Supporting Information for: 9-BBN and Chloride Catalyzed Reduction of Chlorophosphines to Phosphines and Diphosphines

Iris Elser, Ryan J. Andrews and Douglas W. Stephan

1.	General	8
2.	Catalysis	9
	1 9-BBN catalyzed reactions	9
	gure S 1: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (60°C, 1,2-DCE, afte 3 hours)	er .0
	gure S 2: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (60°C, <i>o</i> DFB, after 2 hours).	er .0
	gure S 3: ³¹ P NMR spectrum of reaction of Ph ₂ PCl with Et ₃ SiH (60°C <i>, o</i> DFB, after 7 hours). No 9-BB as added	N .1
	gure S 4: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph_2PCI with Et_3SiH (rt, <i>o</i> DFB, after hours)	er 1
	gure S 5: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (100°C, <i>o</i> DCB, after 3 hours).	er 2
	gure S 6: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (80°C, <i>o</i> DCB, after 5 hours).	er 2
	gure S 7: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (70°C, 1,2-DCE, afte) hours)	er .3
	gure S 8: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (70°C, 1,2-DCE, after a fight set a state of the set of the	er .3
	gure S 9: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (60°C, 1,2-DCE, afte hours). 10 mol% 9-BBN used	er .4
	gure S 10: ^{31}P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (60°C, 1,2-DCl ter 30 hours)	E, .4
	gure S 11: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Ph ₂ ClSiH (60°C, 1,2-DCl ter 48 hours)	E, .5
	gure S 12: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph_2PCI with $PhSiH_3$ (30°C, 1,2-DCI ter 24 hours)	E, .5
	gure S 13: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (60°C, 1,2-DCl ter 30 hours). Reaction was kept under static vacuum (freeze pump thaw)	E, .6
	gure S 14: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, 1,2-DCl ter 10 hours). 1.2 equiv of PhSiH ₃ were used	E, .6
	gure S 15: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, 1,2-DCl ter 10 hours). 1.4 equiv of PhSiH ₃ were used	E, .7
	gure S 16: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph_2PCI with $PhSiH_3$ (30°C, 1,2-DCI ter 10 hours). 1.6 equiv of $PhSiH_3$ were used	E, .7

Figure S 17: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, MeCN, after 20 hours)
Figure S 18: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB, after 10 hours)
Figure S 19: ³¹ P NMR spectrum of reaction of Ph ₂ PCl with PhSiH ₃ (30°C, MeCN, after 24 hours). No 9- BBN used
Figure S 20: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (50°C, MeCN, after 8 hours)
Figure S 21: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (60°C, MeCN, after 32 hours)
Figure S 22: ³¹ P NMR spectrum of reaction of Ph ₂ PCl with PhSiH ₃ (60°C, 1,2-DCE, after 32 hours). No 9-BBN used
Figure S 23: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, MeCN/ <i>o</i> DFB, after 20 hours)
Figure S 24: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of <i>i</i> Pr ₂ PCl with PhSiH ₃ (30°C, MeCN, after 20 hours)
Figure S 25: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of <i>i</i> Pr ₂ PCl with PhSiH ₃ (30°C, oDFB/MeCN, after 42 hours)
Figure S 26: ³¹ P NMR spectrum of reaction of <i>i</i> Pr ₂ PCl with PhSiH ₃ (60°C, oDFB/MeCN, after 12 hours). No 9-BBN used
Figure S 27: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of <i>i</i> Pr ₂ PCl with PhSiH ₃ (60°C, oDFB/MeCN, after 8 hours)24
Figure S 28: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of tBu_2PCI with PhSiH ₃ (30°C, oDFB/MeCN, after 8 days)
Figure S 29: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of tBu_2PCI with PhSiH ₃ (60°C, oDFB/MeCN, after 48 hours)
Figure S 30: 31 P NMR spectrum of 9-BBN catalyzed reaction of tBu_2 PCl with PhSiH ₃ (80°C, oDFB/MeCN, after 5 days)26
Figure S 31: 31 P NMR spectrum of 9-BBN catalyzed reaction of Cy ₂ PCl with PhSiH ₃ (30°C, MeCN/oDFB, after 38 hours)26
Figure S 32: 31 P NMR spectrum of 9-BBN catalyzed reaction of Cy ₂ PCl with PhSiH ₃ (60°C, MeCN/oDFB, after 8 hours)27
Figure S 33: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of $tBuPhPCI$ with PhSiH ₃ (30°C, MeCN/oDFB, after 42 hours)
Figure S 34: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of <i>t</i> BuPhPCl with PhSiH ₃ (60°C, MeCN/oDFB, after 48 hours)
Figure S 35: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of <i>t</i> BuPhPCl with PhSiH ₃ (80°C, MeCN/oDFB, after 24 hours)
Figure S 36: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of Mes_2PCI with PhSiH ₃ (30°C, MeCN/oDFB, after 24 hours)

Figure S 37: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of (<i>o</i> -OMeC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, MeCN/ <i>o</i> DFB, after 10 hours)
Figure S 38: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of $(MeC_6H_4)_2PCI$ with PhSiH ₃ (30°C, MeCN/ <i>o</i> DFB, after 7 hours)
Figure S 39: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of $(p-FC_6H_4)_2PCI$ with PhSiH ₃ (30°C, MeCN/ <i>o</i> DFB, after 20 hours)
Figure S 40: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of (<i>p</i> -CF ₃ C ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, MeCN/ <i>o</i> DFB, after 20 hours)
Figure S 41: ³¹ P NMR spectrum of 9-BBN catalyzed reaction of (3,5-(CF ₃) ₂ C ₆ H ₃) ₂ PCl with PhSiH ₃ (30°C, MeCN/ <i>o</i> DFB, after 6 hours)
Figure S 42: 31 P NMR spectrum of 9-BBN catalyzed reaction of PhPCl ₂ with PhSiH ₃ (30°C, MeCN/ <i>o</i> DFB, after 48 hours)32
2.2 Lewis base ([Et ₄ N]Cl) catalyzed reactions
Figure S 43: ³¹ P NMR spectrum of $[nBu_4N][CI]$ catalyzed reaction of Ph ₂ PCI with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 3 hours)
Figure S 44: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 45: ³¹ P NMR spectrum of LiCl catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 24 hours)
Figure S 46: ³¹ P NMR spectrum of LiCl catalyzed reaction of Ph ₂ PCl with PhSiH ₃ and 12-crown-4 (30°C, <i>o</i> DFB/MeCN, after 24 hours)
Figure S 47: ³¹ P NMR spectrum of KCl catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 24 hours)
Figure S 48: ³¹ P NMR spectrum of CaCl ₂ catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 24 hours)
Figure S 49: ³¹ P NMR spectrum of [<i>n</i> Bu₄N][Br] catalyzed reaction of Ph₂PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 16 hours)
Figure S 50: ³¹ P NMR spectrum of $[nBu_4N]$ [SiF ₂ Ph ₃] catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 51: ³¹ P NMR spectrum of DBU catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 16 hours)
Figure S 52: ³¹ P NMR spectrum of DBU catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 53: ³¹ P NMR spectrum of [<i>n</i> Bu ₄ N][Cl] catalyzed reaction of Ph ₂ PCl with Ph ₃ SiH (30°C, <i>o</i> DFB/MeCN, after 24 hours)
Figure S 54: ³¹ P NMR spectrum of [<i>n</i> Bu₄N][Cl] catalyzed reaction of Ph₂PCl with HMe₂SiOSiMe₂H (30°C, <i>o</i> DFB/MeCN, after 16 hours)
Figure S 55: ³¹ P NMR spectrum of [nBu_4N][Cl] catalyzed reaction of Ph ₂ PCl with Et ₃ SiH (30°C, o DFB/MeCN, after 24 hours)
Figure S 56: ³¹ P NMR spectrum of [<i>n</i> Bu₄N][Cl] catalyzed reaction of Ph₂PCl with <i>i</i> Pr₃SiH (30°C, <i>o</i> DFB/MeCN, after 16 hours)

Figure S 57: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB, after 2 hours)
Figure S 58: 31 P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, MeCN, after 2 hours)
Figure S 59: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, toluene, after 2 hours)
Figure S 60: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of Cy ₂ PCl with PhSiH ₃ (60°C, <i>o</i> DFB/MeCN, after 13 hours)
Figure S 61: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of <i>t</i> Bu ₂ PCl with PhSiH ₃ (80°C, <i>o</i> DFB/MeCN, after 15 hours)
Figure S 62: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (Ph)(<i>t</i> Bu)PCl with PhSiH ₃ (80°C, <i>o</i> DFB/MeCN, after 15 hours)
Figure S 63: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (<i>o</i> -OMeC ₆ H ₄) ₂ PCl with PhSiH ₃ (60°C, <i>o</i> DFB/MeCN, after 3 hours)
Figure S 64: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (<i>o</i> -OMeC ₆ H ₄) ₂ PCl with PhSiH ₃ (60°C, <i>o</i> DFB/MeCN, after 15 hours)
Figure S 65: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (<i>o</i> -OMeC ₆ H ₄) ₂ PCl with PhSiH ₃ (60°C, <i>o</i> DFB/MeCN, after 19 hours)
Figure S 66: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (o -OMeC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, o DFB/MeCN, after 2 hours)
Figure S 67: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (<i>o</i> -OMeC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 21 hours)
Figure S 68: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (o -MeC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, o DFB/MeCN, after 23 hours)
Figure S 69: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (o -MeC ₆ H ₄) ₂ PCl with PhSiH ₃ (60°C, o DFB/MeCN, after 3 hours)
Figure S 70: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (o -MeC ₆ H ₄) ₂ PCl with PhSiH ₃ (60°C, o DFB/MeCN, after 15 hours)
Figure S 71: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (Mes) ₂ PCl with PhSiH3 (60°C, o DFB/MeCN, after 15 hours)
Figure S 72: ³¹ P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(Mes)_2PCl$ with PhSiH ₃ (60°C, <i>o</i> DFB/MeCN, after 18 hours)
Figure S 73: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (Mes) ₂ PCl with PhSiH ₃ (60°C, o DFB/MeCN, after 23 hours)
Figure S 74: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (p -FC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, o DFB/MeCN, after 2 hours)
Figure S 75: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (p -FC ₆ H ₄) ₂ PCl with PhSiH ₃ (60°C, o DFB/MeCN, after 3 hours)
Figure S 76: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (p -CF ₃ C ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)

Figure S 77: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (p -CF ₃ C ₆ H ₄) ₂ PCl with PhSiH ₃ (60°C, o DFB/MeCN, after 3 hours)
Figure S 78: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (3,5-(CF ₃) ₂ C ₆ H ₃) ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 79: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of (3,5-(CF ₃) ₂ C ₆ H ₃) ₂ PCl with PhSiH ₃ (60°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 80: ³¹ P NMR spectrum of [Et ₄ N]Cl catalyzed reaction of PhPCl ₂ with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
2.3 Two-component catalysis with 9-BBN and [Et ₄ N]Cl
Figure S 81: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of Ph ₂ PCl with PhSiH ₃ (30°C, o DFB/MeCN, after 2 hours)
Figure S 82: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of <i>i</i> Pr ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 83: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of tBu_2PCl with PhSiH ₃ (80°C, o DFB/MeCN, after 5 days)
Figure S 84: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (o -OMeC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, o DFB/MeCN, after 2 hours)
Figure S 85: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (o -MeC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, reaction run in o DFB/MeCN, NMR measured in C ₆ D ₆ , after 2 hours)
Figure S 86: ³¹ P NMR spectrum of [Et ₄ N]Cl 9-BBN catalyzed reaction of (Mes) ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 87: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (tBu)(Ph)PCl with PhSiH ₃ (60°C, o DFB/MeCN, after 8 hours)
Figure S 88: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (<i>t</i> Bu)(Ph)PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 72 hours)
Figure S 89: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of $(3,5-(CF_3)_2C_6H_3)_2PCl$ with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 90: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (p -FC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, o DFB/MeCN, after 2 hours)60
Figure S 91: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (<i>p</i> -CF ₃ C ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 92: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of PhPCl ₂ with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 2 hours)
Figure S 93: ³¹ P{ ¹ H} NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of $(2,4,6-(CF_3)_3C_6H_4)PCl_2$ with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 4 hours)
Figure S 94: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of $(2,4,6-(CF_3)_3C_6H_4)PCl_2$ with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 4 hours)
Figure S 95: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of $(o-NMe_2C_6H_4)_2PCl$ with PhSiH ₃ (30°C, <i>o</i> DFB/MeCN, after 4 hours)
Figure S 96: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (m -MeC ₆ H ₄) ₂ PCl with PhSiH ₃ (30°C, o DFB/MeCN, after 2 hours)

