Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

One-pot Synthesis of Multi-substituted Conjugated Dienones by

Trapping Allene Carbocation with Active Ylides

Dan Ni, Longlong Song, Yun Zhao and Shunying Liu*

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development,

School of Chemistry and Chemical Engineering, East China Normal University, 3663 North

Zhongshan Road, Shanghai 200062, China

syliu@sist.ecnu.edu.cn.

Table of Contents

1. General Information	2
2. General Procedures	3
3. Reaction Optimization	4
4.Control experiments	10
5. References	13
6. X-ray Diffraction Parameters and Data	14
7. Characterization Data	17
8. NMR Spectra	35

1. General Information

All ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Brucker spectrometers in CDCl₃. Tetramethylsilane (TMS) served as an internal standard ($\delta = 0$) for ¹H NMR, and CDCl₃ was used as internal standard ($\delta = 77.0$) for ¹³C NMR. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). High-resolution mass spectrometry (HRMS) was performed on IonSpec FT-ICR or Waters Micromass Q-TOF micro Synapt High Definition Mass Spectrometer. Yields for all compounds were combined yields for all isomers unless otherwise indicated. All reactions and manipulations were carried out under an N₂ atmosphere. All commercial anhydrous solvents were purchased from Alfa Aesar and used as such unless stated otherwise. 4 Å molecular sieves was dried in a Muffle furnace at 260 °C for 5 h.

2. General Procedure

General procedure for the preparation of phenyl diazoester.¹

$$CO_2Me \xrightarrow{p-ABSA, DBU} CO_2Me$$

To a mixture of methyl phenylacetate (20 mmol) and tosyl azide (30 mmol) in anhydrous MeCN (15 mL), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (30 mmol) was added slowly. The reaction mixture was stirred at room temperature for 12 h. Upon complete consumption of the starting materials, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (5 mL), extracted with CH₂Cl₂ (3 × 30 mL), washed by brine. The combined extracts were dried with Na₂SO₄ and concentrated. The residue was purified by flash chromatography (PE/EA, 50 :1) to afford the phenyl diazoester (3.1 g, 88% yield).

General procedure for the preparation of α-diazo ketone.²

To a mixture of 2-bromoacetophenones (5 mmol, 1.0 equiv) and *N*, *N*^{*}-ditosylhydrazine (5.5 mmol, 1.1 equiv) in THF (30 mL) under N₂. This suspension was cooled to 0°C and DBU (7.5 mmol, 1.5 equiv) was added dropwise. After 30 minutes, the reaction mixture was poured into saturated aqueous sodium hydrogen carbonate solution, extracted with EA. The combined extracts were combined, washed with brine, dried with Na₂SO₄ and concentrated, then purified by flash chromatography to afford α -diazo ketones.

General procedure for Propargylic alcohols.³

To the mixture of corresponding terminal alkyne1 (10 mmol) in THF (15 mL), *n*-BuLi (13 mmol, 6 mL, 2.5M in hexanes) was added dropwise at -78 °C. After 30 minutes, aromatic benzophenone (8 mmol) in THF (20 mL) was added at the same temperature and the mixture was slowly warmed to

room temperature stirred for 16 h. Checking the consumption of raw material, the reaction mixture was quenched with saturated aqueous solution of NH₄Cl (4 mL), extracted with EA (3×30 mL) The combined extracts were washed with brine, dried with Na₂SO₄. After evaporation of the solvent under the reduced pressure, the residue was resolved in DCM and PE by stirred it at 25 °C for 3 h after being filtered to give the propargylic alcohols.

3. Optimization of the reaction conditions

(a) Table S1. Screen of reaction with phenyl diazoester.

 $Ar^1 = p-(N,N-dimethylamino)phenyl R^2=p-bromobenzyl$

entry	acid	acid (xmol%)	4a' conv. (%)	4a' yield (%)	3a' yield (%) d
1	Sc(OTf) ₃	10	<10	<10	_
2	TsOH	10	<10	<10	_
3	rac-PA	10	14	<10	_
4	<i>p</i> -FPhB(OH) ₂	10	20	<10	_
5	<i>p</i> -FPhB(OH) ₂	50	36	<10	_
6	<i>p</i> -FPhB(OH) ₂	80	48	<10	_
7	<i>p</i> -FPhB(OH) ₂	100	62	<10	_
8	<i>p</i> -FPhB(OH) ₂	120	71	<10	_
9	<i>p</i> -FPhB(OH) ₂	150	77	<10	_
10	<i>p</i> -FPhB(OH) ₂	180	77	<10	_
11^c	<i>p</i> -FPhB(OH) ₂	150	80	<10	72

^{*a*} The reaction was carried out on a 0.2 mmol scale. To a mixture of propargylic alcohols **3a** (0.2 mmol) and benzyl alcohols **2a** (0.3 mmol) in 1.5 mL of solvent and phenyl diazoester **1a** (0.3 mmol) in 1.5 mL of solvent was added via a syringe pump at room temperature stirred for 4 h. ^{*b*}Used 1 mol% catalyst. ^{*c*}Used 4Å molecular sieves as additive. ^{*d*}**3a**' convert from the decomposition of **4a**' during the process of column chromatography.

(b) Table S2. Screen the scope of propargylic alcohol.

(c) Table S3. Screen of reaction with α -diazo ketone.

O II ₂N₀ +	$R^2 OH + Ph \longrightarrow Ar^1$	acid (x mol%) Rh ₂ (OAc) ₄ (1 mol%) ➤	Ph Ph O Ar ¹	
Ph	Ar ¹	N ₂ , 25°C, 4Å MS, solvent	OR ² Ar ¹	IIII Ar ¹ PhPh
1a	2a 3a		4a	5a
$Ar^{1} = p - (N, N - R^{2}) = p - bromob$	dimethylamino)phenyl benzyl			
entr	y acid	acid (x mol%)	4a yield (%)	5a yield (%) ^b
1	Sc(OTf) ₃	50	<10	<10
2	Zn(OTf) ₂	50	<10	<10
3	Yb(OTf) ₃	50	<10	<10
4	proline	50	N.R.	N.R.
5	TsOH	50	<10	<10
6	L-tartaric acid	50	<10	27
7	rac-PA	50	<10	18
8	PhB(OH) ₂	50	<10	30
9	p-FPhB(OH) ₂	50	<10	33
10	p-FPhB(OH) ₂	150	<10	58
11	$B(C_{6}F_{5})_{3}$	50	<10	66
12	$B(C_{6}F_{5})_{3}$	20	<10	29
13	B(C ₆ F ₅) ₃	40	<10	50
14	$B(C_{6}F_{5})_{3}$	60	<10	65

^{*a*} The reaction was carried out on a 0.2 mmol scale. To a mixture of propargylic alcohols **3a** (0.2 mmol) and benzyl alcohols **2a** (0.3 mmol) in 1.5 mL of solvent and α -diazo ketone **1a** (0.3 mmol) in 1.5 mL of solvent was added *via* a syringe pump at room temperature stirred for 4 h. The solvent is anhydrous, and 4Å molecular sieve was used as an additive. ^{*b*}**4a** is not stable and the yield was determined by LC-MS.

(d) Table S3. Screen of reaction with α -diazo ketone.

Ph N_2 +	$R^{2}OH + Ph \longrightarrow Ar^{1}OH Ar^{1}$	metal catalyst B(C ₆ F ₅) ₃ (50 mol% N ₂ , T, 4Å MS, solve	$\stackrel{(6)}{\longrightarrow} \qquad \qquad$	$\left[\begin{array}{c} Ar^{1} \\ \bar{A}r^{1} \end{array} \right] \longrightarrow$	Ar ¹ Ar ¹ Ar ¹ Ph Ph
1a	2a 3a		- 4a		5a
$Ar^1 = p - (N, N - R^2 = p - bromob$	dimethylamino)phenyl benzyl				
entry	metal catalyst	T (°C)	solvent	4a yield (%)	5a yield (%)
1	Rh ₂ (OAc) ₄	25	DCM	<10	66
2	Rh ₂ (OAc) ₄	10	DCM	<10	73
3	Rh ₂ (OAc) ₄	0	DCM	<10	82
4	Rh ₂ (OAc) ₄	-10	DCM	<10	79
5	Rh ₂ (OAc) ₄	0	DCE	<10	74
6	Rh ₂ (OAc) ₄	0	THF	<10	51
7	Rh ₂ (OAc) ₄	0	Toluene	<10	43
8	[Rh(COD)Cl] ₂	0	DCM	trace	trace
9	[Pd(allyl)Cl] ₂	0	DCM	<10	34
10	Rh ₂ (esp) ₂	0	DCM	<10	80

^{*a*} The reaction was carried out on a 0.2 mmol scale. To a mixture of propargylic alcohols **3a** (0.2 mmol) and benzyl alcohols **2a** (0.3 mmol) in 1.5 mL of solvent and α -diazo ketones **1a** (0.3 mmol) in 1.5 mL of solvent was added *via* a syringe pump stirred for 4 h. ^{*b*} Used 1 mol % catalyst.

(e) Table S4. Test the effect of water on the reaction.

(f) Table S5. Screen of reaction with water.

Ph	_€ N ₂ + H ₂ O	+ Ph \longrightarrow Ar^1 Ar^1 $Rh_2(OAc)$ Ar^1 DCM	(1 mol) $(1 mol)$ $(1 mol)$ $(1 mol)$	OH Ar ¹ -	Ar ¹ Ar ¹ Ph	h
1a	2a	3a		7a	8a	
Ar' = 	<i>p</i> -(<i>N</i> , <i>N</i> -dimethyla entry	acid (x mol%)	T (°C)	7a yield (%)	8a yield (%)	
	1	rac-PA (50)	0	<10	22	
	2	$B(C_6F_5)_3(50)$	0	<10	77	
	3	PhB(OH) ₂ (150)	0	<10	83	
	4	p-FPhB(OH) ₂ (150)	0	<10	91	
	5	<i>p</i> -FPhB(OH) ₂ (150)	-10	<10	74	
	6	p-FPhB(OH) ₂ (150)	10	<10	82	
	7	p-FPhB(OH) ₂ (150)	25	<10	75	

^{*a*}The reaction was carried out on a 0.2 mmol scale. To a mixture of propargyl alcohols **3a** (0.2 mmol) and benzyl alcohols **2a** (0.3 mmol) in 1.5 mL of solvent and α -diazo ketones **1a** (0.3 mmol) in 1 mL of solvent was added *via* a syringe pump stirred for 4 h.

4.1 Control experiment

Scheme S1.

Scheme S2.

 $Ar^1 = p - (N, N - dimethylamino)phenyl; R^2 = p - bromobenzyl$

4.2 Figure S1.

4.3 Figure S2.

LC-MS spectra of CD₃OH experiment.

4.4 Figure S3.

¹H NMR spectra of D₂O experiment.

5. References.

- (1) H. Keipour, A. Jalba, L. Delage-Laurin and T. Ollevier, J. Org. Chem. 2017, 82, 3000-3010.
- (2) Z. L. Xia, J. D. Hu, Y. Q. Gao, Q. Z. Yao and W. Q. Xie, Chem. Commun. 2017, 53, 7485–7488.
- (3) H. Zhang, H. Tanimoto, T. Morimoto, Y. Nishiyama and K. Kakiuchi, *Org. Lett.* 2013, **15**, 5222–5225.

6. X-ray Diffraction Parameters and Data

Figure S4.

Figure S5.

