Supporting Information

Borole-Based Half-Sandwich Complexes of Germanium and Tin

Julijan Sarcevic ${ }^{\text {b }}$, Tobias Heitkemperab \& Christian P. Sindlingera,b*

${ }^{\text {a }}$ Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
${ }^{\text {b }}$ Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany

Table of Contents
Experimental Details 3
General Information 3
Mass spectrometry 3
NMR spectroscopy 3
Starting materials and reagents 3
Synthesis and Analytical Data 5
Compound 1 5
Analytical Data for Compound 1 5
Crystal structure of Compound 1 6
Spectra Plots for Compound 1 7
Compound 2 10
Analytical Data for Compound 2 10
Crystal structure of Compound 2 11
Spectra Plots for Compound 2 11
Compound 3a 14
Analytical Data for Compound 3a 14
Crystal structure of Compound 3a 14
Spectra Plots for Compound 3a 16
Compound 3b 19
Analytical Data for Compound 3b 19
Crystal structure of Compound 3b 20
Spectra Plots for Compound 3b 21
Compound 4a 24
Analytical Data for Compound 4a 24
Crystal structure of Compound 4 a 24
Spectra Plots for Compound 4a 26
Compound 4b 29
Analytical Data for Compound 3b 29
Crystal structure of Compound 4 b 30
Spectra Plots for Compound 4b 31
Compound 5b 34
Analytical Data for Compound 5b 34
Crystal structure of Compound 5b 35
Spectra Plots for Compound 5b 35
Compound 6b 38
Analytical Data for Compound 6b 38
Crystal structure of Compound 6b 39
Spectra Plots for Compound 6b 39
Crystallographic Details 44
General Data Acquisition and Processing 44
Crystallographic and Refinement Details 1 44
Crystallographic and Refinement Details 2 44
Crystallographic and Refinement Details 3a 44
Crystallographic and Refinement Details 3b 45
Crystallographic and Refinement Details 4a 45
Crystallographic and Refinement Details 4b 45
Crystallographic and Refinement Details 5b 46
Crystallographic and Refinement Details 6b 46
Tabulated Crystallographic Details $1,2,3 a, 3 b, 4 a, 4 b, 5 b$ and $6 b$ 47
Computational Details 48
Structure Optimisation, Frequency Calculation and Electronic Structure Analyses 48
QTAIM and ELF (Electron Localization Function) 49
Computational assessment of ${ }^{119}$ Sn NMR shifts 49
XYZ-coordinates of optimised structures 51
Literature 55

Experimental Details

General Information

All manipulations requiring handling under inert conditions were carried out under argon atmosphere using standard Schlenk techniques or an MBraun Glovebox with an Ar atmosphere. Benzene was obtained from an MBraun SPS and stored over molecular sieves, toluene and ether were distilled from sodium. Dichloromethane was distilled from CaH_{2}. Hexane and pentane were distilled from Na / K alloy. THF was distilled from potassium. Dichloromethane- d_{2} was distilled from CaH2, THFd_{8} was dried over LiAlD_{4} and vacuum transferred, benzene- d_{6} was distilled from potassium, toluene- d_{8} was distilled from potassium and solvents were degassed and stored in a glove box. All solvents were routinely degassed three times using freeze-pump-thaw cycles.

Elemental analysis was performed by the Analytisches Labor, Institut für Anorganische Chemie, Universität Göttingen

Mass spectrometry

Mass spectra were recorded by the Zentrale Analytik within the Faculty of Chemistry, Göttingen applying a Liquid Injection Field Desorption Ionisation-technique (LIFDI) on a JEOL accuTOF instrument with an inert-sample application setup under argon atmosphere. The injection capillary was washed several times with dry, distilled and inertly injected toluene before the samples were injected. Samples usually had a concentration of $1-2 \mathrm{mmol} / \mathrm{L}$ in toluene and were prepared in a glovebox. When appropriate, isotopic patterns have been simulated using the web service provided by ww.cheminfo.org.

NMR spectroscopy

NMR spectra were recorded with either a Bruker Avance III 400 NMR spectrometer equipped with a 5 mm BBFO ATM probe head and operating at $400.13 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 100.61 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right), 128.38 \mathrm{MHz}\left({ }^{11} \mathrm{~B}\right)$ and $376.45 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$ along with a variable temperature set-up or a Bruker Avance Neo 400 NMR spectrometer with a CryoProbeProdigy BB ATM probe head operating at $400.25 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100.65 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ or a Bruker AVIII HD 500 NMR spectrometer with a CryoProbeProdigy ATM probe head and operating at $500.25 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 125.80 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right), 160.50 \mathrm{MHz}\left({ }^{11} \mathrm{~B}\right), 186.19 \mathrm{MHz}\left({ }^{119} \mathrm{Sn}\right)$, and $99.37 \mathrm{MHz}\left({ }^{29} \mathrm{Si}\right)$ or a Bruker Avance II 300 NMR operating at $300.13 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $116.64 \mathrm{MHz}\left({ }^{7} \mathrm{Li}\right)$. Chemical shifts are reported in δ values in ppm relative to external $\mathrm{Me}_{4} \mathrm{Si}$ and, if not otherwise stated, referenced using the chemical shift of the solvent ${ }^{2} \mathrm{H}$ lock resonance frequency and $\Xi=19.867187 \%$ for ${ }^{29} \mathrm{Si}, \Xi=38.863797 \%$ for ${ }^{7} \mathrm{Li}, \equiv=32.083974 \%$ for ${ }^{11} \mathrm{~B}$, and $\Xi=37.290632 \%$ for ${ }^{119} \mathrm{Sn} .{ }^{11} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra have been referenced on specific values for the respective solvent signal. The proton and carbon signals were assigned where possible via a detailed analysis of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HSQC},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR spectra.

Young-type teflon-valve borosilicate NMR tubes have been used throughout the study.

Starting materials and reagents

$1,3,4-\left(2^{\prime}, 5^{\prime}-t \mathrm{Bu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)-2,4-\left(\mathrm{SiMe}_{3}\right)\right.$-Borole A was prepared as recently reported. ${ }^{2}$ tert-Butyllithium solutions (1.6 M in pentane) were obtained from Sigma Aldrich und used within two month from purchase.
$\mathrm{Cp}{ }^{*} \mathrm{GeCl}$ was prepared as previously described in the literature. ${ }^{3}$

3,5-Me $\mathbf{M}_{\mathbf{2}}\left(\mathrm{C}_{6} \mathrm{H}_{\mathbf{3}}\right)$-CC-SiMe $\mathbf{3}_{\mathbf{3}}(\mathrm{Xyl}-\mathrm{CC}-T M S)$ was prepared along modified literature procedures. ${ }^{2,4}$ A 1000 mL Schlenk-flask was charged with a mixture of palladium(II)acetate ($0.62 \mathrm{~g}, 2.8 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$), copper(I)iodide ($0.67 \mathrm{~g}, 3.5 \mathrm{mmol}, 0.6 \mathrm{~mol} \%$) and triphenylphosphine ($2.85 \mathrm{~g}, 10.9 \mathrm{mmol}, 2 \mathrm{~mol} \%$). Bromo-3,5-dimethylbenzene ($100 \mathrm{~g}, 540.34 \mathrm{mmol} .1 \mathrm{eq}$.) and triethyl amine (500 mL) were added and the resulting suspension was degassed one time using the freeze-pump-thaw-method. After the addition of trimethylsilyl acetylene ($85 \mathrm{~mL}, 594.37 \mathrm{~mL}, 1.1 \mathrm{eq}$.) the suspension was stirred overnight at $80-90^{\circ} \mathrm{C}$. A greyish solid precipitated and was filtered off and washed with hexane until the hexane washes remained colorless. The solvents were removed in vacuo giving a dark brown liquid which was subsequently purified via vacuum distillation (1.0 $\cdot 10-3 \mathrm{mbar}$, $74^{\circ} \mathrm{C}$ head temperature, $120^{\circ} \mathrm{C}$ oil bath). (3,5-Dimethylphenyl)trimethylsilyl acetylene was obtained as a yellow liquid $(101.86 \mathrm{~g}, 503.34 \mathrm{mmol}, 93 \%)$. NMR-spectroscopic features are found identical to those reported previously. ${ }^{4}$
${ }^{1} \mathrm{H}\left(300.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}, \mathrm{CHCl}_{3}\right.$ at 7.26 ppm$): 7.10(\mathrm{~s}, 2 \mathrm{H}, o-H), 6.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{p}-\mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}, m-\mathrm{CH} 3), 0.24(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS})$.

1,4-Diiodo-1,4-TMS \mathbf{Z}_{2}-2,3-Xyl2-buta-1,3-diene was prepared along modified literature procedures. ${ }^{2}$ Under inert conditions, a 1000 mL two-necked Schlenk-flask was charged with freshly grinded $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(24.60 \mathrm{~g}, 84.15 \mathrm{mmol}, 0.57 \mathrm{eq}$.) THF (500 mL , SPS grade) was added. The resulting solution was then cooled to $-78^{\circ} \mathrm{C}$. n-Butyllithium ($66 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 1.1 eq .) was added dropwise over a period of 25 min to the cold solution. The dropping funnel was rinsed with THF ($10 \mathrm{~mL}, \mathrm{SPS}$ grade) and the resulting yellow suspension was continuosly stirred for 1.5 h at $-78^{\circ} \mathrm{C}$. (3,5-Dimethylphenyl) trimethylsilyl acetylene (30 g , $148 \mathrm{mmol}, 1 \mathrm{eq}$.) was added dropwise and the reaction was subsequently allowed to warm to ambient temperature overnight. The resulting orange suspension was cooled to $0^{\circ} \mathrm{C}$ and copper(I)chloride ($8.26 \mathrm{~g}, 83.5 \mathrm{mmol}, 0.56 \mathrm{eq}$.) was added. A solution of iodine ($39.74 \mathrm{~g}, 156.6 \mathrm{mmol}, 1.05 \mathrm{eq}$.) in THF (60 mL , SPS grade) was added over a period of 45 min via dropping funnel. The flask was wrapped with aluminium foil and the dark suspension was stirred for three days at room temperature. A solution of sodium dithionite (ca. 5 g in $150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) and diethyl ether (100 mL) were added. The phases were separated and the aqueous phase was extracted with diethylether ($2 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and filtered. After the removal of the solvents in vacuo, the viscous suspension was diluted in hexane and then filtered through celite. The celite pad was rinsed with hexane until the solvent running through turned colorless. The orange filtrate was concentrated to brownish oil which slowly started to crystallize. The oil was stored at $-30^{\circ} \mathrm{C}$ overnight. The dark green supernatant was removed and slightly greenish crystals were recrystallized from acetone ($50 \mathrm{~mL}, \mathrm{p}$. a. grade). The supernatant was removed and the crystals were then washed with portions of cold $\left(-25^{\circ} \mathrm{C}\right)$ acetone. After drying under reduced pressure, the 1,4 -Diiodo-1,4-TMS 2 - 2,3 -Xyl Kl_{2}-buta- 1,3 -diene was obtained as colorless crystals ($27.83 \mathrm{~g}, 42.26 \mathrm{mmol}$, 57%). Note: The aluminium foil was used to protect the reaction from light. We observed that if the nearly colorless product was stored under daylight it increasingly darkens. The product has an unpleasant odor.
${ }^{1} \mathrm{H}\left(300.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 6.90(\mathrm{~s}, 2 \mathrm{H}, p-\mathrm{H}), 6.76(\mathrm{~s}, 4 \mathrm{H}, o-\mathrm{H}), 2.22\left(\mathrm{~s}, 12 \mathrm{H}, m-\mathrm{CH}_{3}\right),-0.04(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ solvent signal at 128.0 ppm): $163.4(\mathrm{Xy}-\mathrm{C})$, 139.3 ($m-\mathrm{C}_{a r}$ or ipso- $\mathrm{C}_{\text {ar }}$), 137.0 (m - $\mathrm{C}_{\text {ar }}$ oder ipso$C_{a r}$), 129.8 ($p-C_{a r}$), 127.4 (o- $C_{a r}$), 112.0 ($C-1$), 21.4 ($m-\mathrm{CH}_{3}$), 1.1 (TMS).

Elemental Analysis: $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{l}_{2} \mathrm{Si}_{2}\right.$) calcd C $47.42, \mathrm{H} 5.51, \mathrm{I} 38.54$, Si 8.53, observed C $47.45, \mathrm{H} 5.51$.
HR-ESI-MS: calcd exact mass: $658.0445 \mathrm{~m} / \mathrm{z}$, observed m / z : $676.0783\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 681.0337$ [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$, calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{l}_{2} \mathrm{Si}_{2}\right]^{+}$: $659.0523 \mathrm{~m} / \mathrm{z}$, observed m/z: 659.0518 .

