3 : 1 ~ 1 : 1) to afford **24** (96.6 mg, 68% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.22 (s, 1H), 5.63 (s, 1H), 3.70 (d, *J* = 12.1 Hz, 1H), 3.51 (d, *J* = 12.1 Hz, 1H), 3.06 (d, *J* = 17.1 Hz, 1H), 2.61 (d, *J* = 17.2 Hz, 1H), 2.34 (br s, 1H), 1.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 135.5, 122.4, 83.5, 68.1, 35.6, 23.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₇H₁₀NaO₃: 165.0522; Found: 165.0525.

Compound 24 (28.4 mg, 0.2 mmol) was dissolved in CH_2Cl_2 (2 mL) and Dess-Martin reagent (170.7 mg, 0.4 mmol) were added to the solution. The solution was stirred at room temperature for 0.5 hours. The reaction mixture was diluted with 5 mL of Et_2O . The solution was filtered through a pad of celite and subsequent washing of the diatomite with 20 mL of Et_2O . The organic fraction was concentrated and the crude aldehyde 25 was used directly in next step without further purification.

A solution of **26** (99 mg, 0.2 mmol) in THF (2 mL) was cooled to -78 °C, and NaHMDS (0.15 mL, 2.0 M in THF, 0.3 mmol) was added. The mixture was stirred for 30 min to obtain an orange solution, and then the aldehyde **25** in 1 mL THF was dropwise added. After stirring for 30 minutes at -78 °C, the reaction was diluted with EtOAc (5 mL), and then the organic layer was removed under reduced pressure, and the crude product was purified by flash chromatography (petroleum ether / EtOAc = 50 : 1) to give **27** (28.2 mg, 51% yield, *Z*,*E* / *E*,*E* = 9 : 1). ¹**H** NMR (400 MHz, **CDCl**₃) δ 6.38 (ddd, *J* = 15.0, 11.6, 1.6 Hz, 1H), 6.24 (t, *J* = 2.9 Hz, 1H), 5.96 (q, *J* = 11.7 Hz, 1H), 3.04 (dt, *J* = 16.6, 2.8 Hz, 1H), 2.94 (dt, *J* = 16.6, 2.5 Hz, 1H), 2.12 (q, *J* = 7.3, 7.1 Hz, 2H), 1.57 (s, 3H), 1.34 – 1.20 (m, 12H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, **CDCl**₃) δ 169.6, 139.5, 135.3, 130.2, 125.4, 122.2, 83.4, 42.2, 32.9, 31.9, 29.4, 29.3, 29.2, 29.1, 28.8, 22.7, 14.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₈NaO₂: 299.1982; Found: 299.1978.

A solution of 27 (10 mg, 0.04 mmol) and I₂ (3.6 mg, 0.01 mmol) in toluene (1 mL) was stirred at room temperature for 1 hours, the reaction mixture was diluted with H₂O (5 mL), and then extracted with EtOAc (3 \times 5 mL). The organic layer was

washed with saturated Na₂S₂O₃ (5 mL) and brine (5 mL) and dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether / EtOAc = 20 : 1) to afford plakolide A **28** as a colorless oil (9.3 mg, 93% yield). ¹H NMR (**400 MHz, CDCl₃**) δ 6.22 (dd, *J* = 15.3, 10.6 Hz, 1H), 6.21 (t, *J* = 2.6 Hz, 1H), 5.98 (dd, *J* = 15.3, 10.2 Hz, 1H), 5.76 (dt, *J* = 15.0, 7.2 Hz, 1H), 5.62 (d, *J* = 15.2 Hz, 1H), 5.61 (t, *J* = 2.6 Hz, 1H), 2.91 (dt, *J* = 16.6, 2.7 Hz, 1H), 2.79 (dt, *J* = 16.6, 2.7 Hz, 1H), 2.06 (q, *J* = 7.3, 7.1 Hz, 2H), 1.51 (s, 3H), 1.32 – 1.15 (m, 12H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (**100 MHz, CDCl₃**) δ 169.8, 137.4, 135.3, 132.2, 129.6, 128.7, 122.3, 82.4, 40.8, 32.7, 31.9, 29.4, 29.2, 29.2, 29.1, 27.1, 22.7, 14.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₈NaO₂: 299.1982; Found: 299.1978. The spectral data of **28** was consistent with that reported in the literature.¹²