Bond precision:		C-C = 0.0086 A		Wavelength=1.54184			
Cell:	a=22.6154(1	10)	b=11.0222(3)	c=25.2859((12)		
	alpha=90		beta=109.234(5)	gamma=90			
Temperature	: 173 K						
		Calculat	ed		Reported		
Volume		5951.2(5	5)		5951.2(5)		
Space group		P 21/n			P 1 21/n 1		
Hall group		-P 2yn			-P 2yn		
Mojety form	ulo	C33 H28	3 F3 N2 O2 S, C33 H3	0 F3 N2 O2	0.5(C33 H28 F3 N2 O2 S), 0.5(C33 H30		
Wolety Iom	ula	S [+ solvent]			F3 N2 O2 S)		
Sum formula	ı	C66 H58	3 F6 N4 O4 S2 [+ solv	ent]	C33 H29 F3 N2 O2 S		
Mr		1149.28			574.64		
Dx,g cm-3		1.283			1.283		
Z		4			8		
Mu (mm-1)		1.399			1.399		
F000		2400.0			2400.0		
F000'		2410.15					
h,k,lmax		27,13,30	1		27,13,30		
Nref		10615			10529		
Tmin,Tmax		0.831,0.	382		0.400,1.000		
Tmin'		0.556					
Correction m	nethod= # Rep	ported T I	Limits: Tmin=0.400 Tr	max=1.000 A	AbsCorr =		
MULTI-SCA	AN						
Data comple	teness= 0.992	2	Theta(max)=	67.077			
R(reflections	s)= 0.1198(7	586)		wR2(re	flections)= 0.2966(10529)		
S = 1.099		Npa	r= 747				

Figure S6.

Bond precision:		C-C = 0.0034 A		Wavelength=0.71073		
Cell:	a=20.3167(8	3)	b=11.14	75(5)	c=13.7918(6)
	alpha=90		beta=10	9.564(1)	gamma=90	
Temperature	: 293 K					
		Calculate	ed			Reported
Volume		2943.2(2	2)			2943.2(2)
Space group		P 21/c				P 21/c
Hall group		-P 2ybc				-P 2ybc
Moiety form	ula	C34 H33	3 F N2 O	3		C34 H33 F N2 O3
Sum formula	L	C34 H33	3 F N2 O	3		C34 H33 F N2 O3
Mr		536.62				536.62
Dx,g cm-3		1.211				1.211
Z		4				4
Mu (mm-1)		0.082				0.082
F000		1136.0				1136.0
F000'		1136.52				
h,k,lmax		24,13,16	i			24,13,16
Nref		5490				5479
Tmin,Tmax		0.986,0.9	991			0.652,0.746
Tmin'		0.985				
Correction m MULTI-SCA	nethod= # Rep AN	orted T I	Limits: T	min=0.652 Tr	nax=0.746 A	bsCorr =
Data complet	teness= 0.998	5		Theta(max)=	25.494	
R(reflections	s)= 0.0516(32	286)		wR2(refl	ections)= 0.1	1329(5479)
S = 1.023		Npai	r= 367			

7. Characterization Data of Compounds^a

2-((4-bromobenzyl)oxy)-5,5-bis(4-(dimethylamino)phenyl)-1,3-diphenylpenta-2,4-dien-1-one (5a)

Orange solid, 82% yield, Z/E isomer (50:50) ratio. (Z)-**5**a: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.29 (d, 1H), 7.25 - 7.12 (m, 6H), 6.89 - 6.83 (m, 2H), 6.82 - 6.76 (m, 3H), 6.74 - 6.63 (m, 5H), 6.31 (d, J = 8.3 Hz, 2H), 4.73 (s, 2H), 2.99 (s, 6H), 2.80 (s, 6H). ¹³C NMR (100 MHz,

Chloroform-*d*) δ 150.3, 149.8, 148.5, 147.7, 137.9, 137.2, 136.4, 133.7, 132.4, 131.8, 131.6, 131.5, 131.3, 130.8, 130.3, 130.3, 130.1, 129.6, 129.4, 129.3, 128.7, 128.3, 128.0, 127.8, 127.1, 126.7, 122.1, 120.4, 111.8, 111.6, 71.7, 40.6, 40.5.

Mixture of (*Z/E*) isomers of **5a**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 7.1 Hz, 2H), 7.69 (d, *J* = 7.1 Hz, 2H), 7.62 (d, *J* = 7.0 Hz, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.39 – 7.34 (m, 5H), 7.33 – 7.28 (m, 3H), 7.24 – 7.15 (m, 6H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.89 – 6.85 (m, 2H), 6.80 (t, 3H), 6.73 – 6.69 (m, 4H), 6.67 (s, 1H), 6.60 (d, *J* = 8.4 Hz, 2H), 6.48 (dd, *J* = 15.0, 8.5 Hz, 4H), 6.32 (d, *J* = 8.4 Hz, 2H), 5.96 (s, 1H), 4.74 (s, 2H), 4.62 (s, 2H), 3.00 (s, 6H), 2.92 (d, *J* = 3.9 Hz, 12H), 2.81 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.1, 193.3, 150.3, 150.1, 149.8, 148.5, 148.4, 147.9, 147.7, 139.1, 138.0, 137.7, 137.3, 136.4, 136.0, 133.7, 132.4, 132.1, 131.8, 131.6, 131.5, 131.3, 130.8, 130.4, 130.3, 130.1, 129.6, 129.4, 129.4, 128.7, 128.4, 128.0, 127.9, 127.8, 127.4, 127.1, 126.8, 122.1, 121.9, 121.9, 120.4, 111.8, 111.6, 111.4, 72.5, 71.7, 40.7, 40.5, 40.4, 40.4. HRMS(ESI) Calcd. for C₄₀H₃₈BrN₂O₂ (M+H)⁺ 657.2111, found 657.2107.

2-((4-bromobenzyl)oxy)-5,5-bis(4-(dimethylamino)phenyl)-3-(4-fluorophenyl)-1-phenylpenta-2,4-dien-1-one

Orange solid, 77% yield, Z/E isomer (56:44) ratio. (Z)-(**5b**): ¹H NMR (400 MHz, Chloroform-d) δ 7.58 (d, J = 7.7 Hz, 2H), 7.44 (d, J = 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.26 (s, 2H), 7.23 (d, J = 7.8 Hz, 2H), 7.21 – 7.13 (m, 4H), 6.85 (s, 1H), 6.76 (t, J = 6.8 Hz, 2H), 6.69 (dd, J = 16.0, 8.2 Hz, 4H), 6.34 (t, J = 8.5 Hz, 2H), 6.28 (d, J =

8.2 Hz, 2H), 4.79 (s, 2H), 2.99 (s, 6H), 2.80 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.9, 162.6, 160.1, 150.4, 149.9, 148.7, 148.1, 137.9, 136.2, 133.2 (d, J = 3.1 Hz), 133.0, 132.5, 132.0, 132.0, 131.6, 130.3, 129.4, 129.3, 128.4, 127.9, 122.2, 120.2, 114.0, 113.7, 111.8, 111.5, 71.8, 40.6, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 116.01 – -116.23 (m).

(*E*)-(**5b**): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 7.7 Hz, 2H), 7.55 (t, *J* = 6.6 Hz, 2H), 7.50 (d, *J* = 7.4 Hz, 1H), 7.41 – 7.33 (m, 4H), 7.01 – 6.91 (m, 4H), 6.85 (d, *J* = 7.7 Hz, 2H), 6.65 (d, *J* = 7.3 Hz, 2H), 6.47 (d, *J* = 8.2 Hz, 4H), 6.03 (s, 1H), 4.58 (s, 2H), 2.91 (s, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.3, 163.4, 160.9, 150.2, 149.8, 148.4, 147.8, 138.8, 135.7, 133.6 (d, *J* = 3.3 Hz), 132.3, 131.6, 131.4, 131.3, 130.8, 130.4, 130.1, 129.3, 128.8, 128.4, 127.4, 122.0, 121.3, 114.8, 114.6, 111.6, 111.4, 72.4, 40.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 113.94 – -114.12 (m).

Mixture of (*Z*/*E*) isomers of **5b**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 7.6 Hz, 1.6H), 7.61 – 7.52 (m, 4H), 7.50 (d, *J* = 7.5 Hz, 0.8H), 7.44 (d, *J* = 6.3 Hz, 2H), 7.40 – 7.33 (m, 3.5H), 7.31 (d, *J* = 7.4 Hz, 1H), 7.26 – 7.21 (m, 3H), 7.21 – 7.14 (m, 4H), 6.98 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 1H), 6.88 – 6.82 (m, 2.6H), 6.80 – 6.73 (m, 2.3H), 6.71 (d, *J* = 6.6 Hz, 2H), 6.66 (t, *J* = 7.1 Hz, 3.5H), 6.46 (d, *J* = 7.3 Hz, 3H), 6.34 (t, *J* = 8.3 Hz, 2H), 6.29 (d, *J* = 7.3 Hz, 2H), 6.03 (s, 0.8H), 4.79 (s, 2H), 4.58 (s, 1.6H), 2.99 (s, 6H), 2.90 (s, 9.6H), 2.79 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.9, 193.3, 163.4, 162.6, 160.9, 160.2, 150.4, 150.2, 149.9, 149.8, 148.7, 148.4, 148.1, 147.8, 138.8, 137.9, 136.2, 135.7, 133.6 (d, *J* = 3.3 Hz), 133.2 (d, *J* = 3.3 Hz), 133.0, 132.5, 132.3, 132.1, 132.0, 131.6, 131.4, 131.3, 130.8, 130.4, 130.4, 130.1, 129.4, 129.3, 129.3, 128.8, 128.4, 128.4, 127.9, 127.4, 122.2, 122.0, 121.3, 120.2, 114.8, 114.6, 114.0, 113.8, 111.8, 111.6, 111.5, 111.4, 72.4, 71.9, 40.6, 40.5, 40.4, 40.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.91 – -114.09 (m), -115.99 – -116.13 (m). HRMS(ESI) Calcd. for C₄₀H₃₇BrFN₂O₂ (M+H)⁺ 675.2017, found 675.2001.