1,4-Dilithio-1,4-TMS \mathbf{T}_{2} - $\mathbf{2}, \mathbf{3}-$ Xyl $_{2}$-buta-1,3-diene was prepared along modified literature procedure. ${ }^{2}$ In a Schlenk-flask, 1,4-Diiodo-1,4-TMS 2 -2,3-Xyl2-buta-1,3-diene ($5.05 \mathrm{~g}, 7.67 \mathrm{mmol}, 1$ eq.) was dissolved in diethyl ether ($35 \mathrm{~mL}, \mathrm{SPS}$ grade) and the solution is cooled to $-78^{\circ} \mathrm{C}$. A solution of tert-Butyllithium ($19.5 \mathrm{~mL}, 1.6 \mathrm{M}$ in pentane, $31.2 \mathrm{mmol}, 4.06$ eq (2.03 eq per iodineatom)) was slowly added via syringe and the resulting red suspension was allowed to warm to ambient temperature overnight. The solvents were thoroughly removed in vacuo and the solid residue was suspended in hexane (20 mL). The suspension was filtered through a filter canula through a pad of glass fiber (Whatman GF/A). The residual solid extracted twice with further amounts of hexane until the filtrate was only of pale orange colour. The dark red filtrate was concentrated under reduced pressure until dryness and transferred into a glovebox. The solid was again suspended in hexane (10 mL , distilled) and then filtered through a syringe filter equipped with a thin plug of glass fiber (Whatman GF/B) to remove remaining traces of Lil. The solvent was removed in vacuo to yield 1,4 -Dilithio-1,4-TMS ${ }_{2}$ - 2,3 - Xyl_{2}-buta- 1,3 -diene as an orange crystalline solid ($3.003 \mathrm{~g}, 7.174 \mathrm{mmol}, 94 \%$).
${ }^{1} \mathrm{H}\left(300.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 6.74(\mathrm{~s}, 4 \mathrm{H}, \mathrm{o}-\mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}), 2.12\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{m}-\mathrm{CH}_{3}\right), 0.06(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$.
 $C_{a r}$ or ipso- $C_{a r}$), 126.7 (two signals superimposed, $p-C_{a r}$ and $o-C_{a r}$), $21.3\left(m-\mathrm{CH}_{3}\right), 0.8$ (TMS).
${ }^{7} \mathrm{~L} i\left\{{ }^{1} \mathrm{H}\right\}\left(116.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): ~ 2.13$.
Elemental Analysis: ($\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Li}_{2} \mathrm{Si}_{2}$) calcd C 74.60, H 8.67, Li 3.32, Si 13.42, observed C 73.67, H 8.90.
LIFDI-MS: calcd exact mass: $418.3 \mathrm{~m} / \mathrm{z}$, observed $\mathrm{m} / \mathrm{z}: 407.7$ (protonated butadiene).

Synthesis and Analytical Data

Compound 1

A 500 mL Schlenk-flask was charged with dilithio butadiene ($3.212 \mathrm{~g}, 7.67 \mathrm{mmol}, 1 \mathrm{eq}$) and hexane (250 mL , SPS grade) and the dark red solution was cooled to $0{ }^{\circ} \mathrm{C}$. A stock solution of boron trichloride ($7.7 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 1 eq.) was further diluted with additional hexane (90 mL) and subsequently added dropwise over a period of 25 min to the vigorously stirred red solution which then quickly turns into an orange suspension. After the addition was completed, the dark red suspension was stirred over night at room temperature. The solvent was removed under reduced pressure and thoroughly dried under vacuum and the flask containing an orange brown solid was transferred into a glovebox. The residue was again suspended in hexane (15 mL , distilled) and filtered through a syringe filter equipped with a thin plug of glass fiber (Whatman GF/B). Few drops of diethyl ether were added to the dark red filtrate which was then stored at $-35^{\circ} \mathrm{C}$ over night upon which a thick sponge of fine crystal needles of the $\mathrm{Et}_{2} \mathrm{O}$-adduct to chloroborole $\mathbf{1}$ form. The sponge of fine crystals was isolated by filtration and washed with small portions of cold $\left(-35^{\circ} \mathrm{C}\right)$ pentane. The mother liquors were then again cooled to $-35^{\circ} \mathrm{C}$ with another drop of diethyl ether for a further crop of crystals. This process was repeated until no worthwhile amount of crystalline material could be isolated. The combined crystalline yields were then dissolved hexane and solvents/volatiles were subsequently removed to eliminate coordinating ether by co-evaporation. In case ether was not entirely removed, the residue was again dissolved in hexane and the co-evaporation repeated. The chloroborole 1 is finally obtained as a deep red crystalline material ($1.605 \mathrm{~g}, 3.56 \mathrm{mmol}, 46 \%$).

Note: (1) In our hands chloroborole 1 did not crystallize reliably or in satisfactory yields from crude reaction mixtures and only the detour of isolating the ether adduct for an initial purification yields satisfactory access. Sometimes addition of $\mathrm{Et}_{2} \mathrm{O}$ for crystallization purposes lead to an instant precipitation of crystalline material. (2) In our attempts to increase the yield we noted a distinct dependency on concentrations of the solutions with more dilute solutions leading to higher yields. However, further extensive further dilution from the conditions described above did not result in improvements.

Analytical Data for Compound 1

NMR

${ }^{1} \mathrm{H}\left(300.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 6.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}), 6.55(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}), 1.96\left(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{CH}_{3}\right), 0.15(\mathrm{~s}, 18 \mathrm{H}$, TMS).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ solvent signal at 128.0 ppm$): 181.3\left(\mathrm{C}_{\beta}\right), 139.3\left(\right.$ ipso- $\left.\mathrm{C}_{a r}\right), 136.6\left(m-\mathrm{C}_{a r}\right), 135.4\left(\mathrm{C}_{\alpha}\right), 129.5(p-$ $\left.C_{a r}\right), 126.1\left(o-C_{a r}\right), 21.1\left(m-\mathrm{CH}_{3}\right), 1.0$ (TMS).
${ }^{29}$ Si-INEPT (79.49 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): -8.9.
${ }^{11} \mathbf{B}\left(128.37 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 69.6\left(\omega_{1 / 2}=910 \mathrm{~Hz}\right)$.

Elemental Analysis: $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BClSi}_{2}\right)$ calcd C 69.24, H 8.05, B 2.40, Cl 7.86, Si 12.45, observed C 68.89, H 8.31.

LIFDI-MS: calcd exact mass: $450.2 \mathrm{~m} / \mathrm{z}$, observed $\mathrm{m} / \mathrm{z}: 451.2$ according to isotope pattern in agreement with hydrolysis product after chloride loss $\left[\mathrm{M}-\mathrm{Cl}+2\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$, around $\mathrm{m} / \mathrm{z} 882.3$ further dimeric hydrolysis aggregates] ${ }^{+}$.

UV-vis: $\lambda_{\text {max }}$ at 454 nm (hexane)

Crystal structure of Compound 1

$\mathbf{1}$ crystallised from solutions in hexane in a freezer $\left(-35^{\circ} \mathrm{C}\right)$. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP plot of the molecular structure of 1. Atomic displacement parameters are drawn at 50% probability level. Hydrogen atoms are omitted for the sake of clarity. Selected bond length in Å: B1-C1 1.576(1), C1-C2 1.360(2), C2-C3 1.536(1), C3-C4 1.363(2), C4-B1 1.577(2), B1-Cl1 1.757(1). The structure was deposited with the CCSD.

Spectra Plots for Compound 1

1H-NMR-spectrum of chloroborole 1 in C6D6 \# referenced to C6D5H at 7.15 ppm

$\stackrel{\circ}{\square}$

Date	20210603
Time ${ }^{-}$	18.47 h
INSTRUM	UM spect
PROBHD	HD Z104275 0147 (
PULPROG	ROG zg30
	65536
SOLVENT	ENT C6D6
	${ }_{2}^{8}$
DS	
SWH	6602.113 Hz
FIDRES	S $\quad 0.201480 \mathrm{~Hz}$
	4.9632597 sec
RG	207.66
DW	75.733 usec
DE	6.50 usec
TE	299.5 K
D1	0.10000000 sec
TD0	1
SFO1	300.1315007 MH
NUC1	
P1	11.60 usec
PLW1	10.000
F2 - - r rocessing parameters S1 65536 SF 300.1300000 MHz WDW EM SSB 0 LB 0.20 Hz GB 0 PC 1.00	

13C\{1H\}-NMR-spectrum of chloroborole 1 in C6D6 \# referenced to C6D6 at 128.0 ppm

11B(background suppressed)-NMR spectrum of chloroborole 1 in C6D6

29Si-INEPT-NMR spectrum of chloroborole 1 in C6D6

Compound 2

Molecular Weight: 451,00

Molecular Weight: 539,01

In a glove box, lithium chips were freshly rolled out and some of the resulting flakes of thin Li-foil ($12.1 \mathrm{mg}, 1.76 \mathrm{mmol}$, 2.1 equiv.) were added into a red solution of chloroborole 1 ($396.8 \mathrm{mg}, 0.880 \mathrm{mmol}, 1$ equiv.) in diethyl ether (10 mL , distilled) and the mixture was then stirred over night at ambient temperature. The ether was removed from the brown suspension under reduced pressure and the brown residue was suspended in toluene (2 mL , distilled). The suspension was subsequently filtered through a syringe filter equipped with a thin plug of glass fiber (Whatman GF/B), and the filter was rinsed with additional toluene (1 mL). The toluene was removed in vacuo and the brown residue was then washed with small amounts of pentane until the residue turns into a slightly yellowish powder, which was subsequently dried under reduced pressure to give the ether solvate of lithium borolediide ($213.5 \mathrm{mg}, 0.396 \mathrm{mmol}, 45 \%$). Crystals can be obtained from toluene.

Note: When thoroughly dried the dimeric adduct with one molecule of ether per borolediide is reliably obtained. When drying to short, the products contain between 1 and 2 equiv. of ether per borole, which affects on the NMR chemical shifts.

Analytical Data for Compound 2

NMR:
${ }^{1} \mathrm{H}\left(400.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 6.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{o}-\mathrm{H}\right.$ and $p-\mathrm{H}$, superimposed), $3.10\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 8 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 12 \mathrm{H}, m-\mathrm{CH}_{3}\right), 0.91\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.38(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ solvent signal at 128.0 ppm): 143.4 (ipso- $C_{a r}$), $135.8\left(m-C_{a r}\right), 130.0$ (o- $C_{a r}$ or $p-C_{a r}$), ca. 128.0 $\left(C_{6}\right.$, superimposed by solvent signal), $126.3\left(o-C_{a r}\right.$ or $\left.p-C_{a r}\right), 99.4\left(C_{\alpha}\right), 66.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 21.4\left(m-\mathrm{CH}_{3}\right), 14.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.3(\mathrm{TMS})$.
${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}\left(116.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):-6.9$.
${ }^{11} \mathbf{B}\left(128.37 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 31.6\left(\omega_{1 / 2}=438 \mathrm{~Hz}\right)$.
${ }^{29}$ Si-INEPT (79.49 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): (79.49 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): -12.16.

Elemental Analysis: $\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{BClLi}_{2} \mathrm{OSi}_{2}\right)$ calcd C $66.85, \mathrm{H} 8.60, \mathrm{~B} 2.01, \mathrm{Cl} 6.58$, Li $2.58, \mathrm{O} 2.97, \mathrm{Si} 10.42$, observed $\mathrm{C} 66.87, \mathrm{H}$ 8.99.

Crystal structure of Compound 2

$\mathbf{2}$ crystallised from solutions in toluene in a freezer $\left(-35^{\circ} \mathrm{C}\right)$. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP of the solid state molecular structure of the dimeric aggregate [$\left.\mathrm{Li}_{2}\left(\mathrm{OEt}_{2}\right)\right][2]$. ADP drawn at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths in Å: B1-Cl1 1.868(2), Li2-Cl1' 2.373(3), Li1-Ct 1.825, Li2-Ct 1.854 and Table 1 of the manuscript. The structure was deposited with the CCSD.

Spectra Plots for Compound 2
1H-NMR-spectrum of compound $\mathbf{2}$ in C6D6 \# referenced to C6D5H at 7.15 ppm

13C\{1H\}-NMR-spectrum of compound $\mathbf{2}$ in C6D6
\# referenced to C6D6 at 128.0 ppm

11B-NMR spectrum (background suppressed) of compound $\mathbf{2}$ in C6D6

29Si－INEPT－NMR spectrum of compound $\mathbf{2}$ in C6D6

91「てレー

| 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compound 3a

In a glovebox, compound $\left[\mathrm{Li}\left(\mathrm{OEt}_{2}\right)\right]_{2}\left[\mathrm{~A}-\mathrm{Ph}^{*}\right]$ ($50.3 \mathrm{mg}, 0.054 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry and degassed diethyl ether $(1 \mathrm{~mL})$. This solution was added to a suspension of $\mathrm{GeCl}_{2} \cdot 1,4$-dioxane ($12.5 \mathrm{mg}, 0.054 \mathrm{mmol}, 1 \mathrm{eq}$) in dry and degassed diethyl ether (1.5 mL). The suspension was stirred for ten minutes at ambient temperature and the solvent of the reaction mixture was afterwards removed under reduced pressure. The resulting solid was extracted with dry and degassed hexane $(1 \times 1 \mathrm{~mL}$, $2 \times 0.5 \mathrm{~mL}$) and the solvent of the colourless extract was once again removed under reduced pressure. Compound $3 \mathbf{a}$ (43.8 $\mathrm{mg}, 0.052 \mathrm{mmol}, 96 \%$) was obtained as a colourless solid in a purity of approximately 95% according to NMR analysis.

Note: Further purification by means of quantitative crystallization remained unsuccessful due to the high solubility of compound 3a. Crystals suitable for x -ray crystallography were grown from a saturated hexane solution by slow evaporation of the solvent at ambient temperature.