	Figure (30°C,	e S 97: ³¹ P NMR spectrum of [Et ₄ N]Cl /9-BBN catalyzed reaction of (<i>p</i> -ClC ₆ H ₄) ₂ PCl with PhSil , <i>o</i> DFB/MeCN, after 2 hours)6	- ₃ 53
3.	Mech	anistic investigations	53
	3.1	Reaction of 9-BBN with Ph ₂ PCI6	54
	Figure	${}^{\circ}$ S 98: 1 H NMR spectrum of dynamic adduct of Ph $_{2}$ PH and Cl-9-BBN (CDCl $_{3}$)	54
	Figure	$ m e$ S 99: $ m ^{31}P$ NMR spectrum of dynamic adduct of Ph $_2$ PH and Cl-9-BBN (CDCl $_3$)	55
	Figure	e S 100: 11 B NMR spectrum of dynamic adduct of Ph $_2$ PH and Cl-9-BBN (CDCl $_3$)6	5 5
	Figure	e S 101: ¹³ C NMR spectrum of dynamic adduct of Ph₂PH and Cl-9-BBN (CDCl₃)6	56
	3.2	Reaction of CI-9-BBN with PhSiH $_3$ 6	56
	Figure 30°C.	e S 102: ¹¹ B NMR spectrum of reaction of Cl-9-BBN with PhSiH ₃ in <i>o</i> DFB after 30 minutes 9-OH-9-BBN stems from glove box atmosphere-related hydrolysis of Cl-9-BBN	at 57
	Figure 9-OH-	e S 103: ¹¹ B NMR spectrum of reaction of Cl-9-BBN with PhSiH₃ in <i>o</i> DFB after 14 hours at 30° ·9-BBN stems from glove box atmosphere-related hydrolysis of Cl-9-BBN	C. 57
	Figure after :	e S 104: ¹¹ B NMR spectrum of reaction of Cl-9-BBN with PhSiH ₃ with [Et ₄ N]Cl catalyst in <i>o</i> DI 10 minutes. 9-OH-9-BBN stems from glove box atmosphere-related hydrolysis of Cl-9-BBN6	-B
	3.3	Attempted dehydrogenative coupling of R_2PH with 9-BBN and Cl-9-BBN	58
	Figure cataly	e S 105: ³¹ P{ ¹ H} NMR spectrum of the attempted dehydrogenative coupling of Ph ₂ PH wi rtic amounts of Cl-9-BBN in oDFB/MeCN at 30 °C after 16 hours	th 59
	Figure attem 30 °C;	e S 106: ${}^{31}P{}^{1}H{}$ NMR spectrum of the addition of Ph ₂ PCl to the reaction mixture of the pred dehydrogenative coupling of Ph ₂ PH with catalytic amounts of Cl-9-BBN in oDFB/MeCN ; 30 min after the addition of Ph ₂ PCl.	ne at 59
	Figure amou	e S 107: ³¹ P NMR spectrum of attempted dehydrogenative coupling of Ph ₂ PH with catalytents of 9-BBN in oDFB/MeCN at 30 °C after 20 hours	ic 70
	3.4	Reaction of Ph ₂ PH with Ph ₂ PCI	0'
	Figure 3 hou	e S 108: ³¹ P NMR spectrum of the reaction of Ph ₂ PCl with Ph ₂ PH at 30 °C in toluene aft rs	er 71
	Figure	e S 109: ³¹ P NMR spectrum of the reaction of Ph ₂ PCl with Ph ₂ PH at 30 °C in <i>o</i> DCB after 3 hour	·s. 71
	Figure	e S 110: ³¹ P NMR spectrum of the reaction of Ph ₂ PCl with Ph ₂ PH at 30 °C in <i>o</i> DFB after 3 hour	
	Figure 3 hou	e S 111: ³¹ P NMR spectrum of the reaction of Ph ₂ PCl with Ph ₂ PH at 30 °C in <i>o</i> DFB/MeCN aft rs	er 72
	3.5	Reaction of <i>t</i> Bu ₂ PH with <i>t</i> Bu ₂ PCl	2
	Figure 80 °C.	e S 112: ³¹ P NMR spectrum of reaction of tBu_2PCI with tBu_2PH in oDFB/MeCN after 24 h	at 73
	Figure 48 h a	e S 113: ³¹ P NMR spectrum of reaction of tBu_2PCI with tBu_2PH and PhSiH ₃ in oDFB/MeCN aft at 80 °C.	er 73
	3.6	Chlorination of PhSiH ₃ with HCl	13

	Figure S 114: ¹ H NMR spectrum of reaction of PhSiH ₃ with HCl at 30 $^{\circ}$ C in MeCN-d3 after indicated time intervals. Zero sample: before addition of HCl. Spectrum is magnified to facilitate recognition of important resonances
	Figure S 115: ¹ H NMR spectrum of reaction of PhSiH ₃ with HCl and 9-BBN at 30 °C in MeCN-d3 after indicated time intervals. Zero sample: before addition of HCl. Spectrum is magnified to facilitate recognition of important resonances
	Figure S 116: ¹ H NMR spectra of $[Et_4N]Cl$ catalyzed chlorination of PhSiH ₃ with HCl in MeCN-d3. <i>Bottom</i> : Before addition of HCl. <i>Top</i> : Reaction mixture after 120 minutes at 30 °C
	3.7 Test for radical mechanism
	Figure S 117: Stack of ³¹ P NMR spectra of the reaction of Ph_2PCI with $PhSiH_3$ catalyzed by [Et ₄ N]Cl in the presence of radical scavengers after 150 min
	Figure S 118: Stack of ${}^{31}P$ NMR spectra of the reaction of Ph_2PCI with $PhSiH_3$ catalyzed by [Et_4N]CI in the presence of radical scavengers after 90 min
	Figure S 119: Stack of ${}^{31}P$ NMR spectra of the reaction of Ph_2PCI with $PhSiH_3$ catalyzed by [Et_4N]Cl in the presence of radical scavengers after 30 min
	3.8Test for silylium catalysis78
	Figure S 120: ³¹ P NMR spectrum of the reaction of Ph_2PCI with $PhSiH_3$ in the presence of $[CPh_3][B(C_6F_5)_4]$ (30 °C, <i>o</i> DFB/MeCN, 17 h)
	Figure S 121: ³¹ P NMR spectrum of the reaction of Ph_2PCI with $PhSiH_3$ in the presence of $[CPh_3][B(C_6F_5)_4]$ (30 °C, <i>o</i> DFB, 17 h)
	Figure S 122: ³¹ P NMR spectrum of the reaction of Ph_2PCI with Et_3SiH in the presence of $[CPh_3][B(C_6F_5)_4]$ (30 °C, 1,2-dichloroethane, 3 h)
4.	Larger scale reactions
	4.1 Synthesis of Ph ₄ P ₂ by 9-BBN catalysis
	Figure S 123: ¹ H NMR spectrum of Ph_4P_2 synthesized from Ph_2PCI and $PhSiH_3$ by 9-BBN catalysis (C_6D_6)
	Figure S 124: ³¹ P NMR spectrum of Ph_4P_2 synthesized from Ph_2PCI and $PhSiH_3$ by 9-BBN catalysis (C_6D_6)
	Figure S 125: ¹³ C NMR spectrum of Ph_4P_2 synthesized from Ph_2PCI and $PhSiH_3$ by 9-BBN catalysis (C_6D_6)
	4.2 Synthesis of (<i>o</i> -MeC ₆ H ₄) ₄ P ₂ by 9-BBN/[Et ₄ N]Cl catalysis
	Figure S 126: ¹ H NMR spectrum of (o -MeC ₆ H ₄) ₄ P ₂ synthesized from (o -MeC ₆ H ₄) ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃). 83
	Figure S 127: ³¹ P NMR spectrum of (<i>o</i> -MeC ₆ H ₄) ₄ P ₂ synthesized from (<i>o</i> -MeC ₆ H ₄) ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃). 83
	Figure S 128: ¹³ C NMR spectrum of (<i>o</i> -MeC ₆ H ₄) ₄ P ₂ synthesized from (<i>o</i> -MeC ₆ H ₄) ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃). 84
	4.3 Synthesis of (<i>o</i> -NMe ₂ C ₆ H ₄) ₄ P ₂ by 9-BBN/[Et ₄ N]Cl catalysis
	Figure S 129: ¹ H NMR spectrum of (<i>o</i> -NMe ₂ C ₆ H ₄) ₄ P ₂ synthesized from (<i>o</i> -OMeC ₆ H ₄) ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃)

Figure S 130: ³¹ P NMR spectrum of (<i>o</i> -NMe ₂ C ₆ H ₄) ₄ P ₂ synthesized from (<i>o</i> -OMeC ₆ H ₄) ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃)85
Figure S 131: ¹³ C NMR spectrum of (o -NMe ₂ C ₆ H ₄) ₄ P ₂ synthesized from (o -OMeC ₆ H ₄) ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃)
4.4 Synthesis of (<i>o</i> -OMeC ₆ H ₄) ₄ P ₂ by 9-BBN/[Et ₄ N]Cl catalysis
Figure S 132: ¹ H NMR spectrum of (<i>o</i> -OMeC ₆ H ₄) ₄ P ₂ synthesized from (<i>o</i> -OMeC ₆ H ₄) ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃)
Figure S 133: ${}^{31}P{}^{1}H$ NMR spectrum of (<i>o</i> -OMeC ₆ H ₄) ${}_{4}P_{2}$ synthesized from (<i>o</i> -OMeC ₆ H ₄) ${}_{2}PCI$ and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃)
Figure S 134: ¹³ C NMR spectrum of $(o-OMeC_6H_4)_4P_2$ synthesized from $(o-OMeC_6H_4)_2PCI$ and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (CDCl ₃)
4.5 Synthesis of (2,4,6-Me ₃ -C ₆ H ₂) ₂ PH by 9-BBN/[Et ₄ N]Cl catalysis88
Figure S 135: ¹ H NMR spectrum of Mes ₂ PH synthesized from Mes ₂ PCI and PhSiH ₃ by 9-BBN/[Et ₄ N]CI catalysis (C_6D_6)
Figure S 136: ³¹ P NMR spectrum of Mes ₂ PH synthesized from Mes ₂ PCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (C_6D_6)
Figure S 137: 13 C NMR spectrum of Mes ₂ PH synthesized from Mes ₂ PCI and PhSiH ₃ by 9-BBN/[NEt ₄][CI] catalysis (C ₆ D ₆)90
4.6 Synthesis of Ph ₂ tBu ₂ P ₂ by 9-BBN/[Et ₄ N]Cl catalysis90
Figure S 138: ³¹ P NMR spectrum of $P_2Ph_2tBu_2$ synthesized from tBuPhPCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (C ₆ D ₆)91
Figure S 139: ¹ H NMR spectrum of $P_2Ph_2tBu_2$ synthesized from tBuPhPCI and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (C ₆ D ₆)91
Figure S 140: Detail of ¹ H NMR spectrum of $P_2Ph_2tBu_2$ synthesized from $tBuPhPCl$ and $PhSiH_3$ by 9-BBN/[Et_4N]Cl catalysis (C ₆ D ₆)
Figure S 141: ¹³ C NMR spectrum of $P_2Ph_2tBu_2$ synthesized from tBuPhPCl and PhSiH ₃ by 9-BBN/[Et ₄ N]Cl catalysis (C ₆ D ₆)
References

1. General

Unless otherwise stated, all catalytic reactions were conducted under an inert atmosphere of dry nitrogen, using Schlenk technique or a MBraun LABmaster SP glovebox, equipped with closed loop circulation and a -35 °C freezer. Toluene, *n*-pentane, and diethyl ether were collected from a Grubbs-type column system manufactured by Innovative Technology, subsequently degassed under negative pressure, and stored over 3 Å molecular sieves. Dichloromethane (DCM), *ortho*-difluorobenzene (*o*DFB) and acetonitrile (CH₃CN) were dried over CaH₂, followed by distillation, and degassing. Molecular sieves (3 Å, pellets, 3.2 mm diameter) were purchased from Sigma Aldrich and activated prior to use by heating at 250 °C under dynamic vacuum for 48 hours. Deuterated solvents were distilled from CaH₂ and stored over 3 Å molecular sieves. Reactions were performed using glassware that was flame or oven dried (180°C) and subsequently cooled under negative pressure. Chlorophosphines were purchased from Commercial providers and used as received, unless stated otherwise. The chlorophosphines (*o*-NMe₂C₆H₄)₂PCl¹, (*m*-MeC₆H₄)₂PCl², (*p*-Cl-C₆H₄)₂PCl³ and (2,4,6-(CF₃)₃C₆H₂)PCl₂^{4, 5} were synthesized

according to literature procedures. Cl-9-BBN was synthesized from 9-BBN and HCl according to a literature procedure⁶ and purified by distillation.