$\label{eq:linear} 2-((4-bromobenzyl)oxy)-5, 5-bis(4-(dimethylamino)phenyl)-3-(4-ethylphenyl)-1-phenylpenta-2, 4-dien-1-one (dimethylamino)phenyl)-3-(4-ethylphenyl)-1-phenylpenta-2, 4-dien-1-one (dimethylamino)phenylpenta-3, 4-dien-1-one (dimethylamino)pheny$

(5c)

Orange solid, 80% yield, *Z/E* isomer (46:54) ratio. Mixture of (*Z/E*) isomers of **5c**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.60 (d, *J* = 7.6 Hz, 1.7H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.42 (d, *J* = 7.2 Hz, 1.8H), 7.35 (d, *J* = 7.8 Hz, 4H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.25 – 7.19 (m, 3H), 7.16 (d, *J* = 8.7 Hz, 4H),

7.04 (d, J = 7.3 Hz, 2H), 6.92 (d, J = 7.5 Hz, 2H), 6.81 – 6.72 (m, 4H), 6.66 (d, J = 7.6 Hz, 1.7H), 6.56 (d, J = 7.7 Hz, 2H), 6.49 (t, J = 6.8 Hz, 3.5H), 6.44 (d, J = 7.6 Hz, 2H), 6.28 (d, J = 7.5 Hz, 1.7H), 5.91 (s, 1H), 4.71 (s, 1.7H), 4.61 (s, 2H), 2.97 (s, 5H), 2.89 (d, J = 2.6 Hz, 12H), 2.79 (s, 5H), 2.66 (q, J = 7.6 Hz, 2H), 2.25 (q, J = 7.6 Hz, 1.7H), 1.25 (t, J = 7.4 Hz, 3.2H), 0.92 (t, J = 7.6 Hz, 2.5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3, 193.4, 150.3, 150.1, 149.8, 149.6, 148.4, 148.2, 147.7, 147.7, 144.3, 142.6, 139.4, 138.2, 136.5, 136.1, 134.9, 134.4, 134.0, 132.2, 132.0, 131.9, 131.8, 131.6, 131.5, 131.4, 131.3, 130.8, 130.5, 130.3, 130.1, 129.7, 129.5, 129.4, 129.3, 128.7, 12

128.3, 127.8, 127.6, 127.5, 126.6, 122.2, 122.1, 121.8, 120.5, 111.8, 111.6, 111.4, 72.5, 71.7, 40.5, 40.5, 40.4, 40.4, 28.8, 28.5, 15.6, 15.5. HRMS(ESI) Calcd. for C₄₂H₄₁BrN₂O₂Na (M+Na)⁺ 707.2244, found 707.2219.

2-((4-bromobenzyl)oxy)-5,5-bis(4-(dimethylamino)phenyl)-1-phenyl-3-(m-tolyl)penta-2,4-dien-1-one (5d)

Orange solid, 83% yield, *Z/E* isomer (44:56) ratio. Mixture of (*Z/E*) isomers of **5d**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 7.7 Hz, 1.6H), 7.49 (t, *J* = 8.1 Hz, 2.4H), 7.43 (d, *J* = 7.0 Hz, 3H), 7.39 – 7.32 (m, 4H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 9.0 Hz, 4H), 7.15 (t, *J* = 7.5 Hz, 2H), 7.08 (d, *J* = 7.7 Hz, 1H),

7.03 (d, J = 7.9 Hz, 2H), 6.91 (d, J = 8.2 Hz, 2H), 6.78 (d, J = 10.0 Hz, 2.4H), 6.67 (d, J = 8.2 Hz, 2.4H), 6.59 (d, J = 8.7 Hz, 3.5H), 6.47 (dd, J = 14.5, 8.3 Hz, 4.8H), 6.30 (d, J = 8.2 Hz, 1.6H), 5.93 (s, 1H), 4.73 (s, 1.6H), 4.60 (s, 2H), 2.99 (s, 5H), 2.91 (d, J = 4.2 Hz, 12H), 2.80 (s, 5H), 2.30 (s, 3H), 1.91 (s, 2.5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.1, 193.4, 150.3, 150.1, 149.7, 149.7, 148.4, 148.3, 147.9, 147.6, 139.2, 138.2, 137.5, 137.4, 136.9, 136.4, 136.1, 136.0, 134.1, 132.2, 132.0, 131.8, 131.5, 131.5, 131.5, 131.3, 130.8, 130.2, 130.1, 129.4, 129.3, 129.2, 128.8, 128.7, 128.7, 128.3, 127.9, 127.7, 127.4, 127.4, 127.0, 126.7, 122.1, 121.9, 120.4, 111.8, 111.6, 111.5, 111.4, 72.5, 71.7, 40.6, 40.5, 40.4, 40.4, 21.5, 20.8. HRMS(ESI) Calcd. for C₄₁H₄₀BrN₂O₂ (M+H)⁺ 671.2268, found 671.2258.

5,5-bis(4-(dimethylamino)phenyl)-2-((2-methoxybenzyl)oxy)-3-(4-methoxyphenyl)-1-phenylpenta-2,4-dien-

5H), 6.71 (d, J = 8.4 Hz, 3.3H), 6.63 (t, J = 7.9 Hz, 4H), 6.46 (d, J = 9.3 Hz, 4H), 6.26 (d, J = 8.6 Hz, 1.7H), 6.19 (d, J = 8.4 Hz, 1.6H), 5.92 (s, 1H), 4.89 (s, 1.6H), 4.75 (s, 2H), 3.80 (s, 3H), 3.71 (s, 3H), 3.64 (s, 2.4H), 3.51 (s, 2.4H), 2.97 (s, 5H), 2.90 (s, 12H), 2.77 (s, 5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.2, 193.3, 159.1, 158.0, 157.6, 157.3, 150.2, 150.0, 149.6, 149.6, 148.8, 147.8, 147.4, 147.1, 139.3, 138.3, 133.6, 132.4, 132.2, 132.1, 131.7, 131.6, 131.1, 130.7, 130.6, 130.5, 130.2, 129.8, 129.6, 129.4, 129.4, 129.4, 129.3, 128.8, 128.1, 127.7, 127.6, 125.7, 125.3, 122.5, 121.1, 120.3, 120.3, 113.3, 112.6, 111.8, 111.6, 111.6, 111.5, 110.2, 110.0, 67.7, 67.6, 55.3, 55.1, 55.1, 55.0, 40.7, 40.6, 40.5, 40.4. HRMS(ESI) Calcd. for C₄₂H₄₂N₂O₄ (M+H)⁺ 639.3217, found 639.3208.

2-((4-bromobenzyl)oxy)-5,5-bis(4-(dimethylamino)phenyl)-3-(naphthalen-2-yl)-1-phenylpenta-2,4-dien-1-

one (5f)

Orange solid, 85% yield, Z/E isomer (50:50) ratio. (E)-(5f): ¹H NMR (400 MHz, Chloroform-d) δ 8.00 (s, 1H), 7.86 – 7.77 (m, 4H), 7.74 (d, J = 8.8 Hz, 2H), 7.52 (t, 1H), 7.48 – 7.43 (m, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.92 (d, *J* = 8.2 Hz, 2H), 6.65 (d, *J* = 8.4 Hz, 2H), 6.48 (d, *J* = 8.3 Hz, 2H), 6.42 (d, J = 8.2 Hz, 2H), 6.10 (s, 1H), 4.63 (s, 2H), 2.91 (s, 6H), 2.84 (s, 6H). ¹³C NMR (100 MHz, Chloroform-

d) δ 193.5, 150.2, 149.8, 148.6, 148.4, 139.1, 135.9, 135.2, 133.2, 132.9, 132.2, 131.6, 131.5, 131.3, 130.8, 130.1, 129.4, 129.0, 128.8, 128.4, 128.3, 127.6, 127.4, 127.3, 126.1, 125.9, 121.9, 121.8, 111.6, 111.4, 72.7, 40.4, 40.3. Mixture of (Z/E) isomers of **5**f: ¹H NMR (400 MHz, Chloroform-d) δ 8.00 (s, 1H), 7.86 – 7.77 (m, 4H), 7.77 – 7.71 (m, 2H), 7.59 – 7.51 (m, 3H), 7.46 (d, J = 7.7 Hz, 4H), 7.42 – 7.35 (m, 4H), 7.33 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 10.6 Hz, 4H), 7.25 – 7.19 (m, 4H), 7.15 (s, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 7.03 (t, *J* = 7.7 Hz, 4H), 6.94 (t, 4H), 6.68 (d, J = 7.2 Hz, 4H), 6.65 (d, J = 8.5 Hz, 2H), 6.47 (d, J = 8.4 Hz, 2H), 6.42 (d, J = 8.3 Hz, 2H), 6.09 (s, 1H), 6.00 (d, *J* = 8.2 Hz, 2H), 4.85 (s, 2H), 4.63 (s, 2H), 2.99 (s, 6H), 2.91 (s, 6H), 2.84 (s, 6H), 2.46 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 194.1, 193.4, 150.4, 150.2, 149.8, 149.5, 149.0, 148.6, 148.4, 148.1, 139.1, 138.1, 136.4, 135.9, 135.2, 134.8, 133.9, 133.2, 132.9, 132.5, 132.1, 132.1, 131.6, 131.6, 131.5, 131.3, 130.8, 130.3, 130.1, 129.4, 128.9, 128.9, 128.9, 128.4, 128.3, 128.2, 127.9, 127.7, 127.6, 127.4, 127.4, 127.3, 126.8, 126.6, 126.1, 125.9, 125.1, 125.0, 122.2, 121.9, 121.8, 120.1, 111.8, 111.5, 111.4, 111.2, 72.7, 71.9, 40.5, 40.4, 40.3, 111.4, 111.2, 111.4, 111.2, 111.4, 111.2, 111.440.2. HRMS(ESI) Calcd. for C₄₄H₄₀BrN₂O₂ (M+H)⁺ 707.2268, found 707.2234.

2-((4-bromobenzyl)oxy)-5,5-bis(4-(dimethylamino)phenyl)-1-(4-fluorophenyl)-3-(thiophen-3-yl)penta-2,4dien-1-one (5g)

Orange solid, 76% yield, Z/E isomer (26:74) ratio. (E)-(5g): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, J = 2.9 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.39 (d, J = 8.0 Hz, 2H), 7.31 (t, *J* = 4.2 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.95 (t, *J* = 8.5 Hz, 2H), 6.82 (d, J = 8.3 Hz, 2H), 6.69 (d, J = 8.3 Hz, 2H), 6.51 (d, J = 8.4 Hz, 2H), 6.44 (d, J =

8.3 Hz, 2H), 6.01 (s, 1H), 4.65 (s, 2H), 2.92 (d, J=3.9 Hz, 12H). ¹³C NMR (100 MHz, Chloroform-d) δ 191.5, 166.3, 163.8, 150.2, 149.7, 147.6, 146.8, 138.7, 135.7, 135.0, 135.0, 131.6, 131.3, 131.2, 130.7, 130.2, 129.3, 128.5, 127.2, 125.9, 125.4, 124.9, 122.2, 120.5, 115.3, 115.1, 111.5, 111.5, 72.0, 40.4, 40.3. ¹⁹F NMR (376 MHz, Chloroform-d) δ -106.8 – -106.9 (m). HRMS(ESI) Calcd. for C₃₈H₃₄BrFN₂O₂SNa (M+Na)⁺ 703.1401, found 703.1378. 20 / 95

2-((4-bromobenzyl)oxy)-3-cyclopropyl-5,5-bis(4-(dimethylamino)phenyl)-1-phenylpenta-2,4-dien-1-one (5h)

Orange solid, 73% yield, *Z/E* isomer (25:75) ratio. Mixture of (*Z/E*) isomers of **5h**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.5 Hz, 0.9H), 7.45 (d, *J* = 8.0 Hz, 2.4H), 7.40 (d, *J* = 7.5 Hz, 2.8H), 7.37 – 7.31 (m, 1.3H), 7.29 (d, *J* = 6.8 Hz, 1H), 7.25 (d, *J* = 6.8 Hz, 1.8H), 7.18 (d, *J* = 7.7 Hz, 0.9H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* =

7.5 Hz, 0.7H), 6.99 (d, J = 7.5 Hz, 0.8H), 6.88 (d, J = 7.6 Hz, 2H), 6.65 (t, J = 6.7 Hz, 1.6H), 6.58 (d, J = 8.5 Hz, 2H), 6.50 (d, J = 7.8 Hz, 2H), 6.45 (d, J = 7.8 Hz, 1.8H), 6.25 (s, 0.3H), 5.41 (s, 1H), 4.61 (s, 2H), 4.43 (s, 0.7H), 2.98 (d, J = 3.1 Hz, 4H), 2.93 (s, 6H), 2.88 (s, 6H), 2.28 (p, J = 7.2 Hz, 1H), 1.38 (t, J = 7.1 Hz, 0.3H), 0.80 (d, J = 6.9 Hz, 4H), 0.34 (dd, J = 24.5, 6.9 Hz, 1.3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5, 192.4, 150.2, 150.0, 149.9, 149.6, 148.5, 148.1, 147.9, 146.7, 139.2, 137.9, 136.6, 136.5, 136.3, 135.1, 132.7, 132.2, 131.8, 131.6, 131.5, 131.4, 131.2, 130.9, 130.3, 129.9, 129.8, 129.7, 129.3, 129.2, 128.9, 128.1, 128.0, 127.3, 122.0, 121.7, 117.8, 116.7, 111.8, 111.5, 111.4, 111.4, 72.1, 72.0, 40.5, 40.5, 40.4, 13.5, 13.0, 7.8, 6.1. HRMS(ESI) Calcd. for C₃₇H₃₇BrN₂O₂Na (M+Na)⁺ 621.2111, found 621.2090.