Analytical Data for Compound 3a

NMR:

${ }^{1} \mathrm{H}\left(400.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 7.68\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{H}_{\text {ar1 }}\right), 7.48\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{H}_{\text {ar1 }}\right), 7.21(\mathrm{t}$, $\left.{ }^{4} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{H}_{\text {ar3,4 }}\right), 7.12\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{H}_{\text {ar3 }, 4}\right), 1.43\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{Ar}_{1}-\mathrm{C}(\mathrm{Me})_{3}\right), 1.15\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{Ar}_{3,4}-\mathrm{C}(\mathrm{Me})_{3}\right),-0.02(\mathrm{~s}$, $\left.18 \mathrm{H}, \mathrm{Si}(\mathrm{Me})_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.65 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, solvent signal at 128.0 ppm$): 150.1\left(m-C_{\text {ar3,4 }}\right), 148.8\left(m-C_{\text {Ar1 }}\right), 142.5$ (ipso-Car1), 141.8 (borole- $C_{3,4}$), 136.3 (ipso- $C_{a r 3,4}$), 129.6 (o- $C_{a r 1}$), 126.8 (br, o- $C_{a r 3,4}$), 120.7 ($p-C_{a r 3,4}$), 119.6 ($p-C_{a r 1}$), 113.2 (borole- $C_{2,5}$), 34.9 $\left(\mathrm{Ar}_{1}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.7\left(\mathrm{Ar}_{3,4}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.9\left(\mathrm{Ar}_{1}-\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.5\left(\mathrm{Ar}_{3.4}-\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.\right.$.
${ }^{11}$ B (128.38 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): 30.2.
${ }^{29}$ Si (99.37 MHz, 298 K, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right):\left(79.49 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):-7.4$.

Elemental Analysis: $\mathrm{C}_{52} \mathrm{H}_{81} \mathrm{BSi}_{2}$ Ge calcd C 73.84, H 9.65; observed C 74.49, H 10.25.

LIFDI-MS: calcd exact mass: $846.5 \mathrm{~m} / \mathrm{z}$; observed $\mathrm{m} / \mathrm{z}: 846.3$ [M] ${ }^{+}$.

Crystal structure of Compound 3a

A few crystals of 3a suitable for X-ray diffraction were isolated from evaporation of hexane solutions. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP plot of the molecular structure of 3a. Atomic displacement parameters are drawn at 50% probability level. Hydrogen atoms and a lattice hexane molecule have been omitted for the sake of clarity. Selected bond length: B1-C1 1.560(2), C1-C2 1.460(2), C2-C3 1.439(1), C3-C4 1.460(2), C4-B1 1.559(2), B1-Ge1 2.272(1), C1-Ge1 2.211(1), C2-Ge1 2.193(1), C3-Ge1 2.205(1), C4-Ge1 2.206(1).

Current Da NAME EXPNO PROCNO	Data Parameters 401er-TH399.A NO $\quad 3$
F2-Acquisi	quisition Parameters
Date	20200608
Time	19.40 h
INSTRUM	UM spect
PROBHD	ZD Z108618_0095 (
PULPROG	ROG ineptrd
	32768
SOLVENT	NT C6D6
	64
DS	8
SWH	11111.111 Hz
FIDRES	S $\quad 0.678168 \mathrm{~Hz}$
AQ	1.4745600 sec
RG	2050
DW	45.000 usec
DE	6.50 usec
TE	298.4 K
CNST2	6.0000000
CNST11	18.0000000
D1 3.	3.00000000 sec
D3 0.	0.00925926 sec
D4 0.0	0.04166667 sec
D12 0	0.00002000 sec
TD0	64
SFO1	79.4945750 MHz
NUC1	29 Si
P1	12.00 usec
P2	24.00 usec
PLW1	63.09600067 W
SFO2 4	400.1320007 MHz
NUC2	1H
CPDPRG[2	RG[2 waltz16
P3	10.10 usec
P4	20.20 usec
PCPD2	2 90.00 usec
PLW2	27.73299980 W
PLW12	0.34926000 W
F2 - Processing parameters	
SI	131072
SF 79	79.4945750 MHz
WDW	EM
SSB 0	0
LB	1.00 Hz
GB 0	0
PC	3.00

60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	ppm

LIFDI-MS of compound 3a

Intensity (7166)

Compound 3b

In a glovebox, a solution of GeCl_{2}-dioxane ($168.7 \mathrm{mg}, 0.729 \mathrm{mmol}, 1$ equiv.) in diethyl ether (6 mL) was added to a solution of borolediide 2 ($431.0 \mathrm{mg}, 0.800 \mathrm{mmol}, 1.1$ equiv.) in diethyl ether (3 mL) at ambient temperature. The resulting beige suspension was stirred at ambient temperature overnight. The ether was removed in vacuo to give a beige solid. The solid was subsequently suspended two times in hexane ($10 \mathrm{~mL}, 5 \mathrm{~mL}$) and volatiles are thoroughly removed in vacuo to coevaporate 1,4-dioxane. The solid was again suspended in hexane (10 mL) and filtered through a syringe filter equipped with a thin plug of glass fiber (Whatman GF/B), and the filter cake was washed with toluene (5 mL). The filtrate was carefully concentrated under reduced pressure until incipient crystallization to give slightly yellowish crystals which were isolated and washed with small portions of pentane to give the product $\mathbf{3 b}$ ($298.3 \mathrm{mg}, 0.570 \mathrm{mmol}, 79 \%$) after drying.

Analytical Data for Compound 3b

NMR:

${ }^{1} \mathrm{H}\left(400.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 6.81(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}), 6.47(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{H}) 1.93(\mathrm{~s}, 12 \mathrm{H}, m-\mathrm{CH}), 0.19(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ solvent signal at 128.0 ppm$): 138.8\left(C_{8}\right), 136.9\left(m-C_{a r}\right), 135.5\left(i p s o-C_{a r}\right), 130.1\left(o-C_{a r}\right), 129.5$ $\left(p-C_{a r}\right), 106.6\left(C_{\alpha}\right), 21.0\left(m-\mathrm{CH}_{3}\right), 1.8(\mathrm{TMS})$.
${ }^{11} \mathbf{B}\left(128.37 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 29.2\left(\omega_{1 / 2}=580 \mathrm{~Hz}\right)$.
${ }^{29}$ Si-INEPT (79.49 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): -7.03.

Elemental Analysis: ($\left.\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BClSi}_{2} \mathrm{Sn}\right)$ calcd C 59.64, H 6.93, B 2.06, Cl 6.77, Ge 13.87, Si 10.73, observed C 59.60, H 6,89.

LIFDI-MS: calcd exact mass: $524.1 \mathrm{~m} / \mathrm{z}$, observed m/z: 524.6.

Crystal structure of Compound 3b

$\mathbf{3 b}$ crystallised from hexane solutions in a freezer $\left(-35^{\circ} \mathrm{C}\right)$. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP plot of the molecular structure of $\mathbf{3 b}$. Atomic displacement parameters are drawn at 50% probability level. Hydrogen atoms have been omitted for the sake of clarity. The germanium vertex atom was modelled to occupy a minor fraction (ca. $2-3 \%)$ on the opposite side of the borole moiety and only the major contribution is shown. Selected bond length: $\mathrm{B} 1-\mathrm{Cl} 1$ 1.801(1), B1-C1 1.534(2), C1-C2 1.457(2), C2-C3 1.434(2), C3-C4 1.464(2), C4-B1 1.535(2), B1-Ge1 2.297(1), C1-Ge1 2.224(1), C2-Ge1 2.204(1), C3-Ge1 2.211(1), C4-Ge1 2.225(1).

Spectra Plots for Compound 3b

1H-NMR-spectrum of compound $\mathbf{3 b}$ in C6D6
\# referenced to C6D5H at 7.15 ppm

11B-NMR spectrum (background suppressed) of compound $\mathbf{3 b}$ in C6D6

29Si-INEPT-NMR spectrum of compound $\mathbf{3} \mathbf{b}$ in C6D6

Acq. Data Name: jsarcev00009-1
Acq. Data Name. jers: Average(MS[1] Time:0.58..0.59)
Creation Parameter
External Sample Id: JS 106

Experiment Date/Time: 4/8/2021 8:37:34 AM Ionization Mode: FD+

Compound 4a

In a glovebox, compound $\left[\mathrm{Li}\left(\mathrm{OEt}_{2}\right)\right]_{2}\left[\mathbf{A}-\mathrm{Ph}^{*}\right](47.3 \mathrm{mg}, 0.051 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in dry and degassed diethyl ether (1.5 mL). The pale yellow solution was added to a suspension of $\mathrm{SnCl}_{2}(9.6 \mathrm{mg}, 0.051 \mathrm{mmol}, 1 \mathrm{eq})$ in dry and degassed diethyl ether (0.5 mL). After completed addition a colourless precipitate had formed and a yellow solution was obtained. The reaction was stirred for 45 min at ambient temperature. Subsequently the reaction mixture was filtered through a syringe equipped with a thin plug of glass fiber (Whatman GF/B) and the solvent of the yellow filtrate was removed under reduced pressure. The obtained yellow solid was dissolved in dry and degassed hexane (0.2 mL) and this solution was stored openly in a glovebox. After most of the solvent evaporated, crystals of compound 4a started to form. The mother liquor was carefully decanted off with a syringe and the crystals were washed with a small amount of cold hexane ($-40^{\circ} \mathrm{C}$, few drops). The isolated crystals were dried under reduced pressure to yield compound 4 ($24.3 \mathrm{mg}, 0.027 \mathrm{mmol}, 54 \%$) as a yellow powder.

Analytical Data for Compound 4a

NMR:

${ }^{1} \mathrm{H}\left(500.25 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 7.70\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{H}_{\text {ar1 }}\right), 7.50\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{H}_{\text {ar1 }}\right), 7.24(\mathrm{t}$, ${ }^{4} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}_{a r 3,4}$), $7.16\left(\mathrm{br} \mathrm{d}, 4 \mathrm{H}, o-\mathrm{H}_{a r 3,4}\right), 1.48\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Ar}_{1}-\mathrm{C}(\mathrm{Me})_{3}\right), 1.20\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{Ar}_{3,4}-\mathrm{C}(\mathrm{Me})_{3}\right), 0.04(\mathrm{~s}, 18 \mathrm{H}$, $\left.\mathrm{Si}(\mathrm{Me})_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.65 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, solvent signal at 128.0 ppm$): 149.9\left(m-C_{\text {ar3,4 }}\right), 148.6\left(m-C_{\text {ar1 }}\right), 145.7$ (borole- $\left.C_{3,4}\right), 143.1$ (ipso-Car1), 137.2 (ipso- $C_{a r 3,4}$), 130.5 (o- $C_{a r 1}$), ca. 128.0 (o- $C_{a r 3,4, ~ c o m p l e t e l y ~ o v e r l a p p e d ~ b y ~ t h e ~ s o l v e n t ~ s i g n a l, ~ a s s i g n e d ~ v i a ~}^{\text {a }}$ HSQC), $120.4\left(p-C_{a r 3,4}\right), 119.3\left(p-C_{a r 1}\right), 114.3$ (borole- $\left.C_{2,5}\right), 34.9\left(\mathrm{Ar}_{1}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.7\left(\mathrm{Ar}_{3,4}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.9\left(\mathrm{Ar}_{1}-\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.6\right.$ $\left(\mathrm{Ar}_{3.4^{-}}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$.
${ }^{11}$ B (160.50 MHz, 298 K, $C_{6} D_{6}$): 32.2.
${ }^{29}$ Si-INEPT (99.38 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): -8.5.
${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ (186.19 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): -1896.94 (${ }^{10} \mathrm{~B}$ isotopologue), -1897.19 (${ }^{11} \mathrm{~B}$ isotopologue).

Elemental Analysis: $\mathrm{C}_{60} \mathrm{H}_{101} \mathrm{BLi}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$ calcd C 77.05, H 10.88; observed C 76.70, H 11.06.

LIFDI-MS: calcd exact mass: $892.5 \mathrm{~m} / \mathrm{z}$; observed m/z: 892.3 [M]+

Crystal structure of Compound 4a

4a crystallised from pentane solutions through concentration by evaporation at ambient temperature. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP plot of the molecular structure of 4a. Atomic displacement parameters are drawn at 50% probability level. Hydrogen atoms, disordered $t \mathrm{Bu}$-groups and a second molecule in the asymmetric unit have been omitted for the sake of clarity. Selected bond length: B1-C1 1.555(2), C1-C2 1.459(2), C2-C3 1.437(2), C3-C4 1.459(2), C4-B1 1.561(2), B1-Sn1 2.462(2), C1-Sn1 2.398(2), C2-Sn1 2.386(2), C3-Sn1 2.422(2), C4-Sn1 2.392(2).

1H-NMR-spectrum of $\mathbf{4 a}$ in C6D6
\# referenced to C6D5H at 7.15 ppm

11B-NMR spectrum (background suppressed) of 4a in C6D6

LIFDI-MS of compound 4a
Experiment Date/Time: 7/1/2020 9:57:10 AM
Intensity (3574)

Compound 4b

In a glovebox, a mixture of tin(II)chloride ($63.9 \mathrm{mg}, 0.338 \mathrm{mmol}, 1 \mathrm{eq}$.) and borolediide $\mathbf{2}(206.7 \mathrm{mg}, 0.3835 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was suspended in diethyl ether (7 mL , distilled). The pale-yellow suspension was stirred for 3 h at room temperature. The ether was removed in vacuo, giving a pale-yellow powder which was then suspended in toluene (2 mL , distilled). The suspension was filtered through a syringe filter equipped with a thin plug of glass fiber (Whatman GF/B), and the filter cake was washed with toluene (2 mL). The pale-orange filtrate was concentrated to dryness to give an orange, crystalline solid. The solid was then washed with pentane $(4 \times 1 \mathrm{~mL})$ to give the product $\mathbf{4 b}$ in form of a pale orange solid (132.6 mg , $0.2335 \mathrm{mmol}, 69 \%$).

