Electronic Supporting Information for

Promote doping efficiency and photoluminescence quantum yield of Mn doped perovskite nanocrystals via two-step hot-injection

Yacong Li, Chuying Wang, Guangcai Hu, Wen Meng, Shiqi Sui and Zhengtao Deng*

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
Email: dengz@nju.edu.cn

EXPERIMENTAL SECTION

Chemicals. Cesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}, 99 \%\right)$, Lead acetate trihydrate ($\mathrm{PbAc}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 99.5 \%$), Manganese acetate tetrahydrate ($\mathrm{MnAc}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 99.0 \%$), 1-octadecene (ODE, 90%), Oleic acid (OA, 85\%), Oleylamine (OLA, 90\%), Hydrochloric acid ($\mathrm{HCl}, 36 \%$), Hydrobromic acid ($\mathrm{HBr}, 48 \%$) and toluene were purchased from Aldrich. All chemicals were used without further purification.

Two-step hot-injection synthesis of Mn -doped $\mathrm{CsPbCl}_{3} \mathrm{NCs}$. Typically, x mmol $\mathrm{MnAc}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($x=0.1,0.3,0.5,0.7,0.9$), $1-x \mathrm{mmol}_{\mathrm{mbAc}}^{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 5 \mathrm{~mL}$ OA and 40 mL ODE were added to a 100 mL three neck round bottom flask and degassed 1 hour at $120^{\circ} \mathrm{C}$. The temperature was increased to $180-210{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere and 4 mL oleylammonium halide (OLA-HX) precursors (pre-prepared by the same protocol reported by Pradhan et al. Angew. Chem., Int. Ed., 2019, 58 , 5552) was injected immediately. Then injecting 6 mL Cs-oleate (pre-prepared by the same protocol reported by Protesescu et al. Nano Lett. 2015, 15, 3692) after 30 second, the flash was cooled to room temperature naturally. The NCs were collected by $8000 \mathrm{r} / \mathrm{min}$ centrifugation for 5 minutes and then dispersed in toluene. The gram-scale Mn -doped CsPbCl_{3} NCs were synthesized by enlarging all the reaction precursors 10 times. Mn-doped $\mathrm{CsPb}(\mathrm{Cl} / \mathrm{Br})_{3} \mathrm{NCs}$ were synthesized by injecting the mixture of OLA- HBr and $\mathrm{OLA}-\mathrm{HCl}$ at a volume ratio of 0.6 to 1 .

Fabrication of LEDs. Mn -doped $\mathrm{CsPbCl}_{3} \mathrm{NCs}$ were well mixed with 25% polystyrene (PS)toluene solution, respectively. Then the mixture was coated on a 375 nm LED chip and dried 1 h in the air to obtain an orange LED. White LED was constructed by the same process with Mn -doped $\mathrm{CsPb}(\mathrm{Cl} / \mathrm{Br})_{3} \mathrm{NCs}$.

Characterization. Powder X-ray diffraction (XRD) was carried out by a Bruker AXS D8 X-ray diffractometer equipped with monochromatized $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.5418$ A). The diffraction pattern was scanned over the angular range of 10-60 degrees (20) with a step size of 0.05. Transmission electron microscopy (TEM) was obtained by using a FEI Tecnai G2 F20
electron microscope operating at 200 kV . Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were performed on a JEOL JSM-7800F at 10 kV . Inductively coupled plasma optical emission spectrometry (ICP-OES) was performed with an OPTIMA 3300 DV analyzer (PerkinElmer). X-band electron paramagnetic resonance measurements were performed on Bruker EMX PLUS(PPMS) with microwave frequency 9.85 GHz at room temperature. Ultraviolet and visible absorption (UV-vis) spectra were measured by a Shimadzu UV-3600 plus spectrophotometer. Photoluminescence (PL) and the absolute photoluminescence quantum yields (PLQYs) were measured using a Horiba PTI Quanta Master 400 steady-state fluorescence system with an integrated sphere and double checked with a Hamamatsu Photonics Quantaurus-QY (model:C11347-11) under ambient conditions. Time-Resolved Photoluminescence Lifetime was detected by Edinburgh FLS920 at room temperature.