3-(2,2-bis(4-(dimethylamino)phenyl)vinyl)-2-((4-bromobenzyl)oxy)-1-phenylhept-2-en-1-one (5i)

Orange solid, 75% yield, *Z/E* isomer (33:67) ratio. Mixture of (*Z/E*) isomers of **5i**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 7.9 Hz, 2H), 7.35 (d, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 8.7 Hz, 2H), 7.20 (d, *J* = 9.6 Hz, 3H), 7.05 (d, *J* = 8.3 Hz, 1.2H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.94 (t, *J* = 7.3 Hz, 2H), 6.81 (d, *J* = 8.3 Hz,

2H), 6.77 (d, J = 8.2 Hz, 2H), 6.58 (t, J = 7.6 Hz, 2H), 6.46 (d, J = 8.3 Hz, 2H), 6.41 (d, J = 8.2 Hz, 2H), 6.34 (s, 0.5H), 5.99 (s, 1H), 4.40 (s, 1.9H), 4.38 (s, 0.9H), 2.91 (s, 6H), 2.87 (s, 6H), 2.84 (s, 6H), 2.14 (t, J = 7.8 Hz, 2H), 1.83 (t, J = 7.7 Hz, 1H), 1.40 – 1.29 (m, 3H), 1.18 – 1.12 (m, 2H), 0.97 – 0.90 (m, 1H), 0.79 (t, J = 7.2 Hz, 3.2H), 0.61 (t, J = 7.3 Hz, 1.6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.6, 191.6, 150.2, 150.1, 150.0, 149.5, 147.4, 147.3, 146.0, 145.4, 139.1, 138.5, 136.3, 136.2, 136.1, 136.0, 135.8, 132.2, 131.9, 131.5, 131.4, 131.1, 131.1, 130.7, 130.3, 129.3, 129.1, 128.9, 128.6, 128.3, 127.8, 122.2, 122.1, 120.9, 119.6, 111.8, 111.7, 111.5, 72.7, 72.3, 40.5, 40.5, 40.3, 32.0, 30.7, 30.2, 29.0, 23.0, 22.4, 14.0, 13.8. HRMS(ESI) Calcd. for C₃₈H₄₂BrN₂O₂ (M+H)⁺ 637.2261, found: 637.2243.

1-(benzo[d][1,3]dioxol-5-yl)-2-((4-bromobenzyl)oxy)-5,5-bis(4-(dimethylamino)phenyl)-3-(4-methoxypheny-

l)penta-2,4-dien-1-one (5j)

Orange solid, 81% yield, Z/E isomer (53:47) ratio. Mixture of (Z/E) isomers of 5j: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 8.9 Hz, 1.8H), 7.40 (d, J = 8.5 Hz, 2H), 7.34 (dd, J = 8.1, 2.7 Hz, 3H), 7.25 – 7.12 (m, 8H), 7.02 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.3 Hz, 2H), 6.83 – 6.78 (m, 5H), 6.76 (s, 2H), 6.73 – 6.69 (m, 2H), 6.64 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.1 Hz, 1H), 6.51 (d, J = 8.4 Hz, 1.8H), 6.42 (d, J = 8.3 Hz, 1.8H), 6.30 (dd, J = 13.5, 8.3 Hz, 4H), 6.02 (s, 1H), 5.97 (s, 1.8H), 5.90 (s, 2H), 4.67 (s, 2H), 4.57 (s, 1.8H), 3.79 (s, 2.7H), 3.54 (s, 3H), 2.96 (s, 6H), 2.88 (d, J = 7.1 Hz, 11H), 2.79 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 192.4, 191.7, 159.2,

158.2, 151.3, 151.0, 150.3, 150.2, 149.7, 149.7, 147.8, 147.7, 147.5, 147.3, 147.3, 147.1, 136.5, 136.0, 133.2, 132.7, 132.0, 131.9, 131.8, 131.5, 131.4, 131.4, 131.0, 130.8, 130.2, 130.0, 130.0, 129.8, 129.4, 129.3, 128.8, 127.6, 126.4, 125.3, 122.0, 121.9, 121.7, 120.5, 113.4, 112.8, 111.8, 111.6, 111.6, 111.6, 108.8, 108.8, 107.7, 107.5, 101.7, 101.6, 72.3, 71.6, 55.3, 55.0, 40.6, 40.5, 40.5, 40.4. HRMS(ESI) Calcd. for $C_{42}H_{39}BrN_2O_5Na$ (M+Na)⁺ 753.1935, found 753.1911.

2-((4-bromobenzyl)oxy)-5,5-bis(4-(dimethylamino)phenyl)-3-(4-methoxyphenyl)-1-(naphthalen-2-yl)penta-2,4-dien-1-one (5k)

Orange solid, 83% yield, Z/E isomer (47:53) ratio. Mixture of (Z/E) isomers of **5k**: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 9.5 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 1H), 7.83 – 7.76 (m, 4H), 7.73 (d, *J* = 9.0 Hz, 3.7H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.53 – 7.45 (m, 2.8H), 7.42 (d, J = 7.9 Hz, 2H), 7.35 (d, J = 8.3

Hz, 2H), 7.25 (d, *J* = 7.4 Hz, 3.6H), 7.04 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 7.2 Hz, 4H), 6.87 (s, 0.9H), 6.85 - 6.77 (m, 3.6H), 6.70 (d, J = 8.8 Hz, 1.8H), 6.60 (d, J = 8.0 Hz, 2H), 6.42 - 6.29 (m, 5.8H), 6.18 (d, J = 8.5 Hz, 1.8H), 6.03 (s, 1H), 4.79 (s, 1.8H), 4.65 (s, 2H), 3.85 (s, 3H), 3.41 (s, 2.7H), 3.00 (s, 5.4H), 2.85 (s, 6H), 2.81 (s, 5.4H), 2.78 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 194.2, 193.4, 159.4, 158.2, 150.3, 150.1, 149.7, 149.5, 148.2, 147.7, 147.7, 147.5, 136.5, 135.9, 135.9, 135.4, 135.3, 135.2, 133.5, 132.7, 132.2, 132.0, 131.8, 131.6, 131.5, 131.5, 131.4, 131.0, 130.9, 130.8, 130.4, 130.3, 130.1, 130.1, 129.8, 129.7, 129.5, 129.3, 128.7, 128.1, 127.9, 127.9, 127.7, 129.1,127.6, 127.4, 126.3, 126.3, 124.8, 124.8, 122.1, 122.0, 121.8, 120.6, 113.6, 112.9, 111.8, 111.6, 111.5, 111.3, 72.4, $71.7, 55.4, 55.0, 40.6, 40.5, 40.4, 40.1. HRMS(ESI) Calcd. for C_{45}H_{42}BrN_2O_3 (M+H)^+ \ 737.2373, found \ 737.2330.$

5,5-bis(4-(dimethylamino)phenyl)-2-methoxy-3-(4-methoxyphenyl)-1-phenylpenta-2,4-dien-1-one (51)

Orange solid, 72% yield, Z/E isomer (43:57) ratio. Mixture of (Z/E) isomers of **51**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 7.7 Hz, 3.6H), 7.70 (d, J = 6.8 Hz, 2H), 7.49 (t, 1H), 7.35 (q, J = 7.1 Hz, 3H), 7.30 (d, J = 6.8 Hz, 1.5H), 7.26 – 7.19 (m, 2H), 6.96 – 6.88 (m, 5.6H), 6.85 (d, J = 6.6 Hz, 1.5H), 6.79 (s, 0.7H), 6.68 (d, J = 6.9 Hz, 1.6H), 6.61 (d, J = 6.8 Hz, 2H), 6.52 – 6.45 (m, 4H), 6.42 (d, J = 6.7 Hz, 1.5H), 6.31 (d,

 $J = 6.6 \text{ Hz}, 1.5\text{H}, 5.89 \text{ (s, 1H)}, 3.84 \text{ (s, 3H)}, 3.56 \text{ (s, 2.2H)}, 3.52 \text{ (s, 3H)}, 3.49 \text{ (s, 2.1H)}, 2.98 \text{ (s, 4.7H)}, 2.92 \text{ (s, 12H)}, 2.83 \text{ (s, 4.4H)}. {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{Chloroform-}d) \delta 194.3, 193.3, 159.4, 158.3, 150.3, 150.1, 149.8, 149.7, 149.2, 148.5, 147.9, 147.1, 139.6, 138.3, 132.4, 132.0, 131.8, 131.5, 131.4, 131.0, 130.9, 130.7, 130.1, 130.1, 129.9, 129.4, 129.4, 129.2, 129.1, 128.6, 128.3, 128.0, 127.4, 122.2, 120.5, 113.6, 112.9, 111.8, 111.7, 111.6, 111.4, 58.4, 58.0, 55.3, 55.0, 40.6, 40.5, 40.5, 40.4, \text{HRMS}(\text{ESI}) \text{ Calcd. for } \text{C}_{35}\text{H}_{36}\text{N}_2\text{O}_3 \text{ (M+H)}^+ 532.2799 \text{, found } 533.2767.$

5,5-bis(4-(dimethylamino)phenyl)-2-ethoxy-3-(4-methoxyphenyl)-1-phenylpenta-2,4-dien-1-one (5m)

Orange solid, 68% yield, *Z/E* isomer (40:60) ratio. Mixture of (*Z/E*) isomers of **5m**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.71 (m, 5.3H), 7.47 (t, *J* = 7.1 Hz, 1H), 7.38 – 7.30 (m, 3.5H), 7.29 (s, 0.7H), 7.26 – 7.21 (m, 1.5H), 6.93 (s, 0.7H), 6.90 (d, *J* = 8.1 Hz, 4H), 6.84 (d, *J* = 8.0 Hz, 1.5H), 6.79 (d, *J* = 7.9 Hz, 1.4H), 6.68 (d, *J* = 8.3 Hz, 1.5H), 6.64 (d, *J* = 8.1 Hz, 2H), 6.53 – 6.44 (m, 4H), 6.35 (d, *J* = 8.0 Hz, 1.4H), 6.26 (d, *J* = 8.0

Hz, 1.4H), 5.93 (s, 1H), 3.84 (s, 3H), 3.79 (q, 1.4H), 3.72 (q, 2H), 3.54 (s, 2H), 2.98 (s, 4.5H), 2.91 (s, 12H), 2.81 (s, 4.3H), 1.27 (t, J = 6.8 Hz, 2H), 1.17 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.6, 193.6, 159.2, 158.1, 150.2, 150.1, 149.7, 149.6, 148.9, 147.9, 147.5, 146.9, 139.2, 138.1, 132.4, 132.2, 132.1, 131.8, 131.6, 131.5, 130.9, 130.7, 130.2, 130.0, 129.5, 129.4, 129.3, 129.3, 129.0, 128.7, 128.2, 128.0, 127.5, 122.3, 120.7, 113.5, 112.8, 111.9, 111.6, 111.5, 66.8, 66.4, 55.3, 55.0, 40.7, 40.5, 40.5, 40.4, 15.8, 15.4. HRMS(ESI) Calcd. for C₃₆H₃₉N₂O₃ (M+H)⁺ 547.2955, found 547.2924.