Note: Crystals of $\mathbf{4 b}$ are pale yellow/colourless. In an attempt to remove the colored impurity from the initial crop, the product was recrystallized from toluene ($1 \mathrm{~mL},-35^{\circ} \mathrm{C}$). This removed the orange contamination to give a yellow solid but reduced the overall yield to 37%. The NMR-spectra did not change.

Analytical Data for Compound 3b

NMR

${ }^{1} \mathrm{H}\left(500.25 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 6.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{o}-\mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}) 1.95\left(\mathrm{~s}, 12 \mathrm{H}, m-\mathrm{CH}_{3}\right), 0.21(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ solvent signal at 128.0 ppm$): 142.4\left(C_{6}\right), 136.7\left(m-C_{a r}\right.$ and $\left.i p s o-C_{a r}\right), 131.2\left(o-C_{a r}\right), 129.1(p-$ $\left.C_{a r}\right), 106.8\left(C_{\alpha}\right), 21.0\left(m-\mathrm{CH}_{3}\right), 2.5(\mathrm{TMS})$.
${ }^{11} \mathbf{B}\left(160.50 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 30.3\left(\omega_{1 / 2}=431 \mathrm{~Hz}\right)$.
${ }^{29}$ Si-INEPT (99.39 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): -8.1.
${ }^{119} \mathrm{Sn}\left(186.19 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right):-1952.4\left({ }^{119} \mathrm{Sn}-{ }^{-10} \mathrm{~B}\right.$ isotopolog), $-1952.6\left({ }^{119} \mathrm{Sn}-{ }^{11} \mathrm{~B}\right.$ isotopolog).

Elemental Analysis: $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BCISi}_{2} \mathrm{Sn}\right)$ calcd C 54.81, H 6.37, B $1.90, \mathrm{Cl} 6.22$, Si 9.86, Sn 20.84 , observed C 54.78, H 6.16.

LIFDI-MS: calcd exact mass: $570.1 \mathrm{~m} / \mathrm{z}$, observed m / z : 570.3 .

Crystal structure of Compound 4b

$\mathbf{4 b}$ crystallised from hexane or toluene solutions in a freezer $\left(-35^{\circ} \mathrm{C}\right)$. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP plot of the molecular structure of $\mathbf{4 b}$. Atomic displacement parameters are drawn at 50% probability level. Hydrogen atoms have been omitted for the sake of clarity. Selected bond length: B1-Cl1 1.809(1), B1-C1 1.538(2), C1-C2 1.461(1), C2C3 1.438(2), C3-C4 1.457(1), C4-B1 1.541(2), B1-Sn1 2.487(1), C1-Sn1 2.426(1), C2-Sn1 2.407(1), C3-Sn1 2.404(1), C4-Sn1 2.418(1).

Spectra Plots for Compound 4b

1H-NMR-spectrum of compound $\mathbf{4 b}$ in C6D6 \# referenced to C6D5H at 7.15 ppm

13C\{1H\}-NMR-spectrum of compound 4b in C6D6

11B-NMR spectrum (background suppressed) of compound $\mathbf{4 b}$ in C6D6

In a glovebox, a solution of 1,3,4,5-tetramethylimidazol-2-ylidene ($10.8 \mathrm{mg}, 0.0877 \mathrm{mmol}, 1 \mathrm{eq}$.) in toluene (1 mL , distilled) was added dropwise via syringe to a stirred solution of germanium compound $\mathbf{3 b}$ ($46.1 \mathrm{mg}, 0.0885 \mathrm{mmol}, 1 \mathrm{eq}$.) in toluene $(2 \mathrm{~mL}$, distilled). The resulting suspension was stirred at room temperature over night. Toluene (2 mL) was added to the yellow suspension, which was subsequently filtered through a syringe filter equipped with a thin plug of glass fiber (Whatman GF/B). The filter was then washed with toluene (1 mL) and the combined filtrate was concentrated to a volume of about 2 mL and stored at $-35^{\circ} \mathrm{C}$ for crystallization for several days. The colorless to slightly yellowish crystals were then washed with cold $\left(-35^{\circ} \mathrm{C}\right)$ toluene $(0.5 \mathrm{~mL})$ to obtain the product $5 \mathrm{~b}(41.2 \mathrm{mg}, 0.0636 \mathrm{mmol}, 72 \%)$ after drying in vacuo as colorless crystalline material which contained ca. 0.5 equiv. of lattice toluene.

Analytical Data for Compound 5b

NMR

${ }^{1} \mathrm{H}\left(400.13 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right.$ at 7.15 ppm$): 7.34(\mathrm{~s}, 4 \mathrm{H}, \mathrm{o}-\mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH} 3), 3.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}$ $\left.\mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 12 \mathrm{H}, m-\mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 0.00(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$ solvent signal at 128.0 ppm$): 158.9\left(\mathrm{~N}-\mathrm{C}-\mathrm{N}\right.$, only via HMBC), $146.6\left(C_{8}\right), 140.2\left(i p s o-C_{a r}\right)$, $136.4\left(m-C_{a r}\right), 130.7\left(o-C_{a r}\right), 128.5\left(p-C_{a r}\right), 125.6\left(C_{N H C}=C_{N H C}\right), 125.0\left(C_{N H C}=C_{N H C}\right), 123.6\left(C_{\alpha}\right), 35.9\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 33.9\left(\mathrm{~N}-C H_{3}\right), 21.2$ $\left(m-\mathrm{CH}_{3}\right), 8.0\left(\mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 7.7\left(\mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 1.8(\mathrm{TMS})$
${ }^{11}$ B (128.38 MHz, $\left.298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 15.7\left(\omega_{1 / 2}=340 \mathrm{~Hz}\right)$
${ }^{29}$ Si-INEPT (79.49 MHz, $298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): -9.2.

Elemental Analysis: $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{BCIN}_{2} \mathrm{Si}_{2} \mathrm{Ge}$) $\times 0.5$ (toluene) calcd C 63.18, H 7.55, $\mathrm{N} 4.04, \mathrm{~B} 1.56, \mathrm{Cl} 5.11, \mathrm{Si} 8.09, \mathrm{Ge} 10.47$; observed C 63.38, H 7.14, N 4.06.

LIFDI-MS: calcd exact mass: $648.2 \mathrm{~m} / \mathrm{z}$, observed $\mathrm{m} / \mathrm{z}: 613.4$ ([M-Cl] ${ }^{+} \mathrm{C}_{33} \mathrm{H}_{48} \mathrm{BN}_{2} \mathrm{Si}_{2} \mathrm{Ge}^{+}$).

Crystal structure of Compound 5b

$\mathbf{4 b}$ crystallised from toluene solutions in a freezer $\left(-35^{\circ} \mathrm{C}\right)$. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP plot of the molecular structure of $\mathbf{5 b}$. Atomic displacement parameters are drawn at 50% probability level. Hydrogen atoms, disorders of the Xylyl-group and a lattice toluene molecule have been omitted for the sake of clarity. Selected bond length: B1-C3 1.592(5), B1-C1 1.535(4), C1-C2 1.437(3), C2-C2' 1.428(3), B1-Ge1 2.291(3), C1-Ge1 2.266(3), C2-Ge1 2.369(2), C2'-Ge1 2.482(2), C1'-Ge1 2.465(3), Ge1-Cl1 2.543(2).

Spectra Plots for Compound 5b

1H-NMR-spectrum of compound $\mathbf{5 b}$ in C6D6 \# referenced to C6D5H at 7.15 ppm

\# referenced to C6D6 at 128.0 ppm

T = toluene

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

11B-NMR spectrum (background suppressed) of compound $\mathbf{5 b}$ in C6D6

F2-Acquisition Parameters	
Date	20211014
Time	12.39 h
INSTRUM	M sp
PROBHD Z116098	
PULPROG inep	
SOLVENT C6	
	13
DS	
SWHFIDRES1110.	
AQ 1.474560	
RG	2050
DW 45.000 us	
DE	6. 50 usec
98.3 K	
CNST2	000000
CNST11 18.0000000	
D1 $\quad 3.000000000 \mathrm{sec}$	
D4 $\quad 0.04166667 \mathrm{sec}$	
TD0 $\quad 64$	
SFO1 79.494575	
NUC1 29Si	
	12.00 us
P2 24.00 us	
$\begin{array}{ll}\text { PLW1 } \\ \text { SFO2 } & 63.0960 \\ & 400.132\end{array}$	
NUC2	
CPDPRG[2 waltz16	
P3 $\quad 10.10$ usec	
P4 20.20 us	
PCPD2 90.00	
PLW2 27.73299980	
PLW12	
F2 - Processing para	
SI 131072	
SF 79.4945750	
SSB	
LB $\quad 1.00 \mathrm{~Hz}$	
GB	0
PC	3.00

	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	ppm

Molecular Weight: 569,71

Molecular Weight: 693,9

In a glovebox, a solution of 1,3,4,5-tetramethylimidazol-2-ylidene ($12.6 \mathrm{mg}, 0.101 \mathrm{mmol}, 1 \mathrm{eq}$.) in toluene (1 mL , distilled) was added dropwise via syringe to a stirred solution of $\mathbf{4 b}(57.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 1 \mathrm{eq}$.) in toluene (2 mL , distilled). The resulting yellow suspension was stirred at room temperature for 1 h and the solvent was subsequently removed in vacuo. The resulting yellow solid was washed three times with 1 mL of a $1: 1$ pentane/toluene mixture. After drying, the solid was suspended in toluene ($5 \mathrm{~mL}, 3 \mathrm{~mL}$) and filtered through a syringe filter equipped with a thin plug of glass fiber (Whatman GF/B). The yellow filtrate was then stored at $-35^{\circ} \mathrm{C}$ for crystallization. The resulting crystals were removed and washed with hexane to give the desired product 6b ($23.6 \mathrm{mg}, 0.0340 \mathrm{mmol}, 34 \%$). The supernatant from the crystallization was concentrated to dryness and washed with cold toluene ($0.5 \mathrm{~mL}, 0.3 \mathrm{~mL}$) which also led to the spectroscopically pure product 6b (19.0 mg, $0.0274 \mathrm{mmol}, 27$ \%).

Note: Solubility in toluene was only very limited and was greatly increased in more polar solvents.

Analytical Data for Compound 6b

NMR:

${ }^{1} \mathrm{H}\left(500.25 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CDHCl}_{2}\right.$ at 5.32 ppm$): 6.88(\mathrm{~s}, 4 \mathrm{H}, o-\mathrm{H}), 6.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 3.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ CH_{3}), 2.28 (two s, partially superimposed, $6 \mathrm{H}, \mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}$) $2.20\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{m}-\mathrm{CH}_{3}\right),-0.37(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$.
${ }^{1} \mathrm{H}\left(400.13 \mathrm{MHz}, 298 \mathrm{~K}\right.$, toluene- $\mathrm{d}_{8}, \mathrm{C}_{6} \mathrm{D}_{5}-\mathrm{CD}_{2} \mathrm{H}$ at 2.11 ppm$): 7.23(\mathrm{~s}, 4 \mathrm{H}, o-\mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.19(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.14\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{m}-\mathrm{CH}_{3}\right), 1.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 1.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right),-0.04(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ solvent signal at 54.24 ppm$)$: ca. 159 ($\mathrm{N}-\mathrm{C}-\mathrm{N}$, only via HMBC), $148.7\left(C_{8}\right), 140.5$ (ipso- $\left.C_{a r}\right)$, $136.9\left(m-C_{a r}\right), 131.9\left(o-C_{a r}\right), 128.3\left(p-C_{a r}\right), 126.7\left(C_{N H C}=C_{N H C}\right), 126.5\left(C_{N H C}=C_{N H C}\right), 121.3\left(C_{\alpha}\right), 36.8\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 35.4\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 21.7(m-$ $\left.\mathrm{CH}_{3}\right), 9.7\left(\mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 9.5\left(\mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 1.9$ (TMS)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.64 \mathrm{MHz}, 298 \mathrm{~K}\right.$, toluene- d_{8} solvent signal at 21.37 ppm$)$: ca. 161 ($\mathrm{N}-\mathrm{C}-\mathrm{N}$, only via HMBC), $149.6\left(C_{6}\right), 141.8$ (ipso$\left.C_{a r}\right), 137.2\left(m-C_{a r}\right), 132.4\left(o-C_{a r}\right)$, ca. 129 ($p-C_{a r}$, superimposed by solvent signal), 125.5 ($C_{N H C}=C_{N H C}$), ca. 123 (C_{α}, only via HMBC), $36.9\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 35.2\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 22.2\left(\mathrm{~m}-\mathrm{CH}_{3}\right), 9.0\left(\mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 8.7\left(\mathrm{C}_{\mathrm{NHC}}-\mathrm{CH}_{3}\right), 3.1(\mathrm{TMS})$.
${ }^{11} \mathbf{B}\left(160.50 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 16.6\left(\omega_{1 / 2}=180 \mathrm{~Hz}\right)$
${ }^{11}$ B (128.38 MHz, 298 K , toluene $\left.-d_{8}\right): 16.2\left(\omega_{1 / 2}=350 \mathrm{~Hz}\right)$.
${ }^{29} \mathbf{S i}\left(99.39 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): -9.8.
${ }^{29} \mathrm{Si}\left(79.49 \mathrm{MHz}, 298 \mathrm{~K}\right.$, toluene- d_{8}): -9.9.
${ }^{119}$ Sn (186.19 MHz, $298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): -1542.4.
${ }^{119} \mathrm{Sn}\left(186.19 \mathrm{MHz}, 298 \mathrm{~K}\right.$, toluene- d_{8}): -1333.6

Elemental Analysis: $\left(\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{BClN}_{2} \mathrm{Si}_{2} \mathrm{Sn}\right) \times 0.5$ (toluene) calcd C $59.25, \mathrm{H} 7.08, \mathrm{~N} 3.79, \mathrm{~B} 1.46, \mathrm{Cl} 4.79, \mathrm{Si} 7.59, \mathrm{Sn} 16.04$; observed C 59.30, H 6.79, N 3.72.