Fig. S1 a, b) HRTEM image and its FFT pattern of $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3} \mathrm{NCs}$ with nominal Mn content of 10 mol\%. c, d) HRTEN images of $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3}$ NCs with nominal Mn content of $90 \mathrm{~mol} \%$. The black particles around the edges and corners of NCs been Pb^{0} caused by electron beam damage (ACS Nano 2017, 11, 2, 2124-2132; Chem. Mater. 2020, 32, 5410-5423).
(a)

(c)
(b)
(d)

Fig. S2 Energy dispersive X-ray (EDX) spectra of the $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3} \mathrm{NCs}$ synthesized with $\mathrm{MnAc}_{2}: \mathrm{PbAc}_{2}$ molar feed ratios of (a) 0.1: 0.9 (b) $0.3: 0.7$ (c) $0.5: 0.5$ (d) $0.7: 0.3$ (e) 0.9: 0.1 .

Fig. S3 Plots of (Ahu) $)^{2}$ vs photon energy (hu) of the $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3} \mathrm{NCs}$ synthesized with $\mathrm{MnAc}_{2}: \mathrm{PbAc}_{2}$ molar feed ratios of (a)0.1:0.9 (b) 0.3:0.7 (c) 0.5:0.5 (d)0.7:0.3 (e)0.9:0.1.

Figure S4. (a) Excitation spectrum and (b) Mn emission intensity relative to exciton emission intensity of the $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3} \mathrm{NCs}$ with different nominal Mn content (mol\%).

Fig. S5 Gram-scale $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3} \mathrm{NCs}$ synthesized with $\mathrm{MnAc}_{2}: \mathrm{PbAc}_{2}$ molar feed ratios of 3:7.

Fig. S6 PLQYs of $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3} \mathrm{NCs}$ synthesized with $\mathrm{MnAc}_{2}: \mathrm{PbAc}_{2}$ molar feed ratios of (a)0.1:0.9 (b) 0.3:0.7 (c) 0.5:0.5 (d)0.7:0.3 (e)0.9:0.1. Each sample was repeated four times, and PLQYs were calculated the average of four times tests.

Fig. S7 (a) UV-vis absorption and PL spectra and (b) Powder XRD patterns of Mn-doped $\mathrm{CsPb}(\mathrm{Cl} / \mathrm{Br})_{3} \mathrm{NCs}$.

Fig. $\mathbf{s 8}$ PLQY of Mn -doped $\mathrm{CsPb}(\mathrm{Cl} / \mathrm{Br})_{3} \mathrm{NCs}$.

Tab. S1 The PL decay curves of Mn^{2+} related emission from $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{x} \mathrm{Cl}_{3} \mathrm{NCs}$ were fitted by double exponential function (eqs 1):

$$
A(t)=A_{0}+A_{1} \exp \left(-t / \tau_{1}\right)+A_{2} \exp -\left(t / \tau_{2}\right) \quad(\text { eqs } 1)
$$

The average lifetimes ($\tau_{\text {ave }}$) were calculated by eqs 2 :
$\tau_{\text {ave }}=\left(A_{1} \tau_{1}{ }^{2}+A_{2} \tau_{2}{ }^{2}\right) /\left(A_{1} \tau_{1}+A_{2} \tau_{2}\right) \quad$ (eqs 2)

The fitting results were as follows:

Pb to Mn molar feed ratio	A_{1}	$\tau_{1}(\mathrm{~ns})$	A_{2}	$\tau_{2}(\mathrm{~ns})$	$\tau_{\text {ave }}(\mathrm{ms})$	R^{2}
$0.9: 0.1$	691.06	423815.16	5364.93	1155975.66	1.12	0.9996
$0.7: 0.3$	969.24	304296.67	5081.68	1072498.28	1.03	0.9996
$0.5: 0.5$	1320.19	389006.18	4611.50	1075653.64	1.01	0.9996
$0.3: 0.7$	2094.22	231726.21	3876.48	905463.16	0.82	0.9995
$0.1: 0.9$	2429.65	215203.00	3511.11	903338.72	0.80	0.9995

Tab. S2 EDS elements analysis results of $\mathrm{CsPb}_{1-\mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{Cl}_{3} \mathrm{NCs}$ synthesized with different MnAc_{2} :
PbAc_{2} molar feed ratios.

Mn to Pb molar feed ratio	$\mathrm{Cs}: \mathrm{Pb}: \mathrm{Mn}: \mathrm{Cl}$	$\mathrm{Mn} /(\mathrm{Mn}+\mathrm{Pb})$
$0.1: 0.9$	$1: 1.16: 0.02: 3.18$	0.017
$0.3: 0.7$	$1: 0.84: 0.16: 3.15$	0.160
$0.5: 0.5$	$1: 0.67: 0.29: 2.71$	0.302
$0.7: 0.3$	$1: 0.32: 0.45: 2.86$	0.584
$0.9: 0.1$	$1: 0.07: 0.54: 2.46$	0.885