5,5-bis(4-(dimethylamino)phenyl)-2-isopropoxy-3-(4-methoxyphenyl)-1-phenylpenta-2,4-dien-1-one (5n)

Orange solid, 70% yield, Z/E isomer (67:33) ratio. Mixture of (Z/E) isomers of **5n**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 7.9 Hz, 3H), 7.75 (d, J = 7.4 Hz, 1H), 7.45 (t, J = 7.5 Hz, 0.6H), 7.38 – 7.30 (m, 2H), 7.28 – 7.21 (m, 4H), 7.05 (s, 1H), 6.85 (t, J = 7.9 Hz, 2H), 6.78 – 6.70 (m, 4H), 6.70 – 6.64 (m, 3H), 6.48 (d, J = 8.3 Hz, 1H),

6.43 (d, *J* = 8.2 Hz, 1H), 6.28 (d, *J* = 8.3 Hz, 2H), 6.21 (d, *J* = 8.7 Hz, 2H), 6.04 (s, 0.5H), 4.11 – 4.01 (m, 1H), 4.00 **23** / **95**

-3.91 (m, 0.5H), 3.81 (s, 1.5H), 3.51 (s, 3H), 2.96 (s, 6H), 2.89 (s, 6H), 2.78 (s, 6H), 1.28 (d, J = 6.0 Hz, 6H), 1.10 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5, 193.5, 158.9, 157.9, 150.2, 150.0, 149.6, 148.6, 147.2, 146.9, 146.8, 138.8, 138.0, 132.7, 132.5, 132.4, 132.2, 131.9, 131.6, 131.6, 130.9, 130.7, 130.5, 129.9, 129.4, 129.3, 129.0, 128.9, 128.5, 128.3, 128.0, 127.9, 122.6, 121.2, 113.3, 112.7, 111.9, 111.7, 111.6, 111.5, 73.3, 73.2, 55.3, 55.0, 40.7, 40.5, 40.5, 40.5, 22.9, 22.9. HRMS(ESI) Calcd. for C₃₇H₄₁N₂O₃ (M+H)⁺ 561.3112, found 561.3106.

2-(cyclopentyloxy)-5,5-bis(4-(dimethylamino)phenyl)-3-(4-methoxyphenyl)-1-phenylpenta-2,4-dien-1-one

Orange solid, 76% yield, Z/E isomer (56:44) ratio. Mixture of (Z/E) isomers of **50**: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.67 (m, 5H), 7.47 (t, J = 7.3 Hz, 1H), 7.39 – 7.30 (m, 2.7H), 7.29 – 7.19 (m, 4.5H), 7.01 (s, 1H), 6.85 (t, J = 7.2 Hz, 3H), 6.73 (t, 4H), 6.67 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.1 Hz, 1.6H), 6.46 (t, J = 6.9 Hz, 3H), 6.28 (d, J

= 8.2 Hz, 2H), 6.21 (d, *J* = 8.2 Hz, 2H), 6.04 (s, 0.8H), 4.41 (s, 1H), 4.26 (s, 0.8H), 3.82 (s, 2.4H), 3.52 (s, 3H), 2.97 (s, 6H), 2.90 (s, 9.4H), 2.79 (s, 6H), 1.99 – 1.83 (m, 4H), 1.75 – 1.64 (m, 4H), 1.63 – 1.54 (m, 4H), 1.53 – 1.46 (m, 1.5H), 1.43 – 1.39 (m, 1H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5, 193.5, 158.8, 157.9, 150.1, 150.0, 149.6, 149.5, 148.4, 147.1, 146.9, 146.5, 139.1, 138.0, 132.4, 132.3, 132.3, 132.2, 131.9, 131.6, 130.8, 130.7, 130.6, 129.8, 129.4, 129.2, 129.0, 128.9, 128.4, 128.3, 127.9, 122.5, 120.8, 113.2, 112.7, 111.9, 111.7, 111.6, 111.5, 82.6, 82.1, 55.3, 55.0, 40.7, 40.5, 40.5, 33.1, 33.0, 23.9, 23.6. HRMS(ESI) Calcd. for C₃₉H₄₃N₂O₃ (M+H)⁺ 587.3268, found 587.3246.

3,3-bis(4-(dimethylamino)phenyl)-5-(4-fluorophenyl)-1-phenyl-2-(2,2,2-trifluoroethoxy)pent-4-yn-1-one (6a)

Gray-green oil, 85% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, J = 7.5 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.29 – 7.21 (m, 4H), 7.15 (t, J = 6.8 Hz, 2H), 6.90 (t, J = 8.4 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 6.54 (d,

J = 8.3 Hz, 2H, 5.70 (s, 1H), 3.90 (dq, J = 12.2, 9.6 Hz, 1H), 3.76 (dq, J = 13.5, 8.3 Hz, 1H), 2.93 (s, 6H), 2.86 (s, 6H).¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 163.6 (d, J = 250.3 Hz), 149.5, 138.1, 133.4, 133.4, 132.5, 129.9, 129.6, 129.1, 129.0, 128.9, 128.0, 123.6 (q, J = 279.9 Hz), 119.4 (d, J = 3.6 Hz), 115.2 (d, J = 21.7 Hz), 112.0, 111.8, 91.4, 87.6, 86.5, 67.3 (d, J = 34.6 Hz), 52.1, 40.5, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.18 (t, J = 8.7 Hz), -111.58 – -111.72 (m). HRMS(ESI) Calcd. for C₃₅H₃₂F₄N₂O₂Na (M+Na)⁺ 611.2292, found 611.2250.

5-(4-chlorophenyl)-3,3-bis(4-(dimethylamino)phenyl)-1-phenyl-2-(2,2,2-trifluoroethoxy)pent-4-yn-1-one (6b)

Gray-green oil, 86% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 7.7 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.25 – 7.19 (m, 4H), 7.16 (d, *J* = 7.8 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 6.64 (d, *J* = 8.1 Hz, 2H), 6.51 (d,

J = 8.1 Hz, 2H), 5.67 (s, 1H), 3.90 (dq, J = 13.1, 8.6 Hz, 1H), 3.57 (dq, J = 13.1, 8.6 Hz, 1H), 2.91 (s, 6H), 2.83 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 149.5, 138.1, 133.9, 132.8, 132.6, 129.7, 129.6, 129.0, 128.8, 128.3, 128.0, 123.6 (q, J = 279.2 Hz), 121.8, 112.0, 111.8, 92.8, 87.5, 86.4, 67.2 (q, J = 34.9 Hz), 52.1, 40.5, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.17 (t, J = 8.6 Hz). HRMS(ESI) Calcd. for C₃₅H₃₂ClF₃N₂O₂Na (M+Na)⁺ 627.1997, found 627.1956.

5-([1,1'-biphenyl]-4-yl)-3,3-bis(4-(dimethylamino)phenyl)-1-phenyl-2-(2,2,2-trifluoroethoxy)pent-4-yn-1-one (6c)

Gray-green oil, 87% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 7.7 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H), 7.50 -7.46 (m, 3H), 7.46 - 7.38 (m, 4H), 7.38 - 7.28 (m, 4H), 7.28 - 7.22 (m, 3H), 6.68 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 8.4 Hz, 2H), 5.72 (s, 1H), 4.01 - 3.89 (m, 1H), 3.86 - 3.75 (m, 1H), 2.94 (s,

6H), 2.87 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.2, 149.5, 140.6, 140.5, 138.1, 132.6, 132.0, 130.0, 129.7, 129.1, 129.0, 128.8, 128.0, 127.5, 127.0, 126.7, 123.6 (q, *J* = 276.1 Hz), 122.3, 112.1, 111.8, 92.5, 88.6, 86.7, 67.2 (q, *J* = 35.0 Hz), 52.2, 40.6, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.2 (t, *J* = 8.7 Hz). HRMS(ESI) Calcd. for C₄₁H₃₇F₃N₂O₂Na (M+Na)⁺ 669.2699, found 669.2647.

3,3-bis(4-(dimethylamino)phenyl)-5-(4-methoxyphenyl)-1-phenyl-2-(2,2,2-trifluoroethoxy)pent-4yn-1-one (6d)

Gray-green oil, 83% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 8.5 Hz, 2H), 7.18 (t, J = 7.3 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 6.66 (d, J = 8.3 Hz,

2H), 6.59 (d, *J* = 8.5 Hz, 2H), 6.48 (d, *J* = 8.4 Hz, 2H), 5.62 (s, 1H), 3.85 (dq, *J* = 13.2, 8.7 Hz, 1H), 3.76 – 3.71 (m, 1H), 3.69 (s, 3H), 2.85 (s, 6H), 2.79 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.3, 159.3, 149.4, 138.1, 132.9, 132.5, 130.4, 129.7, 129.2, 129.1, 129.0, 128.0, 123.6 (q, *J* = 280.2 Hz), 115.5, 113.6, 112.0, 111.8, 90.2, 88.7, 86.8, 67.4 (q, *J* = 35.0 Hz), 55.3, 52.0, 40.6, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.20 (t, *J* = 8.6 Hz). HRMS(ESI)

Calcd. for C₃₆H₃₅F₃N₂O₃Na (M+Na)⁺ 623.2504, found 623.2481.

3,3-bis(4-(dimethylamino)phenyl)-1-phenyl-5-(m-tolyl)-2-(2,2,2-trifluoroethoxy)pent-4-yn-1-one (6e)

3,3-bis(4-(dimethylamino)phenyl)-5-(naphthalen-2-yl)-1-phenyl-2-(2,2,2-trifluoroethoxy)pent-4-yn-1-one (6f)

Gray-green oil, 85% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 7.6 Hz, 2H), 7.76 (dd, *J* = 7.7 Hz, 2.4 Hz, 1H), 7.72 – 7.64 (m, 2H), 7.60 (s, 1H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 1H), 7.50 (d, J = 8.5 Hz,

Hz, 2H), 7.30 -7.21 (m, 3H), 6.69 (d, J = 8.5 Hz, 2H), 6.58 (d, J = 8.5 Hz, 2H), 5.75 (s, 1H), 3.95 (dq, J = 12.9, 8.9 Hz, 1H), 3.81 (dq, J = 15.8, 8.3 Hz, 1H), 2.94 (s, 6H), 2.88 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.2, 149.5, 138.2, 132.9, 132.7, 132.6, 131.3, 130.1, 129.7, 129.1, 129.0, 128.9, 128.5, 128.1, 127.7, 127.6, 127.5, 126.4, 126.3, 123.6 (q, J = 279.4 Hz), 120.6, 112.1, 111.8, 92.1, 89.1, 86.7, 67.4 (q, J = 34.5 Hz), 52.2, 40.6, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.17 (t, J = 8.5 Hz). HRMS(ESI) Calcd. for C₃₉H₃₅F₃N₂O₂Na (M+Na)⁺ 643.2543, found 643.2519.