LIFDI-MS: calcd exact mass: $694.2 \mathrm{~m} / \mathrm{z}$, observed m / z : $659.3\left([\mathrm{M}-\mathrm{Cl}]^{+}, \mathrm{C}_{33} \mathrm{H}_{48} \mathrm{BN}_{2} \mathrm{Si}_{2} \mathrm{Sn}^{+}\right)$.

Crystal structure of Compound 6b

$\mathbf{6 b}$ crystallised from toluene solutions in a freezer $\left(-35^{\circ} \mathrm{C}\right)$. For further details on the diffraction measurement and refinement please see the respective section and the respective CIF-file.

ORTEP plot of the molecular structure of 6b. Atomic displacement parameters are drawn at 50\% probability level. Hydrogen atoms, a lattice toluene and a second independent molecule within the asymmetric unit have been omitted for the sake of clarity. Selected bond length: B1-C5 1.59(2), B1-C1 1.56(1), C1-C2 1.47(1), C2-C3 1.41(1), C3-C4 1.44(1), C4-B1 1.58(1), B1Sn1 2.45(1), C1-Sn1 2.407(8), C2-Sn1 2.493(8), C3-Sn1 2.684(8), C4-Sn1 2.715(8), Sn1-Cl1 2.649(1).

Spectra Plots for Compound 6b

1H-NMR-spectrum of compund $\mathbf{6 b}$ in CD 2 Cl 2 \# referenced to CDHCl 2 at 5.32 ppm
(

1H-NMR-spectrum of compound $\mathbf{6 b}$ in toluene-d8 \# referenced to C6D5CD2H at 2.11 ppm

11B-NMR spectrum (background suppressed) of compound $\mathbf{6 b}$ in CD2Cl2

F2-Acquisition Parameters																
Date_	20211012															
Time	12.27 h															
INSTRUM																
PROBHD Z116098_0825																
PULPROG																
TD 32																
SOLVENT																
NS																
DS																
SWH	11111.111															
FIDRES $\quad 0.678168 \mathrm{~Hz}$																
AQ $\quad 1.4745600 \mathrm{sec}$																
RG	2050															
DW 45.000 usec																
DE	6.50 usec															
TE 298.3 K																
$\begin{array}{ll}\text { CNST2 } & 6.0000000 \\ \text { CNST11 } & 18.0000000\end{array}$																
D1 3.00000000 sec																
D3 0	0.00925926 sec															
D4 $\quad 0.04166667 \mathrm{sec}$																
$\begin{array}{ll}\text { D12 } & 0.00002000 ~ s e c \\ \text { TD0 }\end{array}$																
SFO1 $\quad 79.4945750 \mathrm{MHz}$																
NUC1 29Si																
P1 12.00 usec																
P2	24.00 usec															
PLW1 63.09600067 W																
SFO2 400.1320007 MHz																
CPDPRG[2 waltz16																
P3	10.10 usec															
P4 $\quad 20.20$ usec																
PCPD2 90.00 us																
PLW2 27.73299980 W																
PLW12	0.34926000 W															
F2-Processing parameters																
SI	131072															
SF 79	79.4945750 MHz															
WDW																
SSB	0															
LB	1.00 Hz															
GB	$\begin{aligned} & 0 \\ & 3.00 \end{aligned}$	Uwmund	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	ppm
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:		
$119 S n-N M R$																
spectrum of compound 6 b in CD 2 Cl 2																

	Current Data Parameters $\underset{\text { EXPNO }}{\text { NAME }} \mathrm{j} 197 . \mathrm{T}_{\mathrm{T}} \mathrm{5sn}$ PROCNO
	$=======$ CHANNEL f1 $===$ SFO1 186.3132040 MHz NUC1 $1195 n$ P1 15.00 PLW1 80.00000000 W
	F2 - Processing parameters SI 655336 SF 186.5468370 MHz WDW EM SSB 0. LB 5.00 Hz GB 0 PC 3.00

$$
\begin{array}{lc}
\text { SOLVENT } & \text { Tol } \\
\text { NS } & 13905 \\
\text { DS } & 0 \\
\text { SWH } & 166666.672 \mathrm{~Hz} \\
\text { FIDRES } & 5.086263 \mathrm{~Hz}
\end{array}
$$

Crystallographic Details

General Data Acquisition and Processing

X-ray data for $\mathbf{1 , 2 , 3 a}, \mathbf{3 b}, \mathbf{4 a}, \mathbf{4 b}, \mathbf{5 b}$ and $\mathbf{6 b}$ were collected on Bruker APEX II CCD diffractometers with Mo K α radiation. If not otherwise stated the data were obtained from crystals cooled to $-173^{\circ} \mathrm{C}$ via a cryo-stream. The data were integrated using SAINT implemented in Bruker's APEX3 programme suite. ${ }^{5}$ SADABS was used for multi-scan absorption correction. ${ }^{6}$ Two domains in twinned crystal of $\mathbf{2}$ were identified in the reciprocal lattice, sorted, integrated and absorption corrected as a two domain twin using TWINABS. ${ }^{7}$ Structure solution was performed with SHELXT ${ }^{8}$ and refined on F^{2} using SHELXL ${ }^{9}$ within the graphical user interphase of ShelXIe. ${ }^{10}$ In some cases DSR has been applied to treat disordered solvent molecules. ${ }^{11}$ Hydrogen atoms were usually placed with a riding model. Further details on the individual data sets are tabulated in the analytical section of each compound.

Crystallographic and Refinement Details 1

Bright orange crystals from a homogenous crop were picked from per-fluorinated oil and did only very slowly decompose.

Crystallographic and Refinement Details 2

Colourless crystals were found to be twinned. Two domains were identified from the reciprocal lattice and the data were integrated as a 2-component twin. Absorption correction was performed using TWINABS. Hydrogen atoms of a methyl group were found disordered and modelled accordingly.

Crystallographic and Refinement Details 3a
Colourless crystals were picked from per-fluorinated oil and crystal quality only deteriorated very slowly when exposed to ambient atmosphere.

Crystallographic and Refinement Details 3b

Colourless crystals were picked from per-fluorinated oil and crystal quality only deteriorated very slowly when exposed to ambient atmosphere. Small amounts of residual electron density were found on the other side of the borole and was modelled as a minor (2-3\%) occupational disorder of the Ge-apex position und modelled using SADI, SIMU and RIGU restraints.

Crystallographic and Refinement Details 4a

Colourless to pale yellow crystals were picked from per-fluorinated oil and crystal quality only deteriorated very slowly when exposed to ambient atmosphere. Crystals revealed notable physical deterioration and loss in crystallinity when shock-cooled to 100 K in a N_{2} cryostream. The data acquisition was thus performed at 110 K . Several inner reflections ($100,001,101,0$ 10, $110,011,111$) seemed to be affected by the beam stop and have been omitted in the final refinement.

Crystallographic and Refinement Details 4b

Brittle, colourless crystals were picked from per-fluorinated oil. When removed from the mother liquor crystals immediately deteriorated and turned opaque. Successful picking, mounting and data acquisition was performed on a relatively large block. Reflection 612 was omitted in the final refinement.

Crystallographic and Refinement Details 5b

Colourless crystals were picked from per-fluorinated oil. The main molecules is located on a special position and the GeCl unit and the NHC are disordered and refined in part -1. The entire tertiary Xylyl-group is found slightly disordered and modelled accordingly over two positions using SADI SIMU and RIGU restraints. A disordered lattice toluene molecule occupying a special position was refined in Part -1.

Depiction of the refinement modelling of disordered moieties. (Light Blue: Part 1; Orange: Part 2, Bluegreen: Part -1). Blue coloured moieties represent symmetry generated positions.

Crystallographic and Refinement Details 6b

Colourless crystals were picked from per-fluorinated oil. The compound crystallised as a non-merohedral twin with the twin law 0-10-10000-1. The fractional contribution of the minor component refines to $0.48 .{ }^{12}$

Tabulated Crystallographic Details 1, 2, 3a, 3b, 4a, 4b, 5b and 6b

	1	2	3a	3b	4a	4b	5b	6b
CCDC number	2119904	2119903	2119907	2119906	2119905	2119910	2119908	2119909
empirical formula	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BCISi}{ }_{2}$	$\mathrm{C}_{60} \mathrm{H}_{92} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{Li}_{4} \mathrm{O}_{2} \mathrm{Si}_{4}$	$\mathrm{C}_{55} \mathrm{H}_{88} \mathrm{BGeSi}_{2}$	$\mathrm{C}_{52} \mathrm{H}_{72} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{Ge}_{2} \mathrm{Si}_{4}$	$\mathrm{C}_{52} \mathrm{H}_{81} \mathrm{BSi}_{2} \mathrm{Sn}$	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BCISiS}_{2} \mathrm{Sn}$	$\mathrm{C}_{73} \mathrm{H}_{104} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{Ge}_{2} \mathrm{~N}_{4} \mathrm{Si}_{4}$	$\mathrm{C}_{73} \mathrm{H}_{104} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Si}_{4} \mathrm{Sn}_{2}$
formula weight	450.99	1077.97	888.83	1047.15	891.84	569.68	1387.66	1479.86
T/K	100(2)	100(2)	100(2)	100(2)	110(2)	100(2)	100(2)	100(2)
crystal system	triclinic	monoclinic	monoclinic	orthorhombic	triclinic	orthorhombic	tetragonal	orthorhombic
space group (number)	$P \overline{1}(2)$	$P 2_{1} / n$ (14)	$P 2_{1} / n$ (14)	Pbca (61)	$P \overline{1}$ (2)	Pbca (61)	$P \overline{4} 2_{1} m$ (113)	Iba2 (45)
a/A	9.2086(10)	14.109(2)	13.6558(16)	19.048(2)	15.8126(13)	18.8007(8)	18.172(3)	25.802(3)
b/Å	11.0462(12)	14.636(2)	$15.5207(18)$	11.2539(12)	16.2239(14)	11.4507(5)	18.172(3)	25.796(3)
c / \AA	14.4968(16)	15.670(2)	26.337(3)	25.727(3)	22.9218(19)	25.8667(11)	11.769(3)	23.532(2)
α	111.740(2)	90	90	90	87.921(2)	90	90	90
61°	94.288(2)	90.751(3)	99.937(2)	90	74.394(2)	90	90	90
v	96.866(2)	90	90	90	68.826(2)	90	90	90
V / \AA^{3}	1348.5(3)	3235.5(8)	5498.3(11)	5514.9(10)	5269.1(8)	5568.6(4)	3886.4(17)	15662(3)
z	2	2	4	4	4	8	2	8
$\rho / \mathrm{Mg} \mathrm{m}^{-3}$	1.111	1.106	1.074	1.261	1.124	1.359	1.186	1.255
μ / mm^{-1}	0.241	0.212	0.632	1.306	0.561	1.111	0.944	0.808
F(000)	484	1160	1932	2192	1904	2336	1468	6160
crystal size / mm ${ }^{3}$	$0.646 \times 0.495 \times 0.444$	$0.467 \times 0.413 \times 0.329$	$0.356 \times 0.136 \times 0.095$	$0.315 \times 0.198 \times 0.185$	$0.451 \times 0.323 \times 0.158$	$0.239 \times 0.232 \times 0.152$	$0.418 \times 0.112 \times 0.080$	$0.168 \times 0.090 \times 0.052$
Crystal colour	orange	colourless						
Crystal shape	block							
Radiation	Mo $K_{\alpha}(\lambda=0.71073 \AA)$	Mo $K_{\alpha}(\lambda=0.71073 \AA$)	Mo $K_{\alpha}(\lambda=0.71073$ Å)	Mo $K_{\alpha}(\lambda=0.71073$ Å)	Мо $K_{\alpha}(\lambda=0.71073$ Å)	Mo $K_{\alpha}(\lambda=0.71073 \AA)$	MoK $K_{\alpha}(\lambda=0.71073$ A $)$	Mo $K_{\alpha}(\lambda=0.71073 \AA)$
2θ range $/{ }^{\circ}$	3.05 to 59.89 (0.71 ${ }^{\text {A }}$)	3.81 to 52.15 ($0.81 \AA$)	3.06 to 59.16 (0.72 A)	3.17 to 60.36 (0.71 ${ }^{\text {¢ }}$)	3.70 to 59.42 (0.72 Å)	3.15 to 61.02 (0.70 \AA)	3.17 to 55.00 (0.77 \AA)	2.23 to 53.52 (0.79 \AA)
index ranges	$-12 \leq \mathrm{h} \leq 12$	$\leq \mathrm{h} \leq$	$-18 \leq h \leq 18$	$-26 \leq h \leq 26$	$-21 \leq \mathrm{h} \leq 22$	$-26 \leq h \leq 26$	$-23 \leq h \leq 23$	$-32 \leq h \leq 32$
	$-15 \leq k \leq 15$	<k	$-21 \leq k \leq 21$	$-15 \leq k \leq 15$	$-22 \leq k \leq 22$	$-16 \leq k \leq 16$	$-23 \leq k \leq 23$	$-32 \leq k \leq 32$
	$-20 \leq 1 \leq 20$	$\leq 1 \leq$	$-36 \leq 1 \leq 36$	$-36 \leq 1 \leq 36$	$-31 \leq 1 \leq 31$	$-36 \leq 1 \leq 36$	$-15 \leq 1 \leq 15$	$-29 \leq 1 \leq 29$
Refl. collected	54731	6409	163225	119874	115246	207042	103383	111471
indep. reflections/ $R_{\text {int }}$	$\begin{gathered} 7795 \\ R_{\text {int }}=0.0246 \\ R_{\text {sigma }}=0.0152 \\ \hline \end{gathered}$	$\begin{aligned} & 6409 \\ & R_{\text {int }}=0.0439 \\ & R_{\text {cigm }}=0.0275 \end{aligned}$	$\begin{gathered} 15429 \\ R_{\text {int }}=0.0512 \\ R_{\text {sigma }}=0.0261 \end{gathered}$	$\begin{aligned} & 8142 \\ & R_{\text {int }}=0.0542 \\ & R_{\text {cism } m}=0.0214 \end{aligned}$	$\begin{aligned} & 29875 \\ & R_{\text {int }}=0.0354 \\ & R_{\text {sigm }}=0.0331 \end{aligned}$	$\begin{gathered} 8515 \\ R_{\text {int }}=0.0487 \\ R_{\text {sigma }}=0.0124 \end{gathered}$	$\begin{aligned} & 4667 \\ & R_{\text {int }}=0.0492 \\ & R_{\text {sism }}=0.0209 \end{aligned}$	$\begin{gathered} 16679 \\ R_{\text {int }}=0.0454 \\ R_{\text {sigma }}=0.0302 \end{gathered}$
completeness to $\theta_{\text {max }}$	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
Data/Restr./Params.	7795/0/281	6409/0/347	15429/0/557	8142/3/300	29875/588/1181	8515/0/290	4667/631/380	16679/166/818
Goof on F^{2}	1.033	1.043	1.036	1.020	1.016	1.095	1.079	1.039
final R indices [l>2\%(1)]	$\begin{gathered} R_{1}=0.0315 \\ w R_{2}=0.0877 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0413 \\ w R_{2}=0.0977 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0314 \\ w R_{2}=0.0774 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0282 \\ w R_{2}=0.0716 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0322 \\ w R_{2}=0.0775 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0182 \\ w R_{2}=0.0488 \\ \hline \end{gathered}$	$\begin{gathered} R_{1}=0.0264 \\ w R_{2}=0.0611 \end{gathered}$	$\begin{gathered} R_{1}=0.0216 \\ w R_{2}=0.0494 \\ \hline \end{gathered}$
R indices (all data)	$\begin{gathered} R_{1}=0.0357 \\ w R_{2}=0.0909 \end{gathered}$	$\begin{gathered} R_{1}=0.0566 \\ w R_{2}=0.1045 \end{gathered}$	$\begin{gathered} R_{1}=0.0416 \\ w R_{2}=0.0823 \end{gathered}$	$\begin{gathered} R_{1}=0.0365 \\ w R_{2}=0.0756 \end{gathered}$	$\begin{gathered} R_{1}=0.0441 \\ w R_{2}=0.0845 \end{gathered}$	$\begin{gathered} R_{1}=0.0204 \\ w R_{2}=0.0503 \end{gathered}$	$\begin{gathered} R_{1}=0.0289 \\ w R_{2}=0.0622 \end{gathered}$	$\begin{gathered} R_{1}=0.0231 \\ w R_{2}=0.0503 \end{gathered}$
largest peak/hole [e ${ }^{-3}{ }^{-3}$]	0.44/-0.26	0.41/-0.29	0.43/-0.30	0.52/-0.55	1.07/-0.65	0.48/-0.28	0.26/-0.18	0.44/-0.48
absorption correction	multi-scan							
miscellaneous		2-component twin					Flack X param. 0.010(3)	Flack X param. -0.022(5)