NMR spectra were measured on a Bruker Avance III 400 MHZ spectrometer. ¹H and ¹³C NMR spectra were referenced to residual solvent peaks.⁷ Chemical shifts (δ) are reported in ppm and the absolute values of the coupling constants (J) are in Hz, while the multiplicity of the signals is indicated as "s", "d", "t", or "m" for singlet, doublet, triplet, or multiplet, respectively. Conversions in ³¹P NMR spectra were determined from relative integrals. No decoupling was used for ³¹P NMR spectra that were used for conversion determination to avoid complicating NOEs. All ³¹P NMR spectra were measured with a standard 30 degree pulse. The number of scans was at least 128 and was increased if unfavorable signal to noise ratios were obtained. D1 was set to 2 seconds. If precipitates were observed in the reaction mixture the solvent was removed and a more suitable solvent was used to ensure full solubility of all compounds. Since T1 of different phosphorus species differ no true quantitation was possible. For example for the system Ph_2PH (T1 = 6.7 s) and Ph_2PCI (T1 = 5 s) with a large difference in T1 at a d1 of 2 seconds the amount of Ph₂PCl in the reaction mixture will be overestimated (A 1:1 mixture of Ph₂PCl:Ph₂PH would show a ratio of ~1.28: 1).⁸ An increase of D1 would have resulted in long measurement times and was not deemed practicable given the number of experiments run in this study. Nevertheless relative integrals in ³¹P NMR spectra are good approximations for the actual amount of phosphorus species in solution and within one $R_2PCI/R_2PH/P_2R_4$ system comparison of different catalytic systems seems reasonable.

2. Catalysis

2.1 9-BBN catalyzed reactions

2.1.1 Initial screening reactions

General procedure: Ph_2PCI (19.9 mg, 0.09 mmol, 1 equiv), silane (1 equiv) and 9-BBN (0.05 equiv or 0.1 equiv) were dissolved in solvent (0.6 ml) and kept at the indicated temperature in a J-Young tube. The reaction progress was monitored by ³¹P NMR spectroscopy. Reactions under static vacuum were frozen directly after mixing of the reagents and the headspace of the J-Young tube was evacuated, after which the mixture was kept at the indicated temperature.

Silane	Solvent	Temperature	Time [h]	Conv.	Ph₂PH (%),P₂Ph₄ (%)
		[°C]		[%]	
Et₃SiH	1,2-DCE	60	18	35	PH (43%), PP (57%)
Et₃SiH	<i>o</i> DFB	60	72	55	PH (35%), PP (65%)
Et₃SiH ^[a]	<i>o</i> DFB	60	7	<1	PH (-), PP (99%)
Et₃SiH	<i>o</i> DFB	rt	7	2	PH (-), PP (99%)
Et₃SiH	<i>o</i> DCB	100	18	93	PH (62%), PP (38%)
Et₃SiH	<i>o</i> DCB	80	96	95	PH (47%), PP (53%)
PhSiH₃	1,2-DCE	70	30	>99	PH (84%), PP (16%)
Et₃SiH ^[b]	1,2-DCE	70	54	83	PH (55%), PP (45%)
Et₃SiH ^[b]	1,2-DCE	60	8	20	PH (-), PP (>99%)
PhSiH₃	1,2-DCE	60	30	>99	PH (75%), PP (25%)
Ph₂ClSiH	1,2-DCE	60	48	23	PH (72%), PP (28%)
PhSiH₃	1,2-DCE	30	24	>99	PH (49%), PP (51%)
Et₃SiH ^[b] , ^[c]	1,2-DCE	60	30	66	PH (40%), PP (60%)
PhSiH ₃ ^[d]	1,2-DCE	30	10	58	PH (41%), PP (59%)
PhSiH ₃ ^[e]	1,2-DCE	30	10	58	PH (33%), PP (67%)

Table S 1: Conversion of Ph₂PCl to Ph₂PH and P₂Ph₄ with 9-BBN and silanes.

PhSiH₃ ^[f]	1,2-DCE	30	10	63	PH (38%), PP (62%)
PhSiH₃	MeCN	30	20	>99	PH (-), PP (>99%)
PhSiH₃	<i>o</i> DFB	30	10	>99	PH (36%), PP (64%)
PhSiH ₃ ^[a]	MeCN	30	24	46	PH (-), PP (>99%)
PhSiH₃	MeCN	50	8	>99	PH (21%), PP (79%)
Et₃SiH ^[b]	MeCN	60	32	92	PH (-), PP (>99%)
PhSiH₃ ^[a]	1,2-DCE	30	32	1	PH (-), PP (>99%)
PhSiH₃	oDFB/MeCN ^[g]	30	20	99	PH (-), PP (>99%)

Reaction conditions unless stated otherwise: 0.5 mol% 9-BBN, 1 equiv silane, 0.15 M in solvent. [a] No 9-BBN used. [b] 10 mol% 9-BBN used. [c] Reaction was kept under static vacuum. [d] 1.2 equiv PhSiH₃ were used. [e] 1.4 equiv PhSiH₃ were used. [f] 1.6 equiv PhSiH₃ were used. [g] oDFB/MeCN, 2/1, V/V.

Figure S 1: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with Et₃SiH (60°C, 1,2-DCE, after 18 hours).

Figure S 2: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCI with Et₃SiH (60°C, *o*DFB, after 72 hours).

Figure S 3: ³¹P NMR spectrum of reaction of Ph₂PCl with Et₃SiH (60°C, *o*DFB, after 7 hours). No 9-BBN was added.

Figure S 4: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with Et₃SiH (rt, *o*DFB, after 7 hours).

Figure S 6: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with Et₃SiH (80°C, *o*DCB, after 96 hours).

Figure S 7: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (70°C, 1,2-DCE, after 30 hours).

Figure S 8: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with Et₃SiH (70°C, 1,2-DCE, after 54 hours). 10 mol% 9-BBN used.

Figure S 9: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with Et₃SiH (60°C, 1,2-DCE, after 8 hours). 10 mol% 9-BBN used.

Figure S 10: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (60°C, 1,2-DCE, after 30 hours).

Figure S 11: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with Ph₂ClSiH (60°C, 1,2-DCE, after 48 hours).

Figure S 12: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, 1,2-DCE, after 24 hours).

Figure S 13: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with Et₃SiH (60°C, 1,2-DCE, after 30 hours). Reaction was kept under static vacuum (freeze pump thaw).

Figure S 14: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, 1,2-DCE, after 10 hours). 1.2 equiv of PhSiH₃ were used.

Figure S 15: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, 1,2-DCE, after 10 hours). 1.4 equiv of PhSiH₃ were used.

Figure S 16: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, 1,2-DCE, after 10 hours). 1.6 equiv of PhSiH₃ were used.

Figure S 20: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (50°C, MeCN, after 8 hours).

20

170

140

110

80

60 40

Ph₂PH

0.13-

-60

-90

-120

-160

-30

1.00H

0 δ [ppm]

Figure S 21: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCI with Et₃SiH (60°C, MeCN, after 32 hours).

Figure S 22: 31 P NMR spectrum of reaction of Ph₂PCl with PhSiH₃ (60°C, 1,2-DCE, after 32 hours). No 9-BBN used.

Figure S 23: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, MeCN/oDFB, after 20 hours).

2.1.2 Catalysis with 9-BBN and phenylsilane: Phosphine scope

General procedure: R_2PCI (0.09 mmol, 1 equiv), silane (1 equiv) and 9-BBN (0.05 equiv or 0.1 equiv) were dissolved in solvent (0.6 ml) and kept at the indicated temperature in a J-Young tube. The reaction progress was monitored by ³¹P NMR spectroscopy.

Phosphine	Temp.	Time	solvent	Conv	Product	δ(³¹ Ρ)[ppm]	Literature $\delta(^{31}P)$
	[¹ C]	լոյ		[%]			[ppm]
Ph₂PCl	30	20	MeCN/oDFB	>99	Ph ₂ PPPh ₂	-16.4 (s)	-16.7 (CH ₂ Cl ₂) ⁸
<i>i</i> Pr ₂ PCl	30	20	MeCN	45	<i>i</i> Pr ₂ PH	-16.2 (d, ${}^{1}J_{PH}$ =	-16.49 (³¹ P ⁹ ,
						199 Hz)	C ₆ D ₆) ¹⁰
<i>i</i> Pr ₂ PCl	30	42	MeCN/oDFB	92	<i>i</i> Pr ₂ PH		
<i>i</i> Pr ₂ PCl	60	8	MeCN/oDFB	>99	<i>i</i> Pr ₂ PH		
<i>i</i> Pr ₂ PCl ^[a]	60	12	MeCN/oDFB	-			
Cy ₂ PCI	30	38				-27.9 (d, ${}^{1}J_{PH}$ =	-28.1 (d, ¹ J _{PH} =
						195 Hz)	198 Hz, CD ₃ CN) ¹¹
Cy ₂ PCl	60	8	MeCN/oDFB	>99	Cy₂PH		
<i>t</i> Bu₂PCl	30	8 d	MeCN/oDFB	75	<i>t</i> Bu₂PH	19.7 (d, ¹ J _{PH} =	19.5 (d, ¹ J _{PH} =
						201 Hz)	203 Hz) ⁸
<i>t</i> Bu₂PCl	60	48	MeCN/oDFB	65	<i>t</i> Bu₂PH		
<i>t</i> Bu₂PCl	80	5 d	MeCN/oDFB	96	<i>t</i> Bu₂PH		
<i>t</i> BuPhPCl	30	42	MeCN/oDFB	85	<i>t</i> BuPhPH (77%)	-6.1 (d, ¹ J _{PH} =	-5.7 (d, ${}^{1}J_{PH}$ =
					; tBuPhPPtBuPh	212 Hz); 2.4	210 Hz) ⁸ ; 1.9 ⁸ , -
					(23%)	(s), -4.6 (s)	4.7 ⁸
<i>t</i> BuPhPCl	60	48	MeCN/oDFB	49	<i>t</i> BuPhPH (56%)		
					; tBuPhPPtBuPh		
					(44%)		
<i>t</i> BuPhPCl	80	24	MeCN/oDFB	>99	<i>t</i> BuPhPH (92%)		

Table S 2: Synthesis of R2PH and R2PPR2 from R2PCl with 9-BBN and PhSiH3.