3,3-bis(4-(dimethylamino)phenyl)-1-phenyl-5-(thiophen-3-yl)-2-(2,2,2-trifluoroethoxy)pent-4-yn-1-one (6g)

Gray-green solid, 79% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 7.7 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 7.3 Hz, 1H), 7.32 -7.24 (m, 4H), 7.17 – 7.14 (m, 1H), 7.11 (s, 1H), 6.84 (d, J = 4.9 Hz, 1H), 6.67 (d, J = 8.4 Hz, 2H), 6.55 (d,

J = 8.4 Hz, 2H, 5.70 (s, 1H), 3.92 (dq, J = 12.5, 8.7 Hz, 1H), 3.78 (dq, J = 12.5, 8.7 Hz, 1H), 2.93 (s, 6H), 2.87 (s, 6H). $^{13}\text{C NMR} (100 \text{ MHz}, \text{Chloroform-}d) \delta 197.2, 149.4, 138.1, 132.6, 130.0, 129.9, 129.7, 129.1, 129.0, 128.9, 128.3, 128.0, 124.7, 123.6 \text{ (q}, J = 279.5 \text{ Hz}), 122.3, 112.0, 111.8, 91.1, 86.7, 84.0, 67.4 \text{ (q}, J = 34.5 \text{ Hz}), 52.1, 40.6, 40.5.$ $^{19}\text{F NMR} (376 \text{ MHz}, \text{Chloroform-}d) \delta -73.20 \text{ (t}, J = 8.6 \text{ Hz}). \text{ HRMS}(\text{ESI}) \text{ Calcd. for } \text{C}_{33}\text{H}_{31}\text{F}_{3}\text{N}_{2}\text{O}_{2}\text{SNa}$ (M+Na)⁺ 599.1951, found 599.1922.

3-bis(4-(dimethylamino)phenyl)-1-phenyl-2-(2,2,2-trifluoroethoxy)-5-(trimethylsilyl)pent-4-yn-1-one (6h)

1-(4-chlorophenyl)-3,3-bis(4-(dimethylamino)phenyl)-6,6-dimethyl-2-(2,2,2-trifluoroethoxy)hept-4-yn-1-one (6i)

 $F_{3C} \xrightarrow{p-ClPh}_{Ar^{1}Ar^{1}}$ Gray-green oil, 76% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.29 - 7.20 (m, 4H), 6.63 (d, *J* = 8.5 Hz, 2H), 6.53 (d, *J* = 8.3 Hz, 2H), 5.44 (s, 1H), 3.89 - 3.74 (m, 2H), 2.92 (s, 6H), 2.87 (s, 6H), 1.12 (s, 9H). ¹³C

NMR (100 MHz, Chloroform-*d*) δ 196.2, 149.3, 138.8, 136.1, 130.7, 129.6, 129.5, 128.8, 128.2, 128.1, 123.6 (q, *J* = 277.6 Hz), 111.9, 111.7, 97.4, 87.7, 80.4, 67.5 (q, *J* = 34.4 Hz), 51.3, 40.6, 40.5, 30.7, 27.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.39 (t, *J* = 8.6 Hz). HRMS(ESI) Calcd. for C₃₃H₃₆ClF₃N₂O₂Na (M+Na)⁺ 607.2310, found 607.2287.

1-(4-chlorophenyl)-3,3-bis(4-(dimethylamino)phenyl)-2-(2,2,2-trifluoroethoxy)non-4-yn-1-one (6j)

Gray-green oil, 78% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 6.64 (d, *J* = 8.4 Hz, 2H), 6.51 (d, *J* = 8.4 Hz, 2H), 5.46 (s, 1H), 3.93 – 3.83 (m, 1H),

3.82 – 3.72 (m, 1H), 2.92 (s, 6H), 2.87 (s, 6H), 2.10 (t, J = 6.6 Hz, 2H), 1.41 – 1.31 (m, 4H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.4, 149.4, 138.7, 136.2, 130.6, 130.2, 129.5, 129.4, 128.9, 127.9, 123.6 (q, J = 279.7 Hz), 111.9, 111.8, 89.5, 87.9, 81.7, 67.6 (q, J = 35.4 Hz), 51.7, 40.6, 40.5, 30.7, 22.1, 18.7, 13.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.26 (t, J = 8.6 Hz). HRMS(ESI) Calcd. for C₃₃H₃₆ClF₃N₂O₂Na (M+Na)⁺ 607.2310, found 607.2281.

5-cyclopropyl-3,3-bis(4-(dimethylamino)phenyl)-1-phenyl-2-(2,2,2-trifluoroethoxy)pent-4-yn-1-one (6k)

Gray-green oil, 80% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 6.64 (d, *J* = 8.3 Hz, 2H), 6.54 (d, *J* = 8.4 Hz, 2H), 5.60 (s, 1H), 3.87 (dq,

J = 13.0, 9.1 Hz, 1H, 3.73 (dq, J = 13.2, 8.2 Hz, 1H), 2.92 (s, 6H), 2.86 (s, 6H), 1.15 - 1.04 (m, 1H), 0.63 - 0.54 (m, 2H), 0.45 - 0.33 (m, 2H).¹³C NMR (100 MHz, Chloroform-*d*) δ 197.7, 149.7, 138.6, 132.9, 131.3, 130.1, 129.8, 129.4, 129.2, 128.3, 124.1 (q, J = 279.7 Hz), 112.4, 112.1, 92.6, 87.1, 67.7 (q, J = 34.4 Hz), 51.7, 41.0, 40.9, 8.2, 8.2, 0.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.25 (t, J = 8.5 Hz). HRMS(ESI) Calcd. for C₃₂H₃₃F₃N₂O₂Na (M+Na)⁺ 557.2386, found 557.2343.

3,3-bis(4-(dimethylamino)phenyl)-1,5-diphenyl-2-(2,2,2-trichloroethoxy)pent-4-yn-1-one (61)

Gray-green oil, 69% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.45 – 7.38 (m, 3H), 7.28 (d, *J* = 7.5 Hz, 2H), 7.25 – 7.20 (m, 3H), 7.17 (d, *J* = 6.7 Hz, 2H), 6.68 (d, *J* = 8.3 Hz, 2H), 6.61 (d, J = 8.3 Hz, 2H), 6.61 (d, J = 8.3 Hz, 2H), 8.3 Hz, 8.3 Hz,

2H), 5.81 (s, 1H), 4.18 (d, J = 11.1 Hz, 1H), 4.08 (d, J = 11.1 Hz, 1H), 2.95 (s, 6H), 2.90 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 149.4, 138.0, 132.6, 131.5, 130.4, 130.1, 129.4, 129.2, 129.0, 128.0, 127.9, 123.4, 112.0, 111.7, 96.1, 92.1, 88.9, 87.8, 82.3, 52.2, 40.6, 40.6. HRMS(ESI) Calcd. for C₃₅H₃₃Cl₃N₂O₂Na (M+Na)⁺ 641.1500, found 641.1473.

1-(4-chlorophenyl)-3,3-bis(4-(dimethylamino)phenyl)-5-phenyl-2-((3-(trifluoromethyl)benzyl)oxy)pent-4-yn-1-one (6m)

Hz), 124.6 (q, J = 3.7 Hz), 123.3, 111.9, 111.8, 92.1, 88.7, 87.1, 71.6, 52.1, 40.5, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.50. HRMS(ESI) Calcd. for C₄₁H₃₆ClF₃N₂O₂Na (M+Na)⁺ 703.2310, found 703.2282.

2-((4-bromobenzyl)oxy)-3,3-bis(4-(dimethylamino)phenyl)-5-(m-tolyl)-1-(3-(trifluoromethyl)phenyl)pent-4yn-1-one (6n)

1H), 4.49 (d, J = 12.0 Hz, 1H), 2.92 (s, 6H), 2.87 (s, 6H), 2.27 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 198.2, 149.4, 149.3, 138.6, 137.6, 135.9, 132.3, 132.1, 131.4, 130.2 (q, J = 32.9 Hz), 130.0, 129.8, 129.5, 129.4, 129.0, 128.8, 128.6, 128.5 (q, J = 3.8 Hz), 128.3, 127.9, 126.0 (q, J = 3.9 Hz), 123.6 (q, J = 274.4 Hz), 123.0, 121.9, 111.9, 111.8, 91.5, 87.2, 71.9, 52.1, 40.5, 40.4, 21.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.69. HRMS(ESI) Calcd. for C₄₂H₃₈BrF₃N₂O₂Na (M+Na)⁺ 761.1961, found 761.1923.

2-((4-bromobenzyl)oxy)-5-(4-chlorophenyl)-3,3-bis(4-(dimethylamino)phenyl)-1-(3-(trifluoromethyl)phenyl)pent-4-yn-1-one (60)

Gray-green oil, 72% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.0 Hz, 1H), 7.92 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.43 – 7.35 (m, 4H), 7.32 (t, J = 7.9 Hz, 1H), 7.24 – 7.15 (m, 6H), 7.08 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 8.1 Hz, 2H), 6.51 (d, J = 8.1 Hz, 2H), 5.40 (s, 1H), 4.57 (d, J = 11.8 Hz, 1H),

4.49 (d, J = 11.8 Hz, 1H), 2.93 (s, 6H), 2.86 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 198.1, 149.5, 149.4, 138.5, 135.8, 133.9, 132.8, 132.2, 131.5, 130.3 (q, J = 32.2 Hz), 129.8, 129.4, 129.2, 129.0, 128.6 (q, J = 3.8 Hz), 128.3, 125.9 (q, J = 4.1 Hz), 123.5 (q, J = 272.9 Hz), 122.0, 121.8, 111.9, 111.8, 92.9, 87.4, 86.8, 71.9, 52.1, 40.5, 40.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.69. HRMS(ESI) Calcd. for C₄₁H₃₅BrClF₃N₂O₂Na (M+Na)⁺ 781.1415, found 781.1395.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(phenyl)methanone (8a)

Green oil, 91% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, *J* = 7.5 Hz, 2H), 7.92 (d, *J* = 10.3 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.42 – 7.33 (m, 4H), 7.29 – 7.25 (m, 4H), 7.13 (d, *J* = 8.4 Hz, 2H), 6.79 (s, 1H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.58 (d, *J* = 8.3 Hz, 2H),

6.42 (s, 1H), 2.94 (s, 6H), 2.88 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.5, 149.9, 149.7, 137.3, 136.1, 133.1, 132.9, 132.2, 131.2, 129.6, 128.5, 128.4, 127.9, 127.9, 127.6, 126.5, 112.1, 112.0, 96.2, 86.4, 40.6. HRMS(ESI) **29** / **95** Calcd. for C₃₃H₃₃N₂O₂ (M+H)⁺ 489.2537, found 489.2519.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(4-fluorophenyl)methanone (8b)

Green oil, 83% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 – 8.05 (m, 2H), 7.35 (d, J = 6.7 Hz, 2H), 7.32 – 7.22 (m, 5H), 7.12 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 8.6 Hz, 2H), 6.79 (s, 1H), 6.69 (d, J = 7.3 Hz, 2H), 6.58 (d, J = 7.2 Hz, 2H), 6.35 (s, 1H), 2.93 (s, 6H),