Computational Details

Structure Optimisation, Frequency Calculation and Electronic Structure Analyses

Computational examination was performed using ORCA (version 4.2.1.). ${ }^{13}$ All structures were optimised starting from (modified) experimental X-Ray structures (where available) on RI-BP86-D3BJ ${ }^{14}$ def2SVP/J model chemistry ${ }^{15}$ in the gas phase followed by a frequency calculation on the same level of theory and thermochemical corrections were taken from these frequency calculations. For numerical accuracy, grid6 and finalgrid7 were applied. No imaginary frequencies were observed confirming true minima. All structures were then reoptimized using BP86-D3BJ-def2TZVP/J model chemistry and all considered SCF energies, property calculations as well as NBO analyses ${ }^{16}$ are based on these gas phase structures. Graphical depictions were created using ChemCraft or IBOview. ${ }^{17}$ For tin an ECP-28, and for Pb an ECP-46 as automatically assigned in ORCA was applied. ${ }^{18}$

The model complexes $\left[(\mathbf{H C})_{4} \mathbf{B H}\right] \mathbf{E}(\mathbf{E}=\mathbf{S i}, \mathbf{G e} \mathbf{S n}, \mathbf{P b})$ were computationally assessed with the same level of theory as described above and the electronic structure probed by QTAIM and ELF analyses. The energies of the (occupied) Kohn-Sham frontier molecular orbitals of these species were probed and revealed a raise in energy of those MO's that represent formal the combination of the E -centred p_{x} and p_{y}-orbitals (that enable in-plane interactions) with the borole-diides π-system when descending the group from $\mathrm{Si}(\mathrm{II})$ to heavier group 14 congeners (depicted in BLUE and BLACK). This is likely associated with an increasing borole ${ }_{\text {centroid }}-E$ distance that leads to a mismatch overlap between the p-orbitals and the π-system. Conversely the MO bearing the (s) p_{z} contribution with an orbital lobe above the E-vertex position is continuously decreasing in energy which accounts for decreased nucleophilicity towards transition metal fragments such as the experimentally probed [W(CO) ${ }_{5}$] (depicted in RED). Such fragments would then have to interact with the nucleophilic HOMO-lobe (depicted in blue) leading to an ever increasing angulation (i.e. deviation from linearity as observed in the $\mathrm{Si}(\mathrm{II})$-complex) of the [M]-E-(Borole) ${ }_{\text {centroid }}$. Similar observations were made for assessment of protonated structures. ${ }^{19}$

QTAIM and ELF (Electron Localization Function)

Topology analyses according to Bader's quantum theory of atoms in molecules (QTAIM) ${ }^{20}$ and ELF analses on the model complexes $\left[(\mathbf{H C})_{4} \mathbf{B H}\right] E(E=S i, G e, \mathbf{S n}, \mathbf{P b})$ were performed. The wavefunction files were created from single point calculations on structures obtained RI-PBEO-functional and def2-TZVPP/JK basis set on all elements except for Sn and Pb were all-electron "Sapporo-TZP-2012"(Sn) and "Sapporo-DKH3-TZP-2012"(Pb) basis sets without ECP and AutoAux were applied as implemented in ORCA 4.2.1.

The respective structures were obtained from optimisation in the gasphase (RI-BP86-D3BJ-def2TZVP/J). The QTAIM analyses were performed using the AIMAll programme suite. ${ }^{21}$ The ELF analysis was performed using multiwfn software (version 3.6). ${ }^{22}$

The graphical representation was then created with UCSF ChimeraX. ${ }^{23}$ Areas with negative Laplacian of the electron density (depicted in red) indicate areas of charge-concentration. In case of Si a clear valence shell charge concentration (VSCC) can be identified which is missing for the elements Ge to Pb .

The decreasing ELF blob sizes relative to the Si-lone pair of electron blob are given for Ge, Sn and Pb .

Laplacian Contour Plots of the Electron Density ρ

Computational assessment of ${ }^{119}$ Sn NMR shifts

Computational prediction of ${ }^{119}$ Sn NMR spectroscopic properties of $\mathbf{4 a}, \mathbf{4} \mathbf{b}, \mathbf{6 b}$ and hypothetical cationic B-NHC bound borole [borole-Sn] ${ }^{+}$E was performed using GIAO method and RIJK-PBEO ${ }^{24}$ functional and def2-TZVP basis set (C,H) and def2-TZVPPP basis set (all hetero-atoms) on gas phase structures previously optimised using the RI-BP86-D3BJ-def2TZVP/J model chemistry. For Sn, an all-electron basis set "Sapporo-TZP-2012" without ECP and AutoAux was applied as implemented in ORCA 4.2.1. A set of reference Sn -compounds were used to assess the general viability of the computational model to reproduce ${ }^{119} \mathrm{Sn}$-NMR chemical shifts. We have previously applied a similar set of reference compounds for computational investigations of ${ }^{119}$ Sn NMR chemical shifts. ${ }^{25}$ Our assessment reveals that the computational method is particularly well suited for the accurate prediction of high-field-shifted signals but significantly lacks performance for low-valent, low-field shifted signals. As the compounds under investigation all range in the high-field shifted region the computational predictions can be confidentially discussed.

Calculated chemical shifts were obtained according to:

$$
\delta_{\text {calc }}=\sigma_{\text {ref }}-\sigma_{\text {calc }}
$$

$\sigma_{\text {ref }}\left({ }^{119} \mathrm{Sn}\right)=2608.9 \mathrm{ppm}$ for $\mathrm{Me}_{4} \mathrm{Sn}$.

Compound	$\sigma_{\text {calc }}$	$\delta_{\text {calc }}$	$\delta_{\text {exp }}$
SnMe_{4} (reference)	2608.9	0	0
SnCl_{4}	2653.8	-44.9	-149 ${ }^{26}$
$\mathrm{SnCp}{ }_{2}$	4793.5	-2184.6	-212927
$\mathrm{Sn}\left(\mathrm{NTMS}_{2}\right)_{2}$	2172.3	436.6	77028
$\mathrm{Sn}\left(2,6-\mathrm{Mes}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right)_{2}$	1219.3	1389.6	$1971{ }^{29}$
$\mathrm{Sn}\left(\mathrm{B}[(\mathrm{N}(\mathrm{Dipp}) \mathrm{CH})]_{2}\right)_{2}$	-591.1	3200.0	4755^{30}
$\left(\eta^{3}-\right.$ Allyl $)-\mathrm{Sn}\left(2,6-\mathrm{Trip}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right)$	3800.9	-1192.0	-95731
$\mathrm{Sn}\left[\mathrm{CH}(\mathrm{TMS})_{2}\right]_{2}$	666.8	1942.1	2315^{32}
(2,6-Trip ${ }_{2}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)$)SnPh	1580.0	1028.9	1517^{33}
[$\left.\mathrm{Trip}_{3} \mathrm{Sn}\right]^{+}$	2020.8	588.1	$714{ }^{34}$
Jones' cation $\left\{\left[\mathrm{R}\left(\mathrm{R}^{\prime}\right) \mathrm{N}\right] \mathrm{Sn}\right\}^{+}$	2794.6	-185.7	46^{35}
TripSnH ${ }_{3}$	3048.6	-439.3	-416^{36}
4a	4477.1	-1868.2	-1897
4b	452.2	-1911.3	-1952
6b	3555.7	-946.8 (n^{3})	-1438 ${ }^{\text {a }}$
E	4.560 .7	-1951.8 (n^{5})	$-1438{ }^{\text {b }}$

a) Averaged between shifts in toluene und dichloromethane; b) arbitrarily assigned shift of $\mathbf{6 b}$ for comparison; Mes $=2,4,6-$ $\mathrm{Me}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right)$; Trip $=2,4,6-i \mathrm{Pr}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right)$;

Computational assessment of ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ chemical shifts

XYZ-coordinates of optimised structures

All structures optimised at RI-BP86-D3BJ\def2TZVP\J level of theory (see above).