					; tBuPhPPtBuPh (8%)		
(o- OMeC ₆ H ₄) ₂ PCI	30	10	MeCN/oDFB	95	(o- OMePh) ₂ PP(o- OMePh) ₂ (88%); (o- OMePh) ₂ PH (12%)	-46.4 (s); -73.8 (d, ¹ J _{PH} = 226 Hz)	-46.18 (CD ₂ Cl ₂) ¹² ; -73.2 (d, ¹ J _{PH} = 226 Hz) ¹¹
(o-tol) ₂ PCl	30	7	MeCN/oDFB	>99	(<i>o</i> -tol) ₂ PP(o- tol) ₂ (>99%); (<i>o</i> - tol) ₂ PH (-)	-37.8 (s); -56.0 (d, ¹ J _{PH} = 223 Hz)	-37.2 (s) ¹² ; -59.1 (d, ¹ J _{PH} = 222 Hz, THF-d8) ¹³
Mes ₂ PCI	30	24	MeCN/oDFB	>99	Mes ₂ PPMes ₂ (3%); Mes ₂ PH (97%)	-30.3 (s); -94.1 (d, ${}^{1}J_{PH} =$ 231 Hz)	-30.3 $(CD_2Cl_2)^{12}$; - 92.9 (d, ¹ J_{PH} = 229 Hz, C ₆ D ₆) ¹⁴
(p-FC ₆ H ₄) ₂ PCI	30	20	MeCN/oDFB	>99	(<i>p</i> -FC ₆ H ₄) ₂ PP(<i>p</i> - FC ₆ H ₄) ₂ (70%); (<i>p</i> -FC ₆ H ₄) ₂ PH (30%)	-18.77 (s); - 43.9 (d, ¹ J _{PH} = 221 Hz)	-16.8 $(C_6D_6)^{15}$; - 44.2 $({}^{1}J_{PH} =$ 221 Hz, CD ₃ CN) ¹¹
(<i>p</i> -CF ₃ C ₆ H ₄) ₂ PCI	30	20	MeCN/oDFB	>99	(p- CF ₃ C ₆ H ₄) ₂ PP(p- CF ₃ C ₆ H ₄) ₂ (48%); (p- CF ₃ C ₆ H ₄) ₂ PH (52%)	-14.5 (s), -41.3 (d, ¹ J _{PH} = 222 Hz)	-13.2 $(C_6D_6)^{15}$; -42.7 $({}^{31}P{}^{1}H{})^{16}$
(3,5-(CF ₃) ₂ - C ₆ H ₃) ₂ PCI	30	6	MeCN/oDFB		(3,5-(CF ₃) ₂ - C ₆ H ₃) ₂ PP(3,5- (CF ₃) ₂ -C ₆ H ₃) ₂ (19%); (3,5- (CF ₃) ₂ -C ₆ H ₃) ₂ PH (81%)	-12.91 (s), - 41.51 (m)	-12.5 (THF) ¹⁷ , - 41.7 (CD ₃ CN) ¹¹
PhPCl ₂	30	48	MeCN/oDFB	>99	PP (>99) Ph₅P₅ (93%) Ph₄P₄ (5%) Ph ₆ P ₆ (2%)	Ph_5P_5 -4 (m) Ph_4P_4 -48.8; Ph_6P_6 -22.4	$\begin{array}{rrrr} Ph_5P_5 & -3 & (m);^{18} \\ Ph_4P_4 & -48 \\ (CH_2Cl_2)^{18}; & Ph_6P_6 \\ -21.2 & (C_6D_6)^9 \end{array}$

Reaction conditions: 5 mol% 9-BBN, 0.15 M (R₂PCl), 1 equiv PhSiH₃, oDFB/MeCN, 2/1, V/V. [a] No 9-BBN used.

Figure S 24: ³¹P NMR spectrum of 9-BBN catalyzed reaction of *i*Pr₂PCl with PhSiH₃ (30°C, MeCN, after 20 hours).

Figure S 25: ³¹P NMR spectrum of 9-BBN catalyzed reaction of *i*Pr₂PCl with PhSiH₃ (30°C, oDFB/MeCN, after 42 hours).

Figure S 26: ³¹P NMR spectrum of reaction of *i*Pr₂PCl with PhSiH₃ (60°C, oDFB/MeCN, after 12 hours). No 9-BBN used.

Figure S 27: ³¹P NMR spectrum of 9-BBN catalyzed reaction of *i*Pr₂PCl with PhSiH₃ (60°C, oDFB/MeCN, after 8 hours).

Figure S 28: ³¹P NMR spectrum of 9-BBN catalyzed reaction of *t*Bu₂PCl with PhSiH₃ (30°C, oDFB/MeCN, after 8 days).

Figure S 29: ³¹P NMR spectrum of 9-BBN catalyzed reaction of tBu₂PCl with PhSiH₃ (60°C, oDFB/MeCN, after 48 hours).

Figure S 30: ³¹P NMR spectrum of 9-BBN catalyzed reaction of *t*Bu₂PCl with PhSiH₃ (80°C, oDFB/MeCN, after 5 days).

Figure S 31: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Cy₂PCl with PhSiH₃ (30°C, MeCN/oDFB, after 38 hours).

Figure S 33: ³¹P NMR spectrum of 9-BBN catalyzed reaction of *t*BuPhPCl with PhSiH₃ (30°C, MeCN/oDFB, after 42 hours).

Figure S 34: ³¹P NMR spectrum of 9-BBN catalyzed reaction of tBuPhPCI with PhSiH₃ (60°C, MeCN/oDFB, after 48 hours).

Figure S 35: ³¹P NMR spectrum of 9-BBN catalyzed reaction of tBuPhPCl with PhSiH₃ (80°C, MeCN/oDFB, after 24 hours).

Figure S 36: ³¹P NMR spectrum of 9-BBN catalyzed reaction of Mes₂PCl with PhSiH₃ (30°C, MeCN/oDFB, after 24 hours).

Figure S 37: ³¹P NMR spectrum of 9-BBN catalyzed reaction of $(o-OMeC_6H_4)_2PCI$ with PhSiH₃ (30°C, MeCN/*o*DFB, after 10 hours).

Figure S 39: ³¹P NMR spectrum of 9-BBN catalyzed reaction of (*p*-FC₆H₄)₂PCl with PhSiH₃ (30°C, MeCN/*o*DFB, after 20 hours).

Figure S 41: ³¹P NMR spectrum of 9-BBN catalyzed reaction of (3,5-(CF₃)₂C₆H₃)₂PCl with PhSiH₃ (30°C, MeCN/*o*DFB, after 6 hours).

Figure S 42: ³¹P NMR spectrum of 9-BBN catalyzed reaction of PhPCl₂ with PhSiH₃ (30°C, MeCN/*o*DFB, after 48 hours).

2.2 Lewis base ([Et₄N]Cl) catalyzed reactions

2.2.1 Lewis base screening

Several Lewis bases were tested for their ability to catalyze reduction of Ph_2PCI to P_2Ph_4 with $PhSiH_3$. **General procedure:** Ph_2PCI (19.9 mg, 0.09 mmol, 1 equiv), $PhSiH_3$ (9.7 mg, 0.09 mmol, 1 equiv) and Lewis base (0.05 equiv) were dissolved in a mixture of *o*DFB/MeCN (0.6 ml, 2/1; V/V) and heated to 30 °C. The reaction progress was monitored by ³¹P NMR spectroscopy.

Lewis base	time [h]	conversion [%] ^[a]
[<i>n</i> Bu₄N]Cl	3	>99
[Et ₄ N]Cl	2	>99
LiCl	24	9
LiCl/12-crown-4 ^[c]	24	84
KCI	24	5
CaCl ₂	24	4
[<i>n</i> Bu₄N][Br]	16	83 ^[b]
[<i>n</i> Bu₄N][F₂Ph₃Si]	2	>99
DBU	2	25
	16	>99

Table S 3: Catalyst screening. Conversion of Ph₂PCl to Ph₄P₂.

Reaction conditions: 0.5 mol% catalyst, 30°C, *o*DFB/MeCN (2/1, V/V), J-Young NMR tube, 0.15 M in Ph₂PCl. [a] Determined by ³¹P NMR spectroscopy. [b] 20% P₂Ph₄ and 80% unidentified product. [c] 0.1 equiv 12-crown-4 was added to the reaction mixture.

Figure S 43: ³¹P NMR spectrum of [*n*Bu₄N][Cl] catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 3 hours).

Figure S 44: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 45: ³¹P NMR spectrum of LiCl catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 24 hours).

Figure S 46: ³¹P NMR spectrum of LiCl catalyzed reaction of Ph₂PCl with PhSiH₃ and 12-crown-4 (30°C, *o*DFB/MeCN, after 24 hours).

Figure S 48: ³¹P NMR spectrum of CaCl₂ catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 24 hours).

Figure S 50: ³¹P NMR spectrum of [*n*Bu₄N][SiF₂Ph₃] catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 52: ³¹P NMR spectrum of DBU catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

2.2.2 Silane screening

Several silanes were screened for their ability to act as reductant in the $[Et_4N]Cl$ catalyzed reduction of Ph_2PCl to P_2Ph_4 .

General procedure: Ph_2PCI (19.9 mg, 0.09 mmol, 1 equiv), silane (1 equiv) and $[nBu_4N][CI]$ (1.3 mg, 0.0045 mmol, 0.05 equiv) were dissolved in a mixture of *o*DFB/MeCN (0.6 ml, 2/1; V/V) and heated to 30 °C. The reaction progress was monitored by ³¹P NMR spectroscopy.

Table S 4: Silane screening. Conversion of Ph₂PCl to Ph₄P₂.

Silane	Time [h]	Conversion [%] ^[a]

PhSiH₃	3	>99
Ph₃SiH	24	<1
Me ₂ HSiOSiHMe ₂	16	37 ^[b]
Et₃SiH	24	0
iPr₃SiH	16	0

Reaction conditions: 0.5 mol% [*n*Bu₄N][Cl], 30°C, J-Young NMR tube, 0.15 M in Ph₂PCl, *o*DFB/MeCN, V/V, 2/1. [a] Determined by ³¹P NMR spectroscopy. [b] No conversion to Ph₄P₂, conversion to two unidentified products.

Figure S 53: ³¹P NMR spectrum of [*n*Bu₄N][Cl] catalyzed reaction of Ph₂PCl with Ph₃SiH (30°C, *o*DFB/MeCN, after 24 hours).

Figure S 54: ³¹P NMR spectrum of [*n*Bu₄N][Cl] catalyzed reaction of Ph₂PCl with HMe₂SiOSiMe₂H (30°C, *o*DFB/MeCN, after 16 hours).

Figure S 55: ³¹P NMR spectrum of [*n*Bu₄N][Cl] catalyzed reaction of Ph₂PCl with Et₃SiH (30°C, *o*DFB/MeCN, after 24 hours).

Figure S 56: ³¹P NMR spectrum of [*n*Bu₄N][Cl] catalyzed reaction of Ph₂PCl with *i*Pr₃SiH (30°C, *o*DFB/MeCN, after 16 hours).

Table S 5: Solvent screening. Conversion of Ph ₂ PCl to Ph ₄ P ₂ .				
Solvent	Time [h]	Conversion [%] ^[a]		
oDFB	2	18		
MeCN	2	>99		
toluene	2	O ^[b]		
oDFB/MeCN	2	>99		

2.2.3 Solvent screening

Reaction conditions: 0.5 mol% [Et₄N]Cl, 30°C, J-Young NMR tube, 0.15 M in Ph₂PCl, *o*DFB/MeCN, V/V, 2/1. [a] Determined by ³¹P NMR spectroscopy. [b] [Et₄N]Cl shows low solubility in toluene.

Figure S 57: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB, after 2 hours).

Figure S 58: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, MeCN, after 2 hours).

Figure S 59: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, toluene, after 2 hours).

2.2.4 Phosphine scope

General procedure: R_2PCI (0.09 mmol, 1 equiv), silane (1 equiv) and [Et₄N]Cl (0.05 equiv) were dissolved in solvent (0.6 ml) and kept at the indicated temperature in a J-Young tube. The reaction progress was monitored by ³¹P NMR spectroscopy.

phosphine	temp.	time	conv.	product	δ(³¹ Ρ) [ppm] (m)	literature
	['C]	lul	[%]			o(°-P) [ppm]
Ph ₂ PCl	30	3	>99	Ph ₂ PPPh ₂	-16.4 (s)	-16.7 (CH ₂ Cl ₂) ⁸
<i>i</i> Pr ₂ PCl	60	12	0	-	-16.2 (d, ¹ J _{PH} = 199 Hz)	-16.5 (³¹ P{ ¹ H},
						C ₆ D ₆) ¹⁰
Cy ₂ PCl	60	13	7	Cy₂PH	-28.5 (d, ¹ J _{PH} = 195 Hz)	-28.1 (d, ¹ J _{PH} =
						198 Hz,
						CD ₃ CN) ¹¹
<i>t</i> Bu₂PCl	80	15	0	-	19.7 (d, ¹ J _{PH} = 201 Hz)	19.5 (d, ¹ J _{PH} =
						203 Hz) ⁸
<i>t</i> BuPhPCl	80	15	0	-	-6.1 (d, ¹ J _{PH} = 212 Hz);	-5.7 (d, ¹ J _{PH} =
					2.4 (s), -4.6 (s)	210 Hz) ⁸ ; 1.9 ⁸ ,
						-4.7 ⁸
(0-	30	2	13	(<i>o</i> -OMePh)₂PP(<i>o</i> -	-46.4 (s); -73.8 (d, ¹ J _{PH}	-46.18
OMeC ₆ H ₄) ₂ PCl		21	46	OMePh)₂	= 226 Hz)	(CD ₂ Cl ₂) ¹² ; -
		23	76	(>99 %) ^[a] ; (<i>o</i> -		73.2 (d, ¹ J _{PH} =
				OMePh)₂PH		226 Hz) ¹¹

Table S 6: Synthesis of R₂PPR₂ from R₂PCl with [Et₄N]Cl and PhSiH₃.