2.89 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.2, 167.0, 165.6 (d, J = 255.2 Hz), 149.9, 149.8, 137.3, 133.0, 132.4, 132.4 (d, J = 2.4 Hz), 132.3 (d, J = 9.5 Hz), 132.0, 131.1, 128.5, 128.1, 127.8, 127.6, 126.5, 115.5, 115.3, 112.1, 112.0, 96.2, 87.0, 40.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.16. HRMS(ESI) Calcd. for C₃₃H₃₂FN₂O₂ (M+H)⁺ 507.2442, found 507.2431.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(4-bromophenyl)methanone (8c)

Green oil, 80% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 7.9 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 7.3 Hz, 2H), 7.29 (t, *J* = 6.8 Hz, 1H), 7.27 – 7.21 (m, 4H), 7.09 (d, *J* = 8.7 Hz, 2H), 6.79 (s, 1H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.58 (d, *J* = 8.8 Hz, 2H),

6.32 (s, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.1, 149.9, 149.8, 137.2, 134.8, 133.0, 132.7, 131.9, 131.6, 131.2, 131.1, 128.6, 128.1, 127.8, 127.6, 126.5, 112.1, 112.0, 96.3, 87.1, 40.6. HRMS(ESI) Calcd. for C₃₃H₃₂BrN₂O₂ (M+H)⁺ 567.1642, found 567.1621.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(o-tolyl)methanone (8d)

Green oil, 91% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 7.1 Hz, 2H), 7.30 – 7.21 (m, 6H), 7.10 (d, *J* = 8.3 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.72 (s, 1H), 6.68 (d, *J* = 8.5 Hz, 2H), 6.55 (d, *J* = 8.2 Hz, 2H), 6.29 (s, 1H), 2.91 (s, 6H),

2.89 (s, 6H), 2.20 (s, 3H). ¹³C NMR (100MHz, Chloroform-*d*) δ 201.8, 149.8, 149.7, 138.5, 137.4, 137.2, 133.2, 132.6, 132.4, 131.5, 131.3, 130.9, 128.9, 128.5, 128.1, 128.0, 127.6, 126.6, 125.1, 112.1, 112.1, 96.2, 88.6, 40.7, 40.6, 20.5. HRMS(ESI) Calcd. for C₃₄H₃₅N₂O₂ (M+H)⁺ 503.2687, found 503.2658.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(m-tolyl)methanone (8e)

Green oil, 90% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.84 (m, 2H), 7.38 – 7.31 (m, 3H), 7.31 – 7.25 (m, 4H), 7.25 – 7.20 (m, 2H), 7.15 (d, *J* = 7.1 Hz, 2H), 6.79 (s, 1H), 6.70 (d, *J* = 8.1 Hz, 2H), 6.59 (d, *J* = 7.3 Hz, 2H), 6.40 (s, 1H), 2.93 (s, 6H), 2.88 (s,

30 / 95

6H), 2.31 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.7, 149.9, 149.7, 138.1, 137.4, 136.2, 133.9, 133.2, 132.9, 132.3, 131.1, 130.0, 128.5, 128.3, 128.0, 127.9, 127.7, 126.9, 126.5, 112.2, 112.1, 96.2, 86.6, 40.7, 40.6, 21.4. HRMS(ESI) Calcd. for C₃₄H₃₅N₂O₂ (M+H)⁺ 503.2693, found 503.2681.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(3-(trifluoromethyl)phenyl)methanone (8f)

 $\begin{array}{c} \text{Green oil, 79\% yield. }^{1}\text{H NMR (400 MHz, Chloroform-d) } \delta 8.29 - 8.17 (m, 2H), 7.73 \\ \text{Ar}^{1} \\ \text{Ar}^{1} \\ \text{Ar}^{1} \\ \text{Ar}^{1} \\ \text{Sf} \end{array}$

2H), 6.55 (d, J = 8.3 Hz, 2H), 6.35 (s, 1H), 2.93 (s, 6H), 2.88 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.8, 149.9, 149.8, 137.1, 136.6, 132.8, 132.7, 132.6, 131.7, 131.4, 130.8 (q, J = 32.8 Hz), 129.3 (q, J = 3.6 Hz), 128.9, 128.6, 128.2, 127.8, 127.5, 126.5, 126.2 (q, J = 4.0 Hz), 123.6 (q, J = 279.9 Hz), 112.1, 112.0, 96.4, 87.0, 40.6, 40.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.71. HRMS(ESI) Calcd. for C₃₄H₃₂F₃N₂O₂ (M+H)⁺ 557.2410, found 557.2391.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(2,6-dichlorophenyl)methanone (8g)

Green oil, 73% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.32 (t, 2H), 7.27 (t, *J* = 6.8 Hz, 1H), 7.16 – 7.10 (m, 3H), 6.89 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 1H), 6.80 (d, 1H), 6.69 (s, 1H), 6.63 (d, *J* = 8.4 Hz, 2H), 6.47 (d, *J* = 8.3 Hz, 2H), 6.20 (s, 1H), 2.93 (s, 6H), 2.89 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.1, 149.8,

149.6, 136.1, 135.9, 135.7, 133.5, 132.0, 132.0, 131.9, 129.6, 129.4, 128.6, 128.5, 127.7, 127.2, 126.9, 125.9, 112.1, 111.7, 96.8, 90.9, 40.6, 40.6. HRMS(ESI) Calcd. for C₃₃H₃₁Cl₂N₂O₂ (M+H)⁺ 557.1684, found 557.1653.

benzo[d][1,3]dioxol-5-yl(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)methanone (8h)

Green oil, 85% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 8.1 Hz, 1H), 7.53 (s, 1H), 7.33 (d, *J* = 7.2 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.27 – 7.19 (m, 3H), 7.15 (d, *J* = 8.7 Hz, 2H), 6.82 – 6.75 (m, 2H), 6.70 (d, *J* = 8.5 Hz, 2H), 6.60 (d, *J* = 8.5 Hz,

2H), 6.35 (s, 1H), 6.00 (s, 2H), 2.93 (s, 6H), 2.89 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3, 151.8, 149.9, 149.7, 147.9, 137.4, 133.1, 132.9, 132.2, 131.0, 130.9, 128.5, 127.9, 127.9, 127.6, 126.4, 126.3, 112.1, 112.1, 109.2, 107.8, 101.7, 96.1, 86.3, 40.6. HRMS(ESI) Calcd. for C₃₄H₃₃N₂O₄ (M+H)⁺ 533.2435, found 533.2412.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(naphthalen-2-yl)methanone (8i)

Green oil, 90% yield. ¹H NMR (400 MHz, Chloroform-d) δ 8.69 (s, 1H), 8.05 (d, J = 7.5 Hz, 1H), 7.85 – 7.77 (m, 2H), 7.75 (d, J = 7.9 Hz, 1H), 7.53 (t, J = 8.1 Hz, 1H), 7.46 (t, J = 7.0 Hz, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.30 (d, J = 6.7 Hz, 2H), 7.26 (d, 2H), 7.22 (s, 1H), 7.21 - 7.16 (m, 2H), 6.84 (s, 1H), 6.71 (d, J = 7.8 Hz, 2H), 6.61 - 6.52 (m, 3H),

2.93 (s, 6H), 2.86 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 196.7, 149.9, 149.7, 137.7, 135.6, 133.3, 133.2, 132.8, 132.4, 132.2, 131.8, 131.0, 130.0, 128.6, 128.4, 128.1, 128.0, 127.8, 127.7, 127.6, 126.6, 126.4, 125.0, 112.2, 96.3, 87.2, 40.6. HRMS(ESI) Calcd. for C37H35N2O2 (M+H)+ 539.2693, found 539.2684.

(5,5-bis(4-(dimethylamino)phenyl)-3-phenyl-2,5-dihydrofuran-2-yl)(furan-2-yl)methanone (8j)

Green oil, 76% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.80 – 7.65 (m, 1H), 7.52 (s, 1H), 7.37 (d, J = 7.3 Hz, 2H), 7.26 – 7.13 (m, 6H), 7.06 – 6.99 (m, 1H), 6.78 (s, 1H), 6.74 – 8j 6.61 (m, 4H), 6.39 (s, 1H), 6.22 (s, 1H), 2.91 (s, 12H). ¹³C NMR (100 MHz, Chloroform-d) $\delta 185.5, 151.3, 149.8, 149.8, 147.1, 137.3, 133.1, 132.4, 132.2, 131.4, 128.5, 128.1, 128.1, 127.4, 126.5, 120.5, 112.2, 131.4, 128.5, 128.1$ 112.1, 96.3, 86.9, 40.7. HRMS(ESI) Calcd. for C₃₁H₃₁N₂O₃ (M+H)⁺ 479.2329, found 479.2314.

(3-(3-chlorophenyl)-5,5-bis(4-(dimethylamino)phenyl)-2,5-dihydrofuran-2-yl)(phenyl)methanone (8k)

8k

Green oil, 87% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 7.4 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.44 – 7.36 (m, 3H), 7.27 (d, *J* = 7.4 Hz, 2H), 7.21 – 7.14 (m, 3H), 7.10 (d,

J = 7.1 Hz, 2H), 6.80 (s, 1H), 6.70 (d, *J* = 7.5 Hz, 2H), 6.57 (d, *J* = 7.4 Hz, 2H), 6.39 (s, 1H),

2.94 (s, 6H), 2.88 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 196.1, 149.9, 149.8, 136.1, 135.9, 134.9, 134.4, 133.2, 132.7, 132.6, 131.8, 129.8, 129.6, 128.4, 127.9, 127.8, 127.6, 126.6, 124.6, 112.1, 112.0, 96.2, 86.2, 40.6. HRMS(ESI) Calcd. for C₃₃H₃₂ClN₂O₂ (M+H)⁺ 523.2147, found 523.2134.

(5,5-bis(4-(dimethylamino)phenyl)-3-(4-(trifluoromethyl)phenyl)-2,5-dihydrofuran-2-yl)(phenyl)methanone (8l)

Green oil, 82% yield. ¹H NMR (400 MHz, Chloroform-d) δ 8.10 (d, J = 6.9 Hz, 2H), 7.56 – 7.50 (m, 3H), 7.46 – 7.38 (m, 4H), 7.28 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 7.6 Hz, 2H), 6.88 (s, 1H), 6.71 (d, J = 7.5 Hz, 2H), 6.57 (d, J = 7.4 Hz, 2H), 6.44 (s, 1H), 2.94 (s, 6H), 2.88 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.1, 150.0, 149.8, 136.6, 136.1, 135.8, 133.6, 133.3, 32 / 95

132.4, 131.6, 129.7 (q, J = 30.8 Hz), 128.5, 127.9, 127.6, 126.7, 125.5 (q, J = 3.9 Hz), 124.1 (q, J = 280.0 Hz), 112.1, 112.0, 96.3, 86.1, 40.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.61. HRMS(ESI) Calcd. for C₃₄H₃₂F₃N₂O₂ (M+H)⁺ 557.2410, found 557.2398.