Molecular structure of borole-Si			
$\mathrm{E}($ SCF $)=-469.870291549482 \mathrm{H}$			
B	8.333475891	5.359923080	5.248405029
C	7.519131409	4.837047562	4.050520793
C	8.345295420	4.847508629	2.868868020
C	9.729002766	5.554702691	4.627083331
C	9.666805221	5.276669800	3.213651295
Si	9.176052423	3.529997958	4.296784767
H	8.011630956	5.426873867	6.398651571
H	10.500301687	5.305154349	2.513666204
H	8.053782020	4.510651038	1.875361792
H	6.504446313	4.440932927	4.010028740

$\begin{array}{llll}\text { H } & 10.680835346 & 5.797213170 & 5.099667974\end{array}$

Molecular structure of borole-Ge

$\mathrm{E}(\mathrm{SCF})=\mathbf{- 2 2 5 7 . 6 3 8 3 4 7 4 1 3 6 8 1} \mathrm{H}$

B	8.335814994	5.351940235	5.249368744
C	7.514257181	4.837890641	4.048131790
C	8.344514592	4.844528702	2.869634389
C	9.733027189	5.558439645	4.627014281
C	9.668661433	5.274548140	3.215103402
Ge	9.207223878	3.410087307	4.326623225
H	8.006072556	5.445711470	6.396506203
H	10.494955655	5.330322031	2.507586148
H	8.046319403	4.535129401	1.868731605
H	6.489415492	4.468513376	4.000258146
H	10.680497080	5.829564124	5.093731584

Molecular structure of borole-Sn			
E(SCF) $=-394.808476624129 ~ \mathbf{~ H}$			
B	8.337644445	5.346698119	5.248876203
C	7.510044427	4.835232937	4.045437611
C	8.343531635	4.844511728	2.869561303
C	9.738660700	5.558985001	4.626887592
C	9.669394470	5.275093728	3.215475209
Sn	9.262767701	3.195900179	4.380355196
H	7.995777687	5.483023428	6.389516050
H	10.483043662	5.374742314	2.497338330
H	8.034681990	4.579628879	1.858558920
H	6.469452174	4.513425071	3.986619808
H	10.675760561	5.879433688	5.084063293

Molecular structure of borole- Pb

B	8.338554489	5.344347884	5.248303919
C	7.507227189	4.838149191	4.043032102
C	8.342090164	4.846701100	2.870263165
C	9.740097560	5.563280672	4.625592451
C	9.668883839	5.277586551	3.216417645
Pb	9.289579925	3.094390346	4.404008054
H	7.991776496	5.497999848	6.386203291
H	10.477395635	5.392260703	2.494130355
H	8.030386538	4.597588217	1.855706139
H	6.461451825	4.533281716	3.980068956
H	10.673315793	5.901088845	5.078963439

Molecular structure of 4a

$E(S C F)=-2849,83279149304 \mathrm{H}$

Si	5.663916000	4.195893380	4.038995020
C	7.490772439	4.628564751	4.004331035
B	8.305757859	5.354346122	5.118209688
Si	11.295926573	6.042530065	5.482293210
C	8.435242192	4.282393983	2.954280468
C	10.930079216	4.481807001	2.422312908
C	7.748147338	5.950660471	6.455304417

	9.791597666	5.277831272	4.6529336
H	8.891989329	4.672733854	7.749152410
C	8.157141944	5.478258698	7.713490801
C	7.656114115	6.006051367	8.907666129
C	6.713223139	7.039719079	8.818315029
H	6.306243458	7.461206115	9.739391088
C	6.274479659	7.551592678	7.589747658
C	6.806977227	6.992502568	6.421165490
H	6.489837630	7.368406624	5.448503246
C	5.143242694	3.841836751	5.816288124
H	4.069723301	3.601800638	5.857273713
H	5.332994632	4.698965368	6.475311462
H	5.692990514	2.980024721	6.224517929
C	4.646562474	5.652628961	3.398007801
H	4.916364132	5.924861006	2.367858624
H	4.804089748	6.538584792	4.029370084
H	3.572135122	5.414796551	3.411197512
C	5.278845927	2.653999540	3.018154501
H	5.430399219	2.810609506	1.942720429
H	4.232669662	2.351071028	3.178439071
H	5.919079018	1.811495823	3.321792660
C	12.174400459	4.753743897	6.553008731
H	12.518600025	3.899224588	5.951240749
H	11.494629869	4.367925100	7.328019940
H	13.053498494	5.179884540	7.059783996
C	12.506096998	6.741395708	4.213054825
H	13.019477534	5.961454881	3.637255253
H	13.266967037	7.347560547	4.7285332
H	11.985845010	7.393666917	3.496380949
C	10.750043782	7.474054891	6.576828257
H	10.156776623	8.199706154	6.001556859
H	11.633402158	7.996534057	6.975040301
H	10.130872438	7.143478896	7.420171647
C	8.140135168	3.726533285	1.617807544
C	7.237226611	4.392825395	0.782085965
H	6.721038217	5.269448341	1.174705297
C	7.014490939	3.968786534	-0.534172077
C	6.003757300	4.723579009	-1.406816746
C	6.394190603	6.215312528	-1.475369582
H	7.390733958	6.337172034	-1.923594851
H	6.412767600	6.677392793	-0.479125990
H	5.670041089	6.770615112	-2.090194712
C	4.602843300	4.588340644	-0.772462867
H	3.855153544	5.128831908	-1.372485006
H	4.580961153	4.998489642	0.246342920
H	4.301679973	3.532423621	-0.714967823
C	5.945972702	4.175606430	-2.840552900
H	5.219282597	4.755670569	-3.427246622
H	5.627293460	3.123512750	-2.862951470
H	6.920962264	4.252448957	-3.343473500
C	7.732250400	2.858709483	-1.000893586
H	7.580817230	2.525810118	-2.024272621
C	8.647845768	2.170731789	-0.190838286
C	9.461635681	0.969542272	-0.687234583
C	9.101036446	-0.267690935	0.162497171
H	8.031162867	-0.504759871	0.072351684
H	9.320967549	-0.100701940	1.225933266
H	9.679281871	-1.142882857	-0.170570229
C	9.187594100	0.647398286	-2.163341452
H	9.440192993	1.495048257	-2.817019144
H	8.134397715	0.381504641	-2.334894970
H	9.802700374	-0.209144947	-2.474529244
C	10.965610538	1.278572752	-0.524703837
H	11.568934921	0.415528205	-0.845043

$\left.\begin{array}{lccc}\text { H } & 11.257071103 & 2.147182064 & -1.131101420 \\ \text { C } & 8.827878214 & 2.614451357 & 1.120606079 \\ \text { H } & 9.534565007 & 2.107025205 & 1.778152071 \\ \text { C } & 9.783037811 & 4.650426698 & 3.340245432 \\ \text { C } & 10.892306554 & 5.119906278 & 1.178859557 \\ \text { H } & 10.022142375 & 5.730393660 & 0.937536664 \\ \text { C } & 11.921716230 & 4.960079382 & 0.246694279 \\ \text { C } & 11.803983747 & 5.651064233 & -1.117018108 \\ \text { C } & 11.754707335 & 7.178942842 & -0.902313200 \\ \text { H } & 11.663556604 & 7.698446671 & -1.868249975 \\ \text { H } & 12.668714291 & 7.532431509 & -0.403798608 \\ \text { H } & 10.897586990 & 7.468353765 & -0.279160350 \\ \text { C } & 10.500999877 & 5.189938714 & -1.805079338 \\ \text { H } & 10.380243582 & 5.699838120 & -2.772941780 \\ \text { H } & 9.616573689 & 5.404039760 & -1.191240513 \\ \text { H } & 10.513310980 & 4.106089707 & -1.985598468 \\ \text { C } & 12.985003533 & 5.323944046 & -2.042233458 \\ \text { H } & 12.848287733 & 5.831033741 & -3.008139496 \\ \text { H } & 13.059298962 & 4.244420857 & -2.239249326 \\ \text { H } & 13.941513969 & 5.664217140 & -1.619522718 \\ \text { C } & 13.013496714 & 4.155124137 & 0.600592297 \\ \text { H } & 13.818773530 & 4.015045226 & -0.115651965 \\ \text { C } & 13.090339156 & 3.509079820 & 1.843322836 \\ \text { C } & 14.279137224 & 2.627288140 & 2.245556141 \\ \text { C } & 13.773009732 & 1.213018083 & 2.600844082 \\ \text { H } & 13.281051669 & 0.746323209 & 1.735500004 \\ \text { H } & 13.050361158 & 1.236299219 & 3.428008899 \\ \text { H } & 14.613812354 & 0.572250100 & 2.906265981 \\ \text { C } & 15.317742179 & 2.498944532 & 1.121492186 \\ \text { H } & 14.883189182 & 2.047550848 & 0.217740828 \\ \text { H } & 16.143482526 & 1.853922967 & 1.454470299 \\ \text { H } & 15.746049764 & 3.474266227 & 0.849093064 \\ \text { C } & 14.965104464 & 3.251964698 & 3.479487576 \\ \text { H } & 15.818475742 & 2.634820056 & 3.798916245 \\ \text { H } & 14.270945343 & 3.335627111 & 4.327014389 \\ \text { H } & 9.143989333 & 9.057076997 & 6.377688612\end{array}\right) 10.1840393440$

Molecular structure of 4b
 E(SCF) =-2291,75234160886

Sn	8.196081632	3.314477141	7.729551414
C	8.156198892	4.931228935	9.541809995
Cl	8.745320074	7.138662740	7.601138395

B	31	38	8.438825422
Si	6.481238923	5.505738487	10.173140725
Si	11.621244131	4.895160998	6.977839208
C	8.904807446	3.766979542	10.001312669
C	5.470121775	6.124555493	8.707314786
H	5.251428970	5.304239322	8.006266663
H	6.003700746	6.907407002	8.152562299
H	4.507643990	6.535049217	9.0
C	10.207298854	4.596769300	8.176547455
C	10.087411032	3.561951559	9.193443791
C	6.732570226	6.925260108	11.388451982
H	7.315616365	7.729870460	10.917374946
H	7.270033366	6.600421924	12.290651833
H	5.766207149	7.345173101	11.706025027
C	5.502526111	4.107271885	10.978784336
H	5.454226930	3.228731735	10.317420219
H	4.469675107	4.439804558	11.165112859
H	5.935568755	3.777711873	11.931412539
C	10.891791617	5.176112615	5.262357456
H	11.668486433	5.474563229	4.542190095
H	10.127783854	5.965520435	5.290723578
H	10.419361029	4.256795943	4.883147691
C	12.503587821	6.450456245	7.571790371
H	13.322849147	6.727508251	6.891354378
H	12.931584310	6.295860522	8.573279212
H	11.801344986	7.293813456	7.629386930
C	12.872457233	3.489205546	6.878918579
H	12.425113934	2.562663974	6.493617935
H	13.318841103	3.260768218	7.856257316
H	13.682681544	3.782336504	6.192870584
C	11.086736785	2.513493088	9.505973124
C	11.217576274	1.344860213	8.746231352
H	10.559665806	1.192733200	7.886425946
C	12.168579019	0.373112878	9.068833314
C	12.985788437	0.585969147	10.188120928
H	13.726963924	-0.171041758	10.457969922
C	12.872021981	1.738438234	10.973654937
C	11.916696130	2.699108180	10.616944495
H	11.802842396	3.602828144	11.218982347
C	12.330606064	-0.858218709	8.215797705
H	11.388201858	-1.129941139	7.720758486
H	12.668944403	-1.718136273	8.810014545
H	13.079983817	-0.690163503	7.425688026
C	13.738135377	1.941951948	12.190005660
H	14.491385126	1.148652327	12.282408972
H	13.131530610	1.942025018	13.108592428
H	14.262663634	2.908002193	12.148877477
C	8.632066571	2.970003900	11.214150424
C	8.543371027	1.574194219	11.196197522
H	8.622186202	1.047545961	10.243220829
C	8.364481649	0.845956663	12.378165448
C	8.267316421	1.544358756	13.587568527
H	8.125233005	0.984215450	14.515646954
C	8.352076647	2.943173164	13.638476696
C	8.542275386	3.641697382	12.442985216
H	8.636612058	4.729043783	12.458243100
C	8.287414899	-0.658685721	12.337600443
H	7.453318904	-0.997979453	11.704967599
H	8.144066985	-1.079627992	13.341316505
H	9.209035579	-1.087739009	11.916158874
C	8.214596018	3.679895944	14.945967505
H	8.733357668	4.647598632	14.916249924
H	8.621671760	3.094893457	15.782207092
H	7.155453662	3.882012027	15.172762479
Molecular structure of 6b			
E(SCF) = -2675,44563554094			
Sn	17.947321499	12.953497178	14.817024398
B	20.064251446	12.833037358	16.314501199
Cl	16.338261759	11.149276548	15.585778353
Si	20.030030959	9.842819270	15.670404576
Si	20.618578979	15.832817523	16.167887856

C	20.586672359	14.075581165	15.542428351
C	20.779217748	13.649532657	14.199236533
C	20.420028142	12.264599643	14.027124669
C	19.996731641	11.671359010	15.287958479
N	19.133457491	12.626467890	18.820265662
N	21.276376443	12.716790157	18.571341416
C	20.104130279	12.713030786	17.874697051
C	21.046833985	12.636490115	19.942788037
C	19.684750248	12.584324344	20.101948198
C	22.592056672	12.721453833	17.948024508
H	23.203835449	13.532511855	18.362440039
H	22.451203259	12.884412662	16.873353718
H	23.095933051	11.760057073	18.116802653
C	22.150722553	12.612074424	20.938348758
H	21.743299719	12.542661624	21.953634365
H	22.767194421	13.522528349	20.885830771
H	22.818563323	11.750448526	20.785893667
C	18.861962612	12.497512526	21.337441663
H	19.512477798	12.507129725	22.219970390
H	18.269594276	11.570373484	21.370484557
H	18.165420883	13.344533731	21.425881172
C	17.703883873	12.634669852	18.540520465
H	17.170196989	12.209583631	19.396108941
H	17.483412493	12.024937786	17.656870743
H	17.355739907	13.662839127	18.370317777
C	21.845955659	9.326669667	15.531070570
H	21.983936914	8.261449058	15.771740384
H	22.480767996	9.915408847	16.210189451
H	22.208588593	9.494360172	14.505962140
C	19.447629707	9.546724315	17.444178481
H	19.494358766	8.470031230	17.668119792
H	18.401250034	9.862619247	17.563440376
H	20.063084146	10.066829413	18.191782517
C	19.012256958	8.708434584	14.563546102
H	19.006677692	7.693102573	14.990272415
H	19.430948761	8.649746319	13.550743230
H	17.971460026	9.054646642	14.497207324
C	19.598646689	15.928796443	17.763044940
H	19.524956679	16.971701010	18.106974798
H	20.044773020	15.343323878	18.580637727
H	18.576495052	15.558348585	17.595844383
C	22.357532390	16.435055840	16.624620584
H	22.301751696	17.404046377	17.144421335
H	22.989190827	16.569119228	15.736214493
H	22.865735343	15.726549117	17.295632846
C	19.859965189	17.035998540	14.929068905
H	19.817263300	18.055094274	15.343089634
H	18.834633013	16.727214361	14.676314796
H	20.436084543	17.066663833	13.994487174
C	21.222046647	14.504801923	13.079522879
C	22.424774885	15.222299206	13.180822002
H	23.025681392	15.112701218	14.085210246
C	22.872992121	16.047581216	12.145516652
C	22.102368638	16.131751778	10.977335059
H	22.443722656	16.767188886	10.155513712
C	20.908554378	15.412952831	10.835245708
C	20.479219688	14.607279117	11.895485838
H	19.547548387	14.045135433	11.807028317
C	24.143791287	16.845355722	12.292402219
H	23.932084957	17.857172579	12.674371316
H	24.660351973	16.962126371	11.329410946
H	24.836413559	16.367084804	12.998681708
C	20.100002465	15.490441181	9.565245402
H	19.058116562	15.776488644	9.772668691
H	20.071261883	14.513760042	9.058180040
H	20.521715382	16.223714944	8.864995089
C	20.613150711	11.528849811	12.760109598
C	21.879431531	11.519938826	12.155583371
H	22.695124346	12.067896752	12.630868014
C	22.107975596	10.838331442	10.955150947
C	21.044574645	10.144152823	10.364947379
H	21.211120398	9.608186858	9.426565916