				(0 %) ^[a]		
(0-	60	3	42	(o-OMePh) ₂ PP(o-		
OMeC ₆ H ₄) ₂ PCl		15	92	OMePh) ₂		
		19	>99	(>99 %) ^[b] ; (<i>o</i> -		
				OMePh) ₂ PH		
				(0 %) ^[b]		
(o-MeC ₆ H ₄) ₂ PCl	30	23	76	(o-tol) ₂ PP(o-tol) ₂	-37.8 (s); -56.0 (d, ¹ J _{PH}	-37.2 (s) ¹² ; -
				(>99 %) ^[b] ; (<i>o</i> -	= 223 Hz)	59.1 (d, ¹ J _{PH} =
				tol) ₂ PH (0 %) ^[b]		222 Hz, THF-
						d8) ¹³
(o-MeC ₆ H ₄) ₂ PCl	60	3	73	(o-tol) ₂ PP(o-tol) ₂		
		15	>99	(>99 %) ^[c] ; (<i>o</i> -		
				tol)₂PH (0 %) ^[c]		
(2,4,6-	60	15	63	Mes ₂ PPMes ₂	-30.3 (s); -94.1 (d, ¹ J _{PH}	-30.3
$Me_3C_6H_2)_2PCI$		18	69	(1 %) ^[b] ; Mes₂PH	= 231 Hz)	(CD ₂ Cl ₂) ¹² ; -
		23	87	(99 %) ^[b]		92.9 (d, ¹ J _{PH} =
						229 Hz,
						$C_6 D_6)^{14}$
(p-FC ₆ H ₄) ₂ PCl	60	3	>99	(<i>p</i> -FC ₆ H ₄) ₂ PP(<i>p</i> -	-18.77 (s); -43.9 (d,	-16.8 (C ₆ D ₆) ¹⁵ ;
				FC ₆ H ₄) ₂ (91 %); (p-	${}^{1}J_{\rm PH} = 221 {\rm Hz}$	-44.2 (¹ J _{PH} =
				FC ₆ H ₄) ₂ PH (9 %)		221 Hz,
						CD ₃ CN) ¹¹
(p-FC ₆ H ₄) ₂ PCl	30	2	>99	(<i>p</i> -FC ₆ H ₄) ₂ PP(<i>p</i> -		
-				$FC_6H_4)_2$ (>99); (p-		
	60	2	> 00	$FC_6H_4)_2PH(-)$		12.2 /C D \15.
(<i>p</i> -CF ₃ C ₆ Π ₄) ₂ PCI	60	5	>99	$(p - CF_3 C_6 \Pi_4)_2 PP(p - CF_6 C_1 L_1) = (779)$	-14.5 (S), -41.5 (U, J _{PH}	$-13.2 (C_6 D_6)^{-1};$
				$(r_3 C_6 \Pi_4)_2 (77\%);$	= 222 Π2)	-42.7 /31/11/11/16
				(p-CF3C6H4)2PH		(* Р{ П})
	20	2	>00	(23%)		
(<i>p</i> -CF3C6H4J2PCI	50	Z	299	$(p - CF_3 C_6 \Pi_4)_2 PP(p - CF_C \square_4) = (76.97)$		
				$(r_3 C_6 \Pi_4)_2 (70\%);$		
				(p-CF3C6H4)2PH		
() F	60	2	>00	(24 %)	120 (c) 41 E (d 1)	12.6 /TUE
	60	Z	299	(3,3- (СЕ) С Ц) DD/2 Е	-12.9 (S), -41.5 (U, J _{PH}	-12.0 (IHF-
(CF3J2C6H4J2PCI				$(CF_3)_2C_6\Pi_4)_2PP(3,3-$	– 227 П2)	$100^{-7}, -40.4 (u, 1)$
				$(CF_3)_2C_6\Pi_4)_2 (ZI_70),$		$J_{PH} = 229 \ \Pi Z_{r}$
						CDCI ₃)
				(CF3J2C6H4J2PH		
/2 F	20	2	> 00	(79%)		12.2 (C D) ¹⁵ .
	30	Z	>99	(3,)- (СЕ) С Ц) DD/2 Б	-14.5 (S), -41.5 (U, JPH - 222 Uz)	$-13.2 (C_6 D_6)^{-1};$
(CI 3/2C6I 14/2F CI				$(CI_3)_2C_6I_4)_2FF(3,3)$	- 222 112)	-42.7 /31p/1u1\16
				$(CI_{3})_{2}C_{6}I_{4}J_{2}(2570),$		
				(3,3- (СЕ) С Ц) DЦ		
				(77%)		
PhPCla	30	2	>00	Ph-Pr (83%)	$Ph_{r}P_{r} = 4 (m) Ph_{r}P_{r}$	$Ph_{r}P_{r} = 3 (m) \cdot ^{18}$
	50	2		Ph ₄ P ₄ (15%)	48 8. Ph. P	Ph ₄ P ₄ -19
				Ph _c P _c (2%)	10.0, 1 Hol 6 22. 4	(CH₂Cl₂) ¹⁸ ·
						$Ph_{e}P_{e} - 21.2$
						Dage C/12
						i age JHJ

Reaction conditions: 5 mol% [Et₄N]Cl, 1 equiv PhSiH₃, 0.15 M (R_2PCl) in oDFB/MeCN (2/1;V/V).[a] Values after 21 hours. [b] Values after 19 hours. [c] Values after 15 hours.

Figure S 60: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of Cy₂PCl with PhSiH₃ (60°C, *o*DFB/MeCN, after 13 hours).

Figure S 61: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of tBu₂PCl with PhSiH₃ (80°C, oDFB/MeCN, after 15 hours).

 $(C_6 D_6)^9$

Figure S 63: ³¹P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(o-OMeC_6H_4)_2PCl$ with PhSiH₃ (60°C, *o*DFB/MeCN, after 3 hours).

Figure S 64: ³¹P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(o-OMeC_6H_4)_2PCl$ with PhSiH₃ (60°C, *o*DFB/MeCN, after 15 hours).

Figure S 65: ³¹P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(o-OMeC_6H_4)_2PCl$ with PhSiH₃ (60°C, *o*DFB/MeCN, after 19 hours).

-71.45

---45.49

Figure S 66: ³¹P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(o-OMeC_6H_4)_2PCl$ with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 67: ³¹P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(o-OMeC_6H_4)_2PCl$ with PhSiH₃ (30°C, *o*DFB/MeCN, after 21 hours).

Figure S 68: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (o-MeC₆H₄)₂PCl with PhSiH₃ (30°C, oDFB/MeCN, after 23 hours).

Figure S 69: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (*o*-MeC₆H₄)₂PCl with PhSiH₃ (60°C, *o*DFB/MeCN, after 3 hours).

Figure S 70: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of $(o-MeC_6H_4)_2PCl$ with PhSiH₃ (60°C, *o*DFB/MeCN, after 15 hours).

Figure S 71: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (Mes)₂PCl with PhSiH3 (60°C, *o*DFB/MeCN, after 15 hours).

Figure S 72: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (Mes)₂PCl with PhSiH₃ (60°C, *o*DFB/MeCN, after 18 hours).

Figure S 73: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (Mes)₂PCl with PhSiH₃ (60°C, *o*DFB/MeCN, after 23 hours).

Figure S 75: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (*p*-FC₆H₄)₂PCl with PhSiH₃ (60°C, *o*DFB/MeCN, after 3 hours).

Figure S 76: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (*p*-CF₃C₆H₄)₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 77: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of (*p*-CF₃C₆H₄)₂PCl with PhSiH₃ (60°C, *o*DFB/MeCN, after 3 hours).

40.89

Figure S 78: ³¹P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(3,5-(CF_3)_2C_6H_3)_2PCl$ with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 79: ³¹P NMR spectrum of $[Et_4N]Cl$ catalyzed reaction of $(3,5-(CF_3)_2C_6H_3)_2PCl$ with PhSiH₃ (60°C, *o*DFB/MeCN, after 2 hours).

Figure S 80: ³¹P NMR spectrum of [Et₄N]Cl catalyzed reaction of PhPCl₂ with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

2.3 Two-component catalysis with 9-BBN and [Et₄N]Cl

General procedure: R₂PCI (0.09 mmol, 1 equiv), silane (1 equiv), [Et₄N]CI (0.7 mg, 0.0045 mmol, 0.05 equiv) and 9-BBN (0.5 mg, 0.0045 mmol, 0.05 equiv) were dissolved in a mixture of *o*DFB/MeCN (0.6 ml, 2/1; V/V) and heated to the indicated temperature. The reaction progress was monitored by ³¹P NMR spectroscopy.

R₂PCI	т [°C]	t [h]	conv. [%]	product
Ph ₂ PCl	30	2	>99	PP (89 %) PH (11 %)
<i>i</i> Pr ₂ PCl	30 60	2 2	0 >99	- PP (2 %) PH (98 %)
<i>t</i> Bu₂PCl	80	5 d	97	PH (>99 %)
<i>t</i> BuPhPCl	30	72	98	PP (89 %) PH (11 %)
<i>t</i> BuPhPCl	60	8	>99	PP (78 %) PH (22 %)
(<i>o</i> -OMeC ₆ H ₄) ₂ PCl	30	2	>99	PP (>99) PH (-)
(o-MeC ₆ H ₄) ₂ PCl	30	2	>99	PP (89 %) PH (11 %)
(2,4,6- Me ₃ C ₆ H ₂) ₂ PCl	30	2	>99	PP (<1%) PH (>99%)
(p-FC ₆ H ₄) ₂ PCl	30	2	>99	PP (85 %) PH (15 %)
$(p-CF_3C_6H_4)_2PCI$	30	2	99	PP (66 %) PH (33 %)

Table S 7: Synthesis of R₄P₂ and R₂PH from R₂PCl with [Et₄N]Cl /9-BBN and PhSiH₃.

(3,5- (CF ₃) ₂ C ₆ H ₃) ₂ PCl	30	2	>99	PP (17 %) PH (83 %)
(o-NMe ₂ C ₆ H ₄) ₂ PCl	30	4	>99	PP (98%), PH (2%)
(p-Cl-C ₆ H ₄) ₂ PCl	30	2	>99	$\begin{array}{l} PP \ (55\%) \ (\delta(^{31}P) = -18.1 \ ppm; \ lit^{20} \!\!\!: \ \delta(^{31}P, CD_2Cl_2) = - \\ 17.7 \ ppm \ (\ d, \ ^1J_{PH} = 219 \ Hz \), \ PH \ (45\%) \ (\delta(^{31}P) = - \\ 43.4 \ ppm \ (d, \ ^1J_{PH} = 214 \ Hz); \ lit^{13} \!\!\!: \ \delta(^{31}P, THF\text{-}d8) = - \\ 45.6 \ ppm \ (\ d, \ ^1J_{PH} = 219 \ Hz \) \end{array}$
(<i>m</i> -Me-C6H4)2PCl	30	2	>99	PP (98%), PH (2%) (δ(³¹ P) = -39.7 ppm (d, ¹ J _{PH} = 215 Hz); lit ²¹ : δ(³¹ P, C ₆ D ₆) = -40.3 ppm (d, ¹ J _{PH} = 215 Hz)
(2,4,6- (CF ₃) ₂ C ₆ H ₂)PCl ₂	30	4	>99	$\begin{array}{l} (2,4,6\text{-}(CF_3)_2C_6H_2)\text{PH}_2(99\%)(\delta(^{31}\text{P}\{^1\text{H}\})=\text{-}139.4\text{ppm}\\ (\text{sept},^4J_{\text{PF}}=29\text{Hz}); \text{it}^5:\delta(^{31}\text{P}\{^1\text{H}\},C_6D_6)=\text{-}139.1\text{ppm}\\ (\text{sept q},^4J_{\text{PF}}=29;^6J_{\text{PF}}=2.3\text{Hz})) \end{array}$
PhPCl ₂ ^[a]	30	2	>99	PP (>99) Ph₅P₅ (64 %) Ph₄P₄ (35 %) Ph₅P₅ (1 %)

Reaction conditions: 5 mol% [Et₄N]Cl and 9-BBN, 1 equiv PhSiH₃, 0.15 M (R₂PCl) in *o*DFB/MeCN (2/1;V/V). [a] 2 equiv of PhSiH₃ were used.

