Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Table of Contents

1. General Information and Materials	2
2. Optimization of Monofluoroalkylation Reaction	5
3. Substrate Scope of Monofluoroalkylation Reaction	7
4. Substrate Scope of Bis-monofluoroalkylation Reaction	22
5. Control Experiments and Competition Experiments	29
5.1 Control Experiments of Bis-fluoroalkylation	29
5.2 Competition Experiments	29
6. Radical Inhibition Experiments and Plausible Reaction Mechanism	34
7. References	36
8. ¹ H, ¹⁹ F and ¹³ C NMR Spectra of Isolated Products	37

1. General Information and Materials

General information: ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 MHz NMR spectrometer. ¹H NMR spectroscopy chemical shifts were determined relative to internal Me₄Si (TMS) at δ 0.0 or to the signal of the residual protonated solvent CDCl₃ δ 7.26. ¹³C NMR spectroscopy chemical shifts were determined relative to the signal of CDCl₃ δ 77.0. For the reaction mixtures, ¹⁹F NMR spectroscopy chemical shifts were determined relative to PhCF₃ at δ –62.0. Data for ¹H, ¹³C and ¹⁹F NMR spectra are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad, hept = heptet). FT-IR spectra were obtained with a Nicolet 5700 spectrophotometer. GC-MS data were recorded on a Finnigan 4021 instrument and GCMS-QP2010. Melting points were recorded on a SGW X-4 melting point apparatus and are uncorrected. High-resolution mass spectral (HRMS) were collected on Waters Micromass GCT Premier and Bruker MicroTof Q II 10410. All reactions were monitored by TLC or ¹⁹F NMR spectroscopy.

Materials: Commercial reagents and solvents were used without further purification. 2-Fluoroacetic acid (FCH₂CO₂H, **1a**) and 2-fluoro-2-methylpropanoic acid (Me₂CFCO₂H, **1c**) were prepared with a similar procedure to the literature.¹ 2-Fluoropropanoic acid (MeCHFCO₂H, **1b**) was prepared with a similar procedure to the literature.²

Procedure for the synthesis of FCH₂CO₂H (1a)

$$\begin{array}{c|c} \mbox{FCH}_2\mbox{CO}_2\mbox{Et} & \begin{tabular}{c} \mbox{NaOH} (20 \mbox{ mL}, \mbox{8.4 M}) \\ \hline \mbox{EtOH} (180 \mbox{ mL}) \\ \mbox{25 }^{\circ}\mbox{C}, \mbox{24 h} \\ \end{array} \begin{array}{c} \mbox{FCH}_2\mbox{CO}_2\mbox{Na} & \begin{tabular}{c} \mbox{HCI} (120 \mbox{ mL}, \mbox{3 M}) \\ \hline \mbox{FCH}_2\mbox{CO}_2\mbox{Ha} \\ \end{tabular} \end{array} \begin{array}{c} \mbox{HCI} (120 \mbox{ mL}, \mbox{3 M}) \\ \mbox{FCH}_2\mbox{CO}_2\mbox{Ha} \\ \end{tabular} \end{array} \begin{array}{c} \mbox{HCI} (120 \mbox{ mL}, \mbox{3 M}) \\ \mbox{FCH}_2\mbox{CO}_2\mbox{Ha} \\ \end{tabular} \end{array}$$

A solution of ethyl fluoroacetate (FCH₂CO₂Et) (13.6 mL, 141 mmol) in EtOH (180 mL) was treated with 20 mL of aqueous NaOH (8.4 M) and stirred at room temperature for 24 h. The solvent was rotary evaporated to dryness. The sodium fluoroacetate thus obtained was redissolved in 120 mL of aqueous HCl (3 M), and then the solution was saturated with solid NaCl and then extracted with Et₂O (4×25 mL). The organic extract was dried with MgSO₄, filtered, and the filtrate was rotary evaporated to produce 2-

fluoroacetic acid as a clear oil. This crude product, which was still slightly wet, was redissolved in anhydrous Et₂O, dried with copious amount of MgSO₄ overnight, filtered, and rotary evaporated to dryness to produce FCH₂CO₂H (5.0 g, 46% yield) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 4.91 (d, *J* = 46.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ –230.5 (t, *J*_{H-F} = 47.0 Hz, 1F). **1a** is a known compound and has been reported in the previous paper.¹

Procedure for the synthesis of MeCHFCO₂H (1b)

Sodium hydroxide (4.5 g, 112.5 mmol) was dissolved in water (13 mL) and ethyl 2-fluoropropionate (5.9 g, 49.1 mmol) was added together with ethanol (13 mL). The mixture was heated under reflux for 60 min, cooled to room temperature, and concentrated to a volume of about 10 mL under reduced pressure. Water (4.5 mL) and concentrated hydrochloric acid (9 mL) were added, and the product was extracted with diethyl ether (6×15 mL). The organic extract was dried with Na₂SO₄, diethyl ether was rotary evaporated to produce MeCHFCO₂H (3.9 g, 81% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.90 (d, *J* = 48.4 Hz, 1H), 1.37 (dd, *J* = 24.0, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ –185.3 (dq, *J*_{H-F} = 48.9 Hz, 24.1 Hz, 1F). **1b** is a known compound and has been reported in the previous paper.²

Procedure for the Synthesis of Me₂CFCO₂H (1c)

$$\begin{array}{c|c} \mathsf{Me_2FCCO_2Et} & \xrightarrow{\mathsf{NaOH}\ (10\ \mathrm{mL},\ 8.4\ \mathrm{M})} & \mathsf{Me_2FCCO_2Na} & \xrightarrow{\mathsf{HCI}\ (60\ \mathrm{mL},\ 3\ \mathrm{M})} & \mathsf{Me_2FCCO_2H} \\ \hline & \mathsf{LtOH}\ (90\ \mathrm{mL}) & \mathsf{25\ ^{\circ}C},\ 24\ \mathrm{h} & \mathsf{1c} \end{array}$$

A solution of methyl 2-fluoro-2-methylpropanoate (Me₂FCCO₂Et) (6.3 mL, 70.5 mmol) in EtOH of 90 mL of anhydrous EtOH was treated with 10 mL of aqueous NaOH (8.4 M) and stirred at rt for 1 day. The solvent was rotary evaporated to dryness. The sodium fluoroacetate thus obtained was redissolved in 90 mL HCl of 3 M aqueous HCl, the solution was saturated with NaCl and then extracted four times with Et₂O (4×15 mL). The organic extract was dried with MgSO₄, filtered, and the filtrate was rotary

evaporated to produce 2-fluoro-2-methylpropanoic acid as a clear oil. This crude product, which was still slightly wet, was redissolved in anhydrous Et₂O, dried with copious amount of MgSO₄ overnight, filtered, and rotary evaporated to dryness