Table S15. Comparison of ¹H NMR data of synthetic 28 and natural plakolide A

Н	Natural ¹²	Synthetic	
3	2.89 (dt, <i>J</i> = 16.5, 2.4 Hz, 1H)	2.91 (dt, <i>J</i> = 16.6, 2.7 Hz, 1H)	
	2.77 (dt, <i>J</i> = 16.5, 2.4 Hz, 1H)	2.79 (dt, <i>J</i> = 16.6, 2.7 Hz, 1H)	
5	5.58 (d, <i>J</i> = 15.4 Hz, 1H)	5.62 (d, <i>J</i> = 15.2 Hz, 1H)	
6	6.21 (dd, <i>J</i> = 15.4, 10.4 Hz, 1H)	6.21 (t, <i>J</i> = 15.2 Hz, 1H),	
7	5.97 (dd, <i>J</i> = 15.0, 10.4 Hz, 1H)	5.98 (dd, <i>J</i> = 15.3, 10.2 Hz, 1H)	
8	5.73 (dt, <i>J</i> = 15.0, 6.9 Hz, 1H)	5.76 (dt, <i>J</i> = 15.0, 7.2 Hz, 1H)	
9	2.05 (dt, <i>J</i> = 7.2, 6.9 Hz, 2H)	2.06 (q, J = 7.3, 7.1 Hz, 2H)	
10-15	1.33 (m, 2H)		
	1.15 (m, 10H)	1.32 – 1.15 (m, 12H)	
16	0.85 (t, <i>J</i> = 7.2 Hz, 3H)	0.87 (t, J = 6.6 Hz, 3H)	

Table S16. Comparison of ¹³C NMR data of synthetic 28 and natural plakolide A

17 2 3 5 7	0				
4	>∽		13		15
0 ¹ 0 ^{Me⁶}	8	10	12	14	` 16

С	Natural ¹²	Synthetic
1	169.8	169.8
2	135.4	135.3
3	40.8	40.8
4	82.4	82.4
5	132.2	132.2
6	129.7	129.6
7	128.7	128.7
8	137.4	137.4
9	32.7	32.7
10	29.4	29.4
11	29.3	29.2
12	29.2	29.2
13	29.1	29.1
14	31.9	31.9
15	22.7	22.7
16	14.1	14.1
17	122.3	122.3
18	27.1	27.1

7. References

- M. Gao, Y. Luo, Q. Xu, Y. Zhao, X. Gong, Y. Xia and L. Hu, *Angew. Chem. Int.* Ed., 2021, 60, 19813.
- M. Gao, Y. Zhao, C. Zhong, S. Liu, P. Liu, Q. Yin and L. Hu, Org. Lett., 2019, 21, 5679.
- 3. B.Xu and U. K. Tambar, Angew. Chem., Int. Ed., 2017, 56, 9868.
- 4. A. A. Khan, S. H. Chee, B. L. Stocker and Mattie S. M. Timmer, *Eur. J. Org. Chem.*, 2012, **5**, 995.
- 5. B. Xu and U. K. Tambar, J. Am. Chem. Soc., 2016, 138, 12073.
- P. A. Peixoto, A. Boulangé, S. Leleu and X. Franck, *Eur. J. Org. Chem.*, 2013, 16, 3316.
- 7. Y. Xiong, J. Weng and G. Lu, Adv. Synth. Catal., 2018, 360, 1611.
- 8. C. Zhong, Q. Yin, Y. Zhao, Q. Li and L. Hu, Chem. Commun., 2020, 56, 13189.
- 9. I. P. Singh, K. E. Milligan and W. H. Gerwick, J. Nat. Prod., 1999, 62, 1333.
- M. Mohideen, S. Zulkepli, N. K. Nik-Salleh, M. Zulkefeli, J. F. F. A. Weber and A. F. M. M. Rahman, *Arch. Pharm. Res.*, 2013, 36, 812.
- T. Yoshida, S. Yamauchi, R. Tago, M. Maruyama, K. Akiyama, T. Sugahara, T. Kishida and Y. Koba, *Biosci. Biotechnol. Biochem.*, 2008, 72, 2342.
- 12. S. P. Gunasekera, R. A. Isbrucker, R. E. Longley, A. E. Wright, S. A. Pomponi and J. K. Reed, *J. Nat. Prod.*, 2004, **67**, 110.

8. NMR Spectra for New Compounds

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S57

-172.45 138.96 138.199 138.199 138.199 138.199 138.199 128.199 128.199 -76.68 -77.145 -77.145 -77.145 -77.145 -77.100 -70.64 -61.16 -14.21

¹³H NMR (400 MHz, CDCl₃)

 $\mathcal{DCl}_{3})$

$\begin{array}{c} -7.26 \\ 6.73 \\ 6$

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppn)

S78

¹H NMR (400 MHz, CDCl₃) 10^{-0} 10^{-0} 11^{-1} 11^{-1}

-163.88 -144.61 -135.71 -135.71 -133.10 -121.86.33 -121.65

7.42

- 163.86 - 145.69 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 140.12 - 145.69 - 145.69 - 145.69 - 145.69 - 145.69 - 145.69 - 140.12 - 120.89 - 120.

0.0000 0.0000 0

S89