C	19.768032718	10.129780439	10.944199370
C	19.567926303	10.834858448	12.134487219
H	18.572687457	10.855971248	12.585455247
C	23.465737248	10.882553594	10.301475608
H	23.561696669	10.114301474	9.522487421
H	24.269110402	10.729064852	11.036414285
H	23.641455491	11.862447214	9.830090779
C	18.637069613	9.356526915	10.316440578
H	18.524725649	8.369799232	10.794053866
H	18.810434195	9.188215747	9.244872385
H	17.678987919	9.881564021	10.434803832

Molecular structure of $[\mathrm{E}]^{+}$

$\mathrm{E}(\mathrm{SCF})=\mathbf{- 2 2 1 4 . 9 4 8 7 8 5 7 9 1 2 1 7} \mathrm{H}$

Sn $18.447092340 \quad 13.25239324$
B $\quad 20.259189037 \quad 12.800798725$
$\begin{array}{llll}\text { Si } & 20.006914802 & 9.800170594 & 15.623351041\end{array}$
$\begin{array}{llll}\text { Si } & 20.537493795 & 15.876697787 & 16.168951619\end{array}$
$\begin{array}{llll}\text { C } & 20.576623718 & 14.095453361 & 15.545707181\end{array}$
C $\quad 20.770161147 \quad 13.676439268 \quad 14.166522098$
$\begin{array}{lllll}\text { C } & 20.534846956 & 12.250811410 & 14.025236183\end{array}$
C 20.20379328411 .64990677715 .307626257
$\begin{array}{llll}\text { N } & 19.181867029 & 12.495818098 & 18.765558100\end{array}$
$\begin{array}{lllll}\mathrm{N} & 21.308673969 & 12.850820127 & 18.687760512\end{array}$
$\begin{array}{llll}\text { C } & 20.209361668 & 12.703408856 & 17.903095303\end{array}$
$\begin{array}{llll}\text { C } & 20.980405336 & 12.744780706 & 20.038150631\end{array}$
C $\quad 19.626141379 \quad 12.523510635 \quad 20.088584255$
$\begin{array}{llll}\text { C } & 22.664339527 & 13.029742758 & 18.182678188\end{array}$
$\begin{array}{lllll}\mathrm{H} & 23.112472476 & 13.930926957 & 18.618262798\end{array}$
H $22.613751990 \quad 13.137014586 \quad 17.094511743$
$\begin{array}{llll}H & 23.280618519 & 12.158057806 & 18.438406989\end{array}$
C $\quad 21.993206413 \quad 12.858367591 \quad 21.119694799$
$\begin{array}{llll}\text { H } & 21.515716554 & 12.739559977 & 22.098620539\end{array}$
H $22.493263301 \quad 13.838329299 \quad 21.107995321$
$\begin{array}{llll}\mathrm{H} & 22.770910579 & 12.085111616 & 21.031322765\end{array}$
$\begin{array}{lllll}\text { C } & 18.711725694 & 12.333568122 & 21.244479117\end{array}$
$\begin{array}{llll}\text { H } & 19.269687420 & 12.419204656 & 22.183534490\end{array}$
$\begin{array}{lllll}\text { H } & 18.235317108 & 11.341657787 & 21.229751537\end{array}$
$\begin{array}{llll}\mathrm{H} & 17.912496441 & 13.089352557 & 21.260823355\end{array}$
$\begin{array}{lllll}\text { C } & 17.793609734 & 12.281689415 & 18.389068200\end{array}$
H $17.408321523 \quad 11.377621950 \quad 18.875859832$
$\begin{array}{llll}\text { H } & 17.745890999 & 12.148633061 & 17.304105655\end{array}$
$\begin{array}{lllll}H & 17.177546706 & 13.142959428 & 18.679543974\end{array}$
C $\quad 21.280044026 \quad 8.827799096 \quad 14.641845359$
$\begin{array}{lllll}\text { H } & 21.264506293 & 7.772512263 & 14.953215414\end{array}$
$\begin{array}{llll}\text { H } & 22.294280731 & 9.214836319 & 14.816881186\end{array}$
$\begin{array}{llll}H & 21.088349423 & 8.869170556 & 13.562135814\end{array}$
$\begin{array}{llll}\text { C } & 20.316714475 & 9.492715751 & 17.461434499\end{array}$
H $\quad 20.336551165 \quad 8.409449789 \quad 17.652568463$
$\begin{array}{lllll}\mathrm{H} & 19.535671671 & 9.921077560 & 18.104129870\end{array}$
$\begin{array}{llll}\mathrm{H} & 21.285372219 & 9.900954815 & 17.784667855\end{array}$
$\begin{array}{llll}\text { C } & 18.258610452 & 9.218393873 & 15.221467253\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.123594751 & 8.165144149 & 15.509871554\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.042754496 & 9.296042092 & 14.147249897\end{array}$
$\begin{array}{llll}\text { H } & 17.503124536 & 9.807842480 & 15.763585042\end{array}$
$\begin{array}{llll}\text { C } & 19.541248047 & 15.885886498 & 17.775634464\end{array}$
$\begin{array}{llll}\text { H } & 19.388410102 & 16.921636002 & 18.113424824\end{array}$
$\begin{array}{llll}\mathrm{H} & 20.046759080 & 15.348761268 & 18.591081745\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.546650722 & 15.436084152 & 17.636463679\end{array}$
$\begin{array}{llll}\text { C } & 22.258352382 & 16.546568841 & 16.550846876\end{array}$
$\begin{array}{llll}\text { H } & 22.170883153 & 17.466738506 & 17.148086422\end{array}$
$\begin{array}{llll}\mathrm{H} & 22.808918450 & 16.798502894 & 15.635207905\end{array}$
$\begin{array}{llll}\text { H } & 22.867360707 & 15.835470604 & 17.126459359\end{array}$
C $\quad 19.680005274 \quad 16.994339498 \quad 14.922271525$
H $19.658254091 \quad 18.03189692715 .287743642$
$\begin{array}{llll}\mathrm{H} & 18.636938943 & 16.684705249 & 14.753836524\end{array}$
H $20.193804869 \quad 16.985963967 \quad 13.951721031$
C $\quad 21.220055722 \quad 14.539001748 \quad 13.056051553$
C $22.409394400 \quad 15.26153455913 .209811601$
$\begin{array}{llll}\mathrm{H} & 22.972646770 & 15.166685479 & 14.139137618\end{array}$
$\begin{array}{llll}\text { C } & 22.901569220 & 16.073958697 & 12.179645499\end{array}$
$\begin{array}{lllll}\text { C } & 22.179284435 & 16.138624019 & 10.983068502\end{array}$

H	22.553676838	16.765647157	10.169784524
C	20.991307620	15.414765446	10.794294488
C	20.524676380	14.616164530	11.841078313
H	19.606701363	14.039656193	11.709092859
C	24.164149040	16.873477539	12.368960969
H	23.934531021	17.884949881	12.739960309
H	24.711221471	16.990876994	11.424215834
H	24.834234162	16.399535471	13.098801181
C	20.237585140	15.504527056	9.493709937
H	19.824651741	16.513710101	9.344595504
H	19.404842916	14.790440630	9.463677467
H	20.897064785	15.296533887	8.638840237
C	20.724736220	11.520831294	12.753912869
C	21.984103110	11.533608839	12.147056010
H	22.791420906	12.111450300	12.600331234
C	22.220961790	10.816642640	10.965855703
C	21.165369299	10.093044892	10.401240111
H	21.338068460	9.537387667	9.476146687
C	19.886336962	10.073264720	10.979867751
C	19.682888197	10.796175692	12.157498011
H	18.689803874	10.810117888	12.612985108
C	23.587591035	10.824836629	10.333207069
H	23.559073412	10.426000266	9.311369600
H	24.292328134	10.208446612	10.912616005
H	24.000921114	11.842618715	10.295246089
C	18.766773711	9.292324339	10.343652129
H	18.976202041	8.212183693	10.368494015
H	18.635984100	9.570345408	9.287892519
H	17.813712549	9.462292205	10.861223174

Literature

1. R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, Pure Appl. Chem., 2001, 73, 1795-1818.
2. T. Heitkemper, L. Naß and C. P. Sindlinger, Dalton Trans., 2020, 49, 2706-2714.
3. F. X. Kohl and P. Jutzi, J. Organomet. Chem., 1983, 243, 31-34.
4. E. S. Taher, P. Guest, A. Benton, X. Ma, M. G. Banwell, A. C. Willis, T. Seiser, T. W. Newton and J. Hutzler, J. Org. Chem., 2017, 82, 211-233.
5. Bruker, SAINT V8.30C, Bruker AXS, WI, USA, Madison, 2013.
6. a.) G.M: Sheldrick, SADABS, University of Göttingen, Göttingen, Germany, 2008; b.) L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr., 2015, 48, 3-10.
7. TWINABS 2012/1, Madison, Wisconsin, USA., 2012.
8. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3.
9. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3.
10. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281-1284.
11. D. Kratzert and I. Krossing, J. Appl. Crystallogr., 2018, 51, 928-934.
12. R. Herbst-Irmer, Zeitschrift für Kristallographie - Crystalline Materials, 2016, 231, 573-581.
13. a.) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73-78; b.) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8, e1327.
14. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
15. a.) A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100; b.) J. P. Perdew and W. Yue, Phys. Rev. B, 1986, 33, 8800-8802; c.) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 58295835; d.) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305; e.) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Acc., 1997, 97, 119-124.
16. a.) E. D. Glendening, C. R. Landis and F. Weinhold, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 1-42; b.) Autor, NBO7.0, University of Wisconsin Madison, 2018.
17. a.) G. Zhurko, Chemcraft - graphical program for visualization of quantum chemistry computations. Ivanovo, Russia, 2005, https://www.chemcraftprog.com/; b.) G. Knizia and J. E. M. N. Klein, Angew. Chem. Int. Ed., 2015, 54, 5518-5522; c.) G. Knizia, IboView, 2015.
18. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theoretica chimica acta, 1990, 77, 123-141.
19. S. S. Rohman, C. Kashyap, S. S. Ullah and A. K. Guha, Polyhedron, 2019, 170, 1-6.
20. R. F. W. Bader, Atoms in Molecules A Quantum Theory, Oxford University Press, Oxford, 1990.
21. T. A. Keith, AIMAll (Version 19.02.13), Overland Parks KS USA, 2019.
22. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
23. T. D. Goddard, C. C. Huang, E. C. Meng, E. F. Pettersen, G. S. Couch, J. H. Morris and T. E. Ferrin, Protein Science, 2018, 27, 14-25.
24. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
25. C. P. Sindlinger, F. S. W. Aicher and L. Wesemann, Inorg. Chem., 2017, 56, 548-560.
26. C. Zeppek, J. Pichler, A. Torvisco, M. Flock and F. Uhlig, J. Organomet. Chem., 2013, 740, 4149.
27. B. Wrackmeyer, A. Sebald and L. H. Merwin, Magnetic Resonance in Chemistry, 1991, 29, 260-263.
28. L. Broeckaert, J. Turek, R. Olejník, A. Růžička, M. Biesemans, P. Geerlings, R. Willem and F. De Proft, Organometallics, 2013, 32, 2121-2134.
29. P. Wilfling, K. Schittelkopf, M. Flock, R. H. Herber, P. P. Power and R. C. Fischer, Organometallics, 2015, 34, 2222-2232.
30. A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford and S. Aldridge, J. Am. Chem. Soc., 2012, 134, 6500-6503.
31. K. M. Krebs, J. Wiederkehr, J. Schneider, H. Schubert, K. Eichele and L. Wesemann, Angew. Chem. Int. Ed., 2015, 54, 5502-5506.
32. K. W. Zilm, G. A. Lawless, R. M. Merrill, J. M. Millar and G. G. Webb, J. Am. Chem. Soc., 1987, 109, 7236-7238.
33. A. D. Phillips, S. Hino and P. P. Power, J. Am. Chem. Soc., 2003, 125, 7520-7521.
34. J. B. Lambert, L. Lin, S. Keinan and T. Müller, J. Am. Chem. Soc., 2003, 125, 6022-6023.
35. J. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin, S. Keller, R. Pöttgen, I. Krossing and C. Jones, Angew. Chem. Int. Ed., 2012, 51, 9557-9561.
36. C. P. Sindlinger and L. Wesemann, Chem. Sci., 2014, 5, 2739-2746.