Figure S 81: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of Ph₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 83: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of *t*Bu₂PCl with PhSiH₃ (80°C, *o*DFB/MeCN, after 5 days).

Figure S 85: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of $(o-MeC_6H_4)_2PCl$ with PhSiH₃ (30°C, reaction run in *o*DFB/MeCN, NMR measured in C₆D₆, after 2 hours).

Figure S 86: ³¹P NMR spectrum of [Et₄N]Cl 9-BBN catalyzed reaction of (Mes)₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 87: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (*t*Bu)(Ph)PCl with PhSiH₃ (60°C, *o*DFB/MeCN, after 8 hours).

Figure S 88: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (*t*Bu)(Ph)PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 72 hours).

Figure S 89: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (3,5-(CF₃)₂C₆H₃)₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 90: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (p-FC₆H₄)₂PCl with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 91: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (p-CF₃C₆H₄)₂PCl with PhSiH₃ (30°C, oDFB/MeCN, after 2 hours).

Figure S 92: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of PhPCl₂ with PhSiH₃ (30°C, *o*DFB/MeCN, after 2 hours).

Figure S 93: ³¹P{¹H} NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (2,4,6-(CF₃)₃C₆H₄)PCl₂ with PhSiH₃ (30°C, *o*DFB/MeCN, after 4 hours).

Figure S 94: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (2,4,6-(CF₃)₃C₆H₄)PCl₂ with PhSiH₃ (30°C, *o*DFB/MeCN, after 4 hours).

Figure S 95: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (o-NMe₂C₆H₄)₂PCl with PhSiH₃ (30°C, oDFB/MeCN, after 4 hours).

Figure S 96: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (m-MeC₆H₄)₂PCl with PhSiH₃ (30°C, oDFB/MeCN, after 2 hours).

Figure S 97: ³¹P NMR spectrum of [Et₄N]Cl /9-BBN catalyzed reaction of (p-ClC₆H₄)₂PCl with PhSiH₃ (30°C, oDFB/MeCN, after 2 hours).

3. Mechanistic investigations

To investigate the mechanism of PH and PP bond formation with 9-BBN several reactions were performed. Reaction of equimolar amounts of 9-BBN with Ph_2PCI/iPr_2PCI and regeneration of 9-BBN from CI-9-BBN and $PhSiH_3$ were independently performed to demonstrate feasibility of the proposed catalytic cycle for formation of R_2PH from R_2PCI . The influence of $[Et_4N][CI]$ on regeneration of 9-BBN from CI-9-BBN and $PhSiH_3$ was investigated. Furthermore dehydrogenative coupling of Ph_2PH by 9-BBN and CI-9-BBN was investigated to probe the mechanism for PP bond formation. Reaction of Ph_2PCI with Ph_2PH was performed in different solvents to demonstrate that P_2Ph_4 can be formed under such circumstances.

3.1 Reaction of 9-BBN with Ph₂PCl

9-BBN (11 mg, 0.45 mmol, 1 equiv) and Ph₂PCl (19.9 mg, 0.45 mmol, 1 equiv) were dissolved in 1,2dichloroethane (0.6 mL) and stirred at room temperature for 18 hours. The volatiles were removed and the resulting residue washed with *n*-pentane (2x2 mL). The resulting colourless solid was dried under vacuum to afford the Ph₂PCl Cl-9-BBN adduct in 94% yield (145 mg, 0.042 mmol). NMR data show broad signals, indicating a dynamic adduct. ¹H NMR (CDCl₃) δ = 7.82-7-76 (m, 4H, Ph₂PH), 7-56-7.52 (m, 2H, Ph₂PH), 7.49-7.44 (m, 4H, Ph₂PH), 6.66 (d, ¹J_{HP} = 358 Hz, 1H, PH), 1.99-1.87 (m, 6H, Cl-9-BBN), 1.77 (br s, Cl-9-BBN), 1.64-1.59 (m, 2H, Cl-9-BBN), 1.06 (br s, 2H, Cl-9-BBN) ppm. ³¹P NMR (CDCl₃) δ = -18.9 (d, ¹J_{HP} = 358 Hz, 1H, PH) ppm. ¹¹B NMR (CDCl₃) δ = 4.8 (br s) ppm.¹³C NMR (CDCl₃) δ = 134.3 (d, *J*_{CP} = 8.2 Hz), 132.0 (d, *J*_{CP} = 2.5 Hz), 129.3 (d, *J*_{CP} = 10 Hz), 122.7 (d, *J*_{CP} = 54.8 Hz), 31.4 (br s), 24.6-24.7 (br s), 24.8 ppm.

Figure S 98: ¹H NMR spectrum of dynamic adduct of Ph₂PH and Cl-9-BBN (CDCl₃).

Figure S 100: ^{11}B NMR spectrum of dynamic adduct of Ph_{2}PH and Cl-9-BBN (CDCl_3).

3.2 Reaction of Cl-9-BBN with PhSiH₃

3.2.1 Without catalyst

Cl-9-BBN (14.1 mg, 0.09 mmol, 1 equiv) and PhSiH₃ (10.5 mg, 0.09 mmol, 1 equiv) were dissolved in *o*DFB (0.6 mL) and heated at 30°C in a J-Young NMR tube. The reaction was monitored by ¹¹B NMR spectroscopy for 14 h. After 30 minutes mainly Cl-9-BBN starting material and hydrolysis-derived 9-OH-9-BBN were observed in the ¹¹B NMR spectrum. After 14 hours 9-BBN product and hydrolysis-derived 9-OH-9-BBN were observed in the ¹¹B NMR spectrum. 9-OH-9-BBN resonance was assigned in accordance with literature.²²

Figure S 102: ¹¹B NMR spectrum of reaction of Cl-9-BBN with PhSiH₃ in *o*DFB after 30 minutes at 30°C. 9-OH-9-BBN stems from glove box atmosphere-related hydrolysis of Cl-9-BBN.

Figure S 103: ¹¹B NMR spectrum of reaction of Cl-9-BBN with PhSiH₃ in *o*DFB after 14 hours at 30°C. 9-OH-9-BBN stems from glove box atmosphere-related hydrolysis of Cl-9-BBN.

3.2.2 With [Et₄N]Cl catalyst

Cl-9-BBN (14.1 mg, 0.09 mmol, 1 equiv), PhSiH₃ (9.7 mg, 0.09 mmol, 1 equiv) and [Et₄N]Cl (0.7 mg, 0.005 mmol, 0.05 equiv) were dissolved in *o*DFB (0.6 mL) and placed in a J-Young NMR tube. The reaction was monitored by ¹¹B NMR spectroscopy. After 10 minutes at room temperature only 9-BBN and

hydrolysis-derived 9-OH-9-BBN were observed in the ¹¹B NMR spectrum. 9-OH-9-BBN resonance was assigned in accordance with literature.²² This accounts for a substantial acceleration compared to the reaction without [Et₄N]Cl.

Figure S 104: ¹¹B NMR spectrum of reaction of Cl-9-BBN with PhSiH₃ with [Et₄N]Cl catalyst in *o*DFB after 10 minutes. 9-OH-9-BBN stems from glove box atmosphere-related hydrolysis of Cl-9-BBN.

3.3 Attempted dehydrogenative coupling of R₂PH with 9-BBN and Cl-9-BBN

General procedure: Ph_2PH (16.8 mg, 0.09 mmol) and the respective boron compound (0.005 mmol, 0.5 equiv) were dissolved in MeCN/oDFB (0.6 mL, 1/2, V/V) and heated to 30 °C in a J-Young tube. The reaction progress was monitored via ³¹P NMR spectroscopy.

In case of Cl-9-BBN: After 20 hours of reaction time Ph_2PCI (19.9 mg, 0.09 mmol, 1 equiv compared to Ph_2PH) was added to the reaction mixture and the reaction progress was monitored by ³¹P NMR spectroscopy.

0 δ [ppm] 20 Figure S 106: ³¹P{¹H} NMR spectrum of the addition of Ph₂PCI to the reaction mixture of the attempted dehydrogenative coupling of Ph₂PH with catalytic amounts of Cl-9-BBN in oDFB/MeCN at 30 °C; 30 min after the addition of Ph₂PCl.

0.29-

0.90

-60

-90

-120

-160

-30

1.00-

80

60

40

170

140

110

Figure S 107: ³¹P NMR spectrum of attempted dehydrogenative coupling of Ph₂PH with catalytic amounts of 9-BBN in oDFB/MeCN at 30 °C after 20 hours.

3.4 Reaction of Ph₂PH with Ph₂PCl

 Ph_2PCI (19.9 mg, 0.09 mmol, 1 equiv) and Ph_2PH (16.8 mg, 0.09 mmol, 1 equiv) were dissolved in the respective solvent (0.6 mL) and heated to 30 °C in a J-Young tube. After 3 hours a ³¹P NMR spectrum was recorded.

3.4.1 In toluene

Figure S 108: ³¹P NMR spectrum of the reaction of Ph₂PCl with Ph₂PH at 30 °C in toluene after 3 hours.

Figure S 109: ³¹P NMR spectrum of the reaction of Ph₂PCl with Ph₂PH at 30 °C in *o*DCB after 3 hours.

3.4.3 In oDFB

Figure S 110: ³¹P NMR spectrum of the reaction of Ph₂PCl with Ph₂PH at 30 °C in *o*DFB after 3 hours.

3.4.4 In oDFB/MeCN

Figure S 111: ³¹P NMR spectrum of the reaction of Ph₂PCl with Ph₂PH at 30 °C in *o*DFB/MeCN after 3 hours.

3.5 Reaction of *t*Bu₂PH with *t*Bu₂PCl

 tBu_2PCI (16.3 mg, 0.09 mmol) and tBu_2PH (13.2 mg, 0.09 mmol) were dissolved in oDFB/MeCN (0.6 mL, 2/1, V/V) and heated to 80 °C for 24 h. The reaction progress was monitored via ³¹P NMR spectroscopy.
After 24 h PhSiH₃ (4.9 mg, 0.05 mmol) was added and the mixture heated to 80 °C. The reaction progress was monitored by 31 P NMR spectroscopy.

Figure S 113: ³¹P NMR spectrum of reaction of tBu₂PCl with tBu₂PH and PhSiH₃ in oDFB/MeCN after 48 h at 80 °C.

3.6 Chlorination of PhSiH₃ with HCl

Chlorination of PhSiH₃ with HCl as a critical step in PP bond formation from R_2PH and R_2PCl was investigated and the influence of catalytic amounts of $[Et_4N]Cl$ was demonstrated. Addition of 9-BBN did not have an impact on chlorination of PhSiH₃ with HCl.

3.6.1 Without catalyst

PhSiH₃ (9.7 mg, 0.09 mmol, 1 equiv) was dissolved in MeCN-d3 (0.3 mL) and 1,2-dichloroethane (2 drops, internal standard for ¹H NMR spectroscopy) was added. A reference ¹H NMR spectrum was measured.

HCl in diethyl ether (1 M, 0.36 mL, 0.36 mmol, 4 equiv) was added, the mixture was kept at 30°C in a J-Young NMR tube and the reaction progress was monitored via ¹H NMR spectroscopy.