(5,5-bis(4-(dimethylamino)phenyl)-3-(4-methoxyphenyl)-2,5-dihydrofuran-2-yl)(4-fluorophenyl)methanone (8m)

Ar¹ Ar¹ Bm Light green solid, 86% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 7.94 (m, 2H), 7.24 – 7.14 (m, 4H), 7.03 (d, *J* = 7.1 Hz, 2H), 6.90 (t, *J* = 7.7 Hz, 2H), 6.72 (d, *J* = 7.2 Hz, 2H), 6.60 (d, *J* = 9.0 Hz, 3H), 6.49 (d, *J* = 7.3 Hz, 2H), 6.20 (s, 1H), 3.67 (s, 3H), 2.83 (s, 6H), 2.80 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.5, 165.6 (d, *J* = 257.2 Hz),

159.4, 149.9, 149.7, 136.9, 133.3, 132.5 (d, J = 3.0 Hz), 132.3 (d, J = 9.2 Hz), 132.2, 129.1, 127.8, 127.5, 125.4, 115.3 (d, J = 22.3 Hz), 114.0, 112.1, 112.0, 96.2, 87.3, 55.3, 40.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.61. HRMS(ESI) Calcd. for C₃₄H₃₄FN₂O₃ (M+H)⁺ 537.2548, found 537.2521.

(5,5-bis(4-(dimethylamino)phenyl)-3-(naphthalen-1-yl)-2,5-dihydrofuran-2-yl)(phenyl)methanone (8n)

Green oil, 89% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 7.7 Hz, 2H), 7.68 (d, *J* = 6.5 Hz, 2H), 7.60 (d, *J* = 5.9 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.35 – 7.31 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.17 (s, 1H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.84 (s, 1H), 6.63 (d, *J* = 8.2 Hz, 2H), 6.52 (d, *J* = 8.2 Hz, 2H), 6.46 (s, 1H), 2.86 (s, 6H), 2.81 (s, 6H). ¹³C

NMR (100 MHz, Chloroform-*d*) δ 196.6, 149.9, 149.7, 137.3, 136.2, 133.3, 133.1, 132.9, 132.1, 131.8, 130.3, 129.6, 128.4, 128.2, 128.2, 127.9, 127.7, 127.6, 126.3, 126.1, 125.5, 124.5, 112.1, 112.1, 96.3, 86.6, 40.6. HRMS(ESI) Calcd. for C₃₇H₃₅N₂O₂ (M+H)⁺ 539.2693, found 539.2667.

(5,5-bis(4-(dimethylamino)phenyl)-3-(ferrocene)-2,5-dihydrofuran-2-yl)(phenyl)methanone (80)

Red oil, 85% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (d, J = 7.63 Hz, 2H), 7.49 (t, J = 8.00 Hz, 1H), 7.36 (d, J = 8.75 Hz, 2H), 7.24 (d, J = 8.13 Hz, 2H), 7.16 (d, J = 8.82 Hz, 2H),
6.70 (d, J = 7.62 Hz, 2H), 6.60 (d, J = 7.64 Hz, 2H), 6.47 (s, 1H), 6.12 (s, 1H), 4.47 (s, 1H),
4.22 (s, 1H), 4.14 (s, 1H), 4.12 (s, 1H), 4.09 – 4.01 (m, 5H), 2.93 (s, 6H), 2.88 (s, 6H). ¹³C NMR

(100 MHz, Chloroform-*d*) δ 197.5, 149.8, 149.7, 136.4, 136.1, 133.6, 133.1, 132.2, 129.7, 128.3, 128.0, 127.9, 127.5, 112.2, 112.1, 96.0, 87.9, 69.4, 69.0, 68.9, 67.6, 67.2, 40.7, 40.7. HRMS(ESI) Calcd. for C₃₇H₃₇FeN₂O₂ (M+H)⁺ 597.2199, found 597.2174.

(5,5-bis(4-(dimethylamino)phenyl)-3-(ferrocene)-2,5-dihydrofuran-2-yl)(3-methoxyphenyl)methanone (8p)

Red oil, 84% yield. ¹H NMR (400 MHz, Chloroform-*d*)
$$\delta$$
 8.12 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.6 Hz, 2H),
Ar¹ δ 6.62 (d, J = 8.6 Hz, 2H), 6.45 (d, J = 2.3 Hz, 1H), 6.10 (d, J = 2.1 Hz,1H), 4.46 (s, 1H), 4.20 (s, 1H), 4.16 - 4.10 (m, 2H), 4.09 - 4.00 (m, 5H), 3.8 (s, 3H), 2.9 (s, 6H), 2.9 (s, 6H). ¹³C

NMR (100 MHz, Chloroform-*d*) δ 195.8, 163.5, 149.8, 149.7, 136.7, 133.7, 132.3, 132.1, 129.2, 128.0, 127.7, 127.4, 113.5, 112.2, 112.1, 95.9, 87.8, 69.4, 69.0, 68.9, 67.5, 67.2, 55.4, 40.7, 40.7. HRMS(ESI) Calcd. for C₃₈H₃₉FeN₂O₃ (M+H)⁺ 627.2305, found: 627.2279.

^a $Ar^1 = p-(N, N-dimethylamino)$ phenyl.

NMR Spectra of Compounds

¹H NMR Spectrum of **5a** isomers mixture (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **5a** isomers mixture (100MHz, CDCl3)

¹³C NMR Spectrum of Compound (Z)-5a (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5b** isomers mixture (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **5b** isomers mixture (100MHz, CDCl3)

¹³C NMR Spectrum of Compound (*Z*)-**5b** (100MHz, CDCl3)

¹³C NMR Spectrum of Compound (*E*)-**5b** (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5c** isomers mixture (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **5c** isomers mixture (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5d** isomers mixture (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **5d** isomers mixture (100MHz, CDCl3)

7.7.7 7.66 7.66 7.7.65 7.7.65 7.7.65 7.7.65 7.7.65 7.7.75 7.7.72 7.7.33 7.7.33 7.7.22 7.7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.77 7.72 7.777

¹H NMR Spectrum of Compound **5e** isomers mixture (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **5e** isomers mixture (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5f** isomers mixture (400MHz, CDCl3)

¹H NMR Spectrum of Compound (*E*)-5g (400MHz, CDCl3)

¹³C NMR Spectrum of Compound (*E*)-5g (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5h** isomers mixture (400MHz, CDCl3)

194.45 150.18 150.18 150.018 149.56 149.56 148.52 148.52 148.68 148.52 148.68 148.52 148.68 148.68 148.68 133.12 135.12 135.33 135.12 135.33 135.12 111.49 111.49 111.49 111.49 111.49 111.49 111.49 111.49 112.15 122.15 112.15 123.15 1

¹³C NMR Spectrum of Compound **5h** isomers mixture (100MHz, CDCl3)

 $\begin{array}{c} 7.7\\ 7.56\\ 7.56\\ 7.56\\ 7.57\\ 7.57\\ 7.56\\$

¹H NMR Spectrum of Compound **5i** isomers mixture (400MHz, CDCl3)

192.56 150.21 150.21 150.01 150.01 149.63 147.43 145.42 146.04 145.42 136.30 136.30 136.30 136.11 136.30 136.11 136.11 136.11 136.11 136.11 136.11 136.11 137.13 136.11 137.13 136.11 137.13 117.23 117.23 117.55 117.55 117.53 11

¹³C NMR Spectrum of Compound **5i** isomers mixture (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5j** isomers mixture (400MHz, CDCl3)

159.20 159.20 150.45 150.47 149.71 149.71 149.71 147.65 147.65 147.65 147.65 132.05 133.04 133.05 13

¹³C NMR Spectrum of Compound **5j** isomers mixture (100MHz, CDCl3)

$\begin{array}{c} -8.12\\ -8.12\\ -8.12\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.73\\ -7.75\\ -7.73\\ -7.75\\ -7.73\\ -7$

¹H NMR Spectrum of Compound **5k** isomers mixture (400MHz, CDCl3)

159.41 169.41 168.21 147.65 147.65 147.65 147.65 131.55 131.45 132.49 111.63 11.63 11.63 11.63 11.63 11.63 11.63 11.63 11

¹³C NMR Spectrum of Compound **5k** isomers mixture (100MHz, CDCl3)

$\begin{array}{c} 7.7\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.72\\ 7.73\\ 7.73\\ 7.73\\ 7.72\\$

¹H NMR Spectrum of Compound **5**I isomers mixture (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **5**l isomers mixture (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5m** isomers mixture (400MHz, CDCl3)

194.62 158.13 158.13 150.222 147.60.22 147.91 147.91 147.91 147.91 147.91 147.91 147.92 147.92 132.11 132.11 132.11 132.13 131.53 131.53 131.53 131.53 131.53 131.53 131.53 132.55 129.42 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 1127.95 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.62 111.63 111.65 111.63 111.65 111.

¹³C NMR Spectrum of Compound **5m** isomers mixture (100MHz, CDCl3)

¹H NMR Spectrum of Compound **5n** isomers mixture (400MHz, CDCl3)

194.54 157.94 155.94 155.94 155.94 148.55 148.55 148.55 148.58 148.55 148.58 148.58 148.58 132.24 132.46 132.24 132.24 132.46 132.25 131.65 132.68 132.26 132.68 132.25 131.65 132.55 133.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 135.55 13

¹³C NMR Spectrum of Compound **5n** isomers mixture (100MHz, CDCl3)

¹H NMR Spectrum of Compound **50** isomers mixture (400MHz, CDCl3)

194.54 157.92 157.92 157.92 157.92 149.58 149.58 149.58 149.58 149.58 149.58 132.33 132.33 132.33 132.33 132.55 132.58 125.58 12

¹³C NMR Spectrum of Compound **50** isomers mixture (100MHz, CDCl3)

¹³C NMR Spectrum of Compound **50** (100MHz, CDCl3)

¹³C NMR Spectrum of Compound **6b** (100MHz, CDCl3)

¹³C NMR Spectrum of Compound **6c** (100MHz, CDCl3)

¹⁹F NMR Spectrum of Compound **6d** (376 MHz, CDCl3)

¹³C NMR Spectrum of Compound **6e** (100MHz, CDCl3)

7 20

¹³C NMR Spectrum of Compound **6g** (100MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of Compound 6h (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **6h** (100MHz, CDCl3)

¹³C NMR Spectrum of Compound **6i** (100MHz, CDCl3)

¹H NMR Spectrum of Compound 6j (400MHz, CDCl3)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectrum of Compound **6k** (100MHz, CDCl3)

¹H NMR Spectrum of Compound **6l** (400MHz, CDCl3)

8.03 8.03 8.07 8.07 8.07 8.07 8.07 8.07 8.03 7.57 7.73 7.74

¹³C NMR Spectrum of Compound **6n** (100MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of Compound **60** (400MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of Compound 8a (400MHz, CDCl3)

¹H NMR Spectrum of Compound **8b** (400MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹³C NMR Spectrum of Compound 8c (100MHz, CDCl3)

¹³C NMR Spectrum of Compound 8d (100MHz, CDCl3)

¹³C NMR Spectrum of Compound 8e (100MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR Spectrum of Compound 8g (400MHz, CDCl3)

¹H NMR Spectrum of Compound 8h (400MHz, CDCl3)

¹H NMR Spectrum of Compound **8j** (400MHz, CDCl3)

¹H NMR Spectrum of Compound 8k (400MHz, CDCl3)

¹H NMR Spectrum of Compound **81** (400MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR Spectrum of Compound **8I** (376 MHz, CDCl3)

¹³C NMR Spectrum of Compound **8m** (100MHz, CDCl3)

¹H NMR Spectrum of Compound **80** (400MHz, CDCl3)

¹H NMR Spectrum of Compound **8p** (400MHz, CDCl3)

¹³C NMR Spectrum of Compound **8p** (100MHz, CDCl3)