Figure S 114: ¹H NMR spectrum of reaction of PhSiH₃ with HCl at 30 °C in MeCN-d3 after indicated time intervals. Zero sample: before addition of HCl. Spectrum is magnified to facilitate recognition of important resonances.

3.6.2 With 9-BBN

PhSiH₃ (9.7 mg, 0.18 mmol, 1 equiv) and 9-BBN (0.5 mg, 0.005 mmol, 0.05 equiv) were dissolved in MeCN-d3 (0.3 mL) and 1,2-dichloroethane (2 drops, internal standard for ¹H NMR spectroscopy) was added. A reference ¹H NMR spectrum was measured. HCl in diethyl ether (1 M, 0.36 mL, 0.36 mmol, 4 equiv) was added, the mixture was kept at 30°C in a J-Young NMR tube and the reaction progress was monitored via ¹H NMR spectroscopy.

Figure S 115: ¹H NMR spectrum of reaction of PhSiH₃ with HCl and 9-BBN at 30 °C in MeCN-d3 after indicated time intervals. Zero sample: before addition of HCl. Spectrum is magnified to facilitate recognition of important resonances.

3.6.3 With [Et₄N]Cl

PhSiH₃ (19.5 mg, 0.18 mmol, 1 equiv) and [Et₄N]Cl (1.5 mg, 0.01 mmol, 0.05 equiv) were dissolved in MeCN-d3 (0.3 mL) and 1,2-dichloroethane (2 drops, internal standard for ¹H NMR spectroscopy) was added. A reference ¹H NMR spectrum was measured. HCl in diethyl ether (1 M, 0.36 mL, 0.36 mmol, 2 equiv) was added, the mixture was kept at 30°C in a J-Young NMR tube and the reaction progress was monitored via ¹H NMR spectroscopy. After 2 hours full consumption of PhSiH₃ is observed. Resonances for the silanes²³ PhSiH₃ (δ =4.16 ppm), PhSiH₂Cl (δ =5.22 ppm), PhSiHCl₂ (δ =5.98 ppm) and for H₂ (δ =4.58 ppm)⁷ were assigned by comparison with literature.

Figure S 116: ¹H NMR spectra of [Et₄N]Cl catalyzed chlorination of PhSiH₃ with HCl in MeCN-d3. *Bottom*: Before addition of HCl. *Top*: Reaction mixture after 120 minutes at 30 °C.

3.7 Test for radical mechanism

To rule out a radical mechanism for PP bond formation we performed the reaction of Ph_2PCI with $PhSiH_3$ under [Et₄N]Cl catalysis in the presence of radical scavengers. The two investigated radical scavengers (2,2,6,6-Tetramethylpiperidinyloxyl (TEMPO), 9,10-dihydroanthracene) did not slow down the reaction, thereby indicating that no radicals are involved in PP bond formation.

Ph₂PCl (19.9 mg, 0.09 mmol, 1 equiv), PhSiH₃ (9.7 mg, 0.09 mmol, 1 equiv), [Et₄N]Cl (0.7 mg, 0.005 mmol, 0.5 equiv) and the appropriate radical scavenger (0.09 mmol, 1 equiv) were dissolved in a mixture of *o*DFB/MeCN (0.6 mL, 2/1, V/V) in a J-Young tube and heated to 30°C. The reaction progress was followed by ³¹P NMR spectroscopy. A reference reaction without radical scavenger was run at the same time.

Figure S 117: Stack of ³¹P NMR spectra of the reaction of Ph₂PCl with PhSiH₃ catalyzed by [Et₄N]Cl in the presence of radical scavengers after 150 min.

Figure S 118: Stack of ³¹P NMR spectra of the reaction of Ph₂PCl with PhSiH₃ catalyzed by [Et₄N]Cl in the presence of radical scavengers after 90 min.

Figure S 119: Stack of ³¹P NMR spectra of the reaction of Ph₂PCl with PhSiH₃ catalyzed by [Et₄N]Cl in the presence of radical scavengers after 30 min.

3.8 Test for silylium catalysis

To rule out silvlium-based catalysis,²⁴⁻²⁷ by silane activation with 9-BBN or 9-CI-BBN we performed the reaction of Ph_2PCI with $PhSiH_3$ or Et_3SiH with $[CPh_3][B(C_6F_5)_4]$ instead of 9-BBN. $[CPh_3][B(C_6F_5)_4]$ has been shown to generate catalytically active silvlium by hydride abstraction.²⁶ In our hands, under the optimized reaction conditions (0.5 mol% $[CPh_3][B(C_6F_5)_4]$, 30 °C, 1 equiv silane, solvent) usage of $[CPh_3][B(C_6F_5)_4]$ did not lead to any conversion, thereby ruling out a silvlium-based mechanism.

3.8.1 With PhSiH₃

Ph₂PCl (19.9 mg, 0.09 mmol, 1 equiv), PhSiH₃ (9.7 mg, 0.09 mmol, 1 equiv) and $[CPh_3][B(C_6F_5)_4]$ (4.2 mg, 0.005 mmol, 0.5 equiv) were dissolved in a mixture of *o*DFB/MeCN (0.6 mL, 2/1, V/V) in a J-Young tube and heated to 30°C. The reaction progress was followed by ³¹P NMR spectroscopy. After 17 hours no conversion of Ph₂PCl was observed.

Figure S 120: ³¹P NMR spectrum of the reaction of Ph_2PCI with $PhSiH_3$ in the presence of $[CPh_3][B(C_6F_5)_4]$ (30 °C, *o*DFB/MeCN, 17 h).

 Ph_2PCI (19.9 mg, 0.09 mmol, 1 equiv), $PhSiH_3$ (9.7 mg, 0.09 mmol, 1 equiv) and $[CPh_3][B(C_6F_5)_4]$ (4.2 mg, 0.005 mmol, 0.5 equiv) were dissolved in *o*DFB (0.6 mL) in a J-Young tube and heated to 30°C. The reaction progress was followed by ³¹P NMR spectroscopy. After 17 hours no conversion of Ph_2PCI was observed.

Figure S 121: ³¹P NMR spectrum of the reaction of Ph₂PCl with PhSiH₃ in the presence of [CPh₃][B(C₆F₅)₄] (30 °C, *o*DFB, 17 h).

3.8.2 With Et₃SiH

Ph₂PCl (17.7 mg, 0.08 mmol, 1 equiv), Et₃SiH (9.3 mg, 0.08 mmol, 1 equiv) and $[CPh_3][B(C_6F_5)_4]$ (3.7 mg, 0.004 mmol, 0.5 equiv) were dissolved in 1,2-dichloroethane (0.6 mL) in a J-Young tube and heated to 30°C. The reaction progress was followed by ³¹P NMR spectroscopy. After 3 hours no conversion of Ph₂PCl was observed.

Figure S 122: ³¹P NMR spectrum of the reaction of Ph_2PCI with Et_3SiH in the presence of $[CPh_3][B(C_6F_5)_4]$ (30 °C, 1,2-dichloroethane, 3 h).

4. Larger scale reactions

4.1 Synthesis of Ph₄P₂ by 9-BBN catalysis

Ph₂PCl (551.6 mg, 2.5 mmol, 1 equiv) and PhSiH₃ (270.6 mg, 2.5 mmol, 1 equiv) were dissolved in MeCN/*o*DFB (16 mL, 2/1, VV) and added to 9-BBN (15.3 mg, 0.13 mmol, 0.05 equiv) and the mixture was placed in a Schlenk tube. The mixture was heated to 30°C for 24 hours (open to the Schlenk line for pressure release, H₂ formation). After 24 hours all volatiles were removed and the mixture was washed with pentane (2 x 2 mL). The remaining colourless powder was dried under vacuum to afford 81% (375 mg, 1 mmol) of Ph₄P₂. ¹H NMR (C₆D₆) δ = 7.57-7.51 (m, 8H), 6.97-6.94 (m, 12H) ppm. ³¹P NMR (C₆D₆) δ = 136.6 (m), 134.8 (t, *J*_{CP} = 12.9 Hz), 128.9, 128.6 (t, *J*_{CP} = 3.33 Hz) ppm.

Figure S 123: ¹H NMR spectrum of Ph₄P₂ synthesized from Ph₂PCl and PhSiH₃ by 9-BBN catalysis (C₆D₆).

Figure S 124: ³¹P NMR spectrum of Ph₄P₂ synthesized from Ph₂PCl and PhSiH₃ by 9-BBN catalysis (C₆D₆).

Figure S 125: 13 C NMR spectrum of Ph₄P₂ synthesized from Ph₂PCl and PhSiH₃ by 9-BBN catalysis (C₆D₆).

4.2 Synthesis of (o-MeC₆H₄)₄P₂ by 9-BBN/[Et₄N]Cl catalysis

(o-MeC₆H₄)₂PCI (174.1 mg, 0.7 mmol, 1 equiv) and PhSiH₃ (75.8 mg, 0.7 mmol, 1 equiv) were dissolved in MeCN/oDFB (4.5 mL, 1/2, V/V) and added to 9-BBN (4.3 mg, 0.04 mmol, 0.05 equiv) and [Et₄N]CI (5.8 mg, 0.04 mmol, 0.05 equiv). The mixture was placed in a Schlenk tube and stirred at room temperature for two hours (open to the Schlenk line for pressure release, H₂ formation). After two hours all volatiles were removed. The residue was washed with *n*-pentane (2x2 mL), then with toluene (2 mL) and the washings discarded. The remaining colorless solid was dried under vacuum to afford (*o*-MeC₆H₄)₄P₂ in 74 % yield (110 mg, 0.26 mmol). ¹H NMR (CDCl₃) δ =7.41 (d, ³J_{HH} = 7.46 Hz, 4H), 7.07 (t, ³J_{HH} = 7.46 Hz, 4H), 6.96 (t, ³J_{HH} = 7.47 Hz, 4H), 6.92-6.90 (m, 4H), 1.83 (s, 12H) ppm. ³¹P NMR (CDCl₃) δ = -35.8 ppm. ¹³C NMR (CDCl₃) δ = 143.2 (t, J_{PC} = 13.44), 135.3 (J_{PC} = 5.1 Hz), 129.9 (t, J_{PC} = 2.5 Hz), 128.7, 125.8, 20.9 (t, J_{CP} = 9.4 Hz) ppm.

Figure S 126: ¹H NMR spectrum of (o-MeC₆H₄) ₄P₂ synthesized from (o-MeC₆H₄)₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

Figure S 127: ³¹P NMR spectrum of (o-MeC₆H₄) $_4P_2$ synthesized from (o-MeC₆H₄) $_2PCI$ and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

Figure S 128: ¹³C NMR spectrum of (*o*-MeC₆H₄) ₄P₂ synthesized from (*o*-MeC₆H₄)₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

4.3 Synthesis of (o-NMe₂C₆H₄)₄P₂ by 9-BBN/[Et₄N]Cl catalysis

(o-NMe₂C₆H₄)₂PCI (55.2 mg, 0.18 mmol, 1 equiv) and PhSiH₃ (19.5 mg, 0.0.18 mmol, 1 equiv) were dissolved in MeCN/oDFB (4.5 mL, 1/2, V/V) and added to 9-BBN (1.1 mg, 0.01 mmol, 0.05 equiv) and [Et₄N]Cl (1.5 mg, 0.01 mmol, 0.05 equiv). The mixture was placed in a Schlenk tube and stirred at room temperature for four hours (open to the Schlenk line for pressure release, H₂ formation). After four hours all volatiles were removed. The residue was washed with *n*-pentane (2x2 mL) and the washings discarded. The remaining colorless solid was dried under vacuum to afford (*o*-NMe₂C₆H₄)₄P₂ in 77 % yield (38 mg, 0.07 mmol). ¹H NMR (CDCl₃) δ = 7.56 (dd, ³J_{HH} = 7.6; ⁴J_{HH} = 1.5 Hz, H_{ar}, 4H), 7.12 (ddd, ³J_{HH} = 7.8; 7.8; ⁴J_{HH} = 1.54 Hz, H_{ar}, 4H), 6.95 (m, H_{ar}, 4H), 6.88 (m, H_{ar}, 4H), 2.38 (s, 12H, NMe₂) ppm. ³¹P NMR (CDCl₃) δ = -34.1 (s) ppm. ¹³C NMR (CDCl₃) δ = 157.9 (m, C_{ar}), 136.5 (t, JCP = 7.33 Hz, C_{ar}), 136.1 (m, C_{ar}), 128.8 (s, C_{ar}), 124.0 (s, C_{ar}), 120.3 (m, C_{ar}), 45.2 (t, ⁴J_{CP} = 1.2 Hz) ppm.

Figure S 129: ¹H NMR spectrum of $(o-NMe_2C_6H_4)_4P_2$ synthesized from $(o-OMeC_6H_4)_2PCI$ and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

Figure S 130: ³¹P NMR spectrum of (o-NMe₂C₆H₄) ₄P₂ synthesized from (o-OMeC₆H₄)₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

Figure S 131: ¹³C NMR spectrum of (o-NMe₂C₆H₄) ₄P₂ synthesized from (o-OMeC₆H₄)₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

4.4 Synthesis of (o-OMeC₆H₄)₄P₂ by 9-BBN/[Et₄N]Cl catalysis

(*o*-OMeC₆H₄)₂PCl (50.5 mg, 0.18 mmol, 1 equiv) and PhSiH₃ (19.7 mg, 0.18 mmol, 1 equiv) were dissolved in MeCN/oDFB (1.5 mL, 1/2, V/V) and added to 9-BBN (1.2 mg, 0.01 mmol, 0.05 equiv) and [Et₄N]Cl (1.5 mg, 0.01 mmol, 0.05 equiv). The mixture was placed in a Schlenk tube and stirred at room temperature for two hours (open to the Schlenk line for pressure release, H₂ formation). After two hours all volatiles were removed. The residue was washed with *n*-pentane (2x2 mL), filtered over a filter pipet and the washings discarded. The filter cake was dissolved in dichloromethane (2 mL) and again filtered. The filtrate was evaporated to dryness and the remaining colorless solid was dried under vacuum to afford (*o*-OMeC₆H₄)₄P₂ in quantitative yield (44 mg, 0.09 mmol). ¹H NMR (CDCl₃) δ = 7.60 (dd, ³J_{HH} = 7.51, ³J_{HP} = 1.62 Hz, 4H), 7.15 (m, 4H), 6.81 (t, ³J_{HH} = 7.3 Hz, 4H), 6.55 (m, 4H), 3.47 (s, OMe, 12H) ppm. ³¹P{¹H} NMR (CDCl₃) δ = -46.8 ppm. ¹³C NMR (CDCl₃) δ = 161.1 (t, J_{CP} = 9.18 Hz), 135.4 (t, J_{CP} = 8.44 Hz), 129.4, 123.8 (t, J_{CP} = 5.0 Hz), 120.3, 109.4, 55.2 ppm.

Figure S 132: ¹H NMR spectrum of (*o*-OMeC₆H₄) ₄P₂ synthesized from (*o*-OMeC₆H₄)₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

Figure S 133: ³¹P{¹H} NMR spectrum of (o-OMeC₆H₄) ₄P₂ synthesized from (o-OMeC₆H₄)₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

Figure S 134: ¹³C NMR spectrum of (*o*-OMeC₆H₄)₄P₂ synthesized from (*o*-OMeC₆H₄)₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (CDCl₃).

4.5 Synthesis of (2,4,6-Me₃-C₆H₂)₂PH by 9-BBN/[Et₄N]Cl catalysis

(2,4,6-Me₃-C₆H₂)₂PCl (54.9 mg, 0.18 mmol, 1 equiv), PhSiH₃ (19.5 mg, 0.18 mmol, 1 equiv), 9-BBN (1.1 mg, 0.01 mmol, 0.05 equiv) and [Et₄N]Cl (1.5 mg, 0.01 mmol, 0.05 equiv) were dissolved in a mixture of MeCN/*o*DFB (1.5 mL, 1/2, V/V) and heated to 30 °C in a Schlenk tube. After 2 hours the volatiles were removed under vacuum. The remaining residue was dissolved in toluene and filtered over glass fiber filter paper. The filtrate was evaporated to dryness to afford (2,4,6-Me₃-C₆H₂)₂PH in 76 % yield (37 mg, 0.14 mmol) ¹H NMR (C₆D₆) δ = 6.70 (s, 4H, C₆Me₃H₂), 5.32 (d, ¹J_{PH} = 229.5 Hz, PH), 2.27 (*o*-CH₃, Mes), 2.08, (s, *p*-CH₃, Mes) ppm. ³¹P{¹H} NMR (C₆D₆) δ = -93.2 (d, ¹J_{PH} = 229.5 Hz) ppm. ¹³C NMR (C₆D₆) δ = 142.4 (d, J_{CP} = 12.35 Hz), 137.8, 130.0 (d, J_{CP} = 16.6 Hz), 129.6 (d, J_{CP} = 29 Hz), 23.0 (d, J_{CP} = 11.0 Hz), 21.0 ppm.

Figure S 135: ¹H NMR spectrum of Mes₂PH synthesized from Mes₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (C₆D₆).

Figure S 136: ³¹P NMR spectrum of Mes₂PH synthesized from Mes₂PCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (C₆D₆).

Figure S 137: ¹³C NMR spectrum of Mes₂PH synthesized from Mes₂PCl and PhSiH₃ by 9-BBN/[NEt₄][Cl] catalysis (C₆D₆).

4.6 Synthesis of Ph₂tBu₂P₂ by 9-BBN/[Et₄N]Cl catalysis

PhtBuPCl (180.6 mg, 0.9 mmol, 1 equiv), PhSiH₃ (97.4 mg, 0.9 mmol, 1 equiv), 9-BBN (5.5 mg, 0.05 mmol, 0.05 equiv) and [Et₄N]Cl (7.5 mg, 0.05 mmol, 0.05 equiv) were dissolved in oDFB/MeCN (6 mL, 2/1, V/V) and heated to 60 °C for 8 hours. After 8 hours the volatiles were removed and the resulting residue was taken up in *n*-pentane and the solution was filtered. The filtrate was evaporated to dryness to afford Ph₂tBu₂P₂ in 73% yield (108 mg, 0.33 mmol). Ph₂tBu₂P₂ was isolated as a mixture of distereomers: 85% major isomer, 15% minor isomer. ¹H NMR (C₆D₆) δ = 8.05-6.84 (m, 10 H, Ph), 1.30 (pseudo triplet, tBu, minor diastereomer, 15%), 0.96 (pseudo triplet, tBu, major isomer, 85%) ppm. ³¹P NMR (C₆D₆) δ =-2.16 (s, minor isomer, 15%), -4.16 (s, major isomer, 85%) ppm. ¹³C NMR (C₆D₆) δ = 29.97 (pseudo triplet, C(CH₃)₃, minor isomer), 30.04 (pseudo triplet, C(CH₃)₃, major isomer), 30.9 (m, *C*(CH₃)₃, minor isomer), 31.8 (pseudo triplet, *C*(CH₃)₃, major isomer), 127.6 (pseudo triplet, C_{ar}, major isomer), 133.7 (m, C_{ar}, minor isomer), 137.6 (pseudo triplet, C_{ar}, major isomer), 137.9 (pseudo triplet, C_{ar}, major isomer) ppm. Data are similar to data reported in CDCl₃ from literature.²⁸

Figure S 139: ¹H NMR spectrum of P₂Ph₂tBu₂ synthesized from tBuPhPCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (C₆D₆).

Figure S 140: Detail of ¹H NMR spectrum of $P_2Ph_2tBu_2$ synthesized from tBuPhPCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (C₆D₆).

Figure S 141: ¹³C NMR spectrum of P₂Ph₂tBu₂ synthesized from tBuPhPCl and PhSiH₃ by 9-BBN/[Et₄N]Cl catalysis (C₆D₆).

References

- 1. M. C. MacInnis, R. McDonald and L. Turculet, *Organometallics*, 2011, **30**, 6408-6415.
- 2. S. Schweizer, J.-M. Becht and C. Le Drian, *Adv. Synth. Catal.*, 2007, **349**, 1150-1158.
- 3. T. Liu, X. Sun and L. Wu, *Adv. Synth. Catal.*, 2018, **360**, 2005-2012.
- 4. F. T. Edelmann, *Comments Inorg. Chem.*, 1992, **12**, 259-284.
- 5. M. Scholz, H. W. Roesky, D. Stalke, K. Keller and F. T. Edelmann, *J. Organomet. Chem.*, 1989, **366**, 73-85.
- 6. H. C. Brown and S. U. Kulkarni, *J. Organomet. Chem.*, 1979, **168**, 281-293.
- 7. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179.
- 8. K. G. Pearce, A. M. Borys, E. R. Clark and H. J. Shepherd, *Inorg. Chem.*, 2018, **57**, 11530-11536.
- 9. R. Köster, G. Seidel, R. Boese and B. Wrackmeyer, *Chem. Ber.*, 1988, **121**, 1955-1966.
- 10. K. Zhu, P. D. Achord, X. Zhang, K. Krogh-Jespersen and A. S. Goldman, *J. Am. Chem. Soc.*, 2004, **126**, 13044-13053.
- 11. C. B. Provis-Evans, E. A. C. Emanuelsson and R. L. Webster, *Adv. Synth. Catal.*, 2018, **360**, 3999-4004.
- 12. L. Wu, V. T. Annibale, H. Jiao, A. Brookfield, D. Collison and I. Manners, *Nat. Commun.*, 2019, **10**, 2786.
- 13. C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei and C. H. Senanayake, *Org. Lett.*, 2005, **7**, 4277-4280.
- 14. Z. N. Gafurov, I. y. F. Sakhapov, A. A. Kagilev, A. O. Kantyukov, K. R. Khayarov, O. G. Sinyashin and D. G. Yakhvarov, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 2020, **195**, 726-729.
- 15. A. K. King, A. Buchard, M. F. Mahon and R. L. Webster, *Chem. Eur. J.*, 2015, **21**, 15960-15963.
- 16. J. Tong, S. Liu, S. Zhang and S. Z. Li, *Spectrochim Acta A Mol Biomol Spectrosc*, 2007, **67**, 837-846.
- 17. S. Molitor, J. Becker and V. H. Gessner, *J. Am. Chem. Soc.*, 2014, **136**, 15517-15520.
- 18. N. Burford, C. A. Dyker and A. Decken, *Angew. Chem. Int. Ed.*, 2005, **44**, 2364-2367.
- 19. C. Branfoot, T. A. Young, D. F. Wass and P. G. Pringle, *Dalton Trans.*, 2021, **50**, 7094-7104.
- 20. K. Oberdorf, A. Hanft, J. Ramler, I. Krummenacher, F. M. Bickelhaupt, J. Poater and C. Lichtenberg, *Angew. Chem. Int. Ed.*, 2021, **60**, 6441-6445.
- M. K. Rong, K. van Duin, T. van Dijk, J. J. M. de Pater, B.-J. Deelman, M. Nieger, A. W. Ehlers, J. C. Slootweg and K. Lammertsma, *Organometallics*, 2017, 36, 1079-1090.

- 22. J. M. Farrell and D. W. Stephan, *Chem. Commun.*, 2015, **51**, 14322-14325.
- 23. A. G. Sturm, J. I. Schweizer, L. Meyer, T. Santowski, N. Auner and M. C. Holthausen, *Chem. Eur. J.*, 2018, **24**, 17796-17801.
- 24. C. Douvris, C. M. Nagaraja, C.-H. Chen, B. M. Foxman and O. V. Ozerov, *J. Am. Chem. Soc.*, 2010, **132**, 4946-4953.
- 25. C. Douvris and O. V. Ozerov, *Science*, 2008, **321**, 1188-1190.
- 26. V. J. Scott, R. Çelenligil-Çetin and O. V. Ozerov, *J. Am. Chem. Soc.*, 2005, **127**, 2852-2853.
- 27. H. F. T. Klare, L. Albers, L. Süsse, S. Keess, T. Müller and M. Oestreich, *Chem. Rev.*, 2021, **121**, 5889-5985.
- 28. J. Heinicke and R. Kadyrov, J. Organomet. Chem., 1996, **520**, 131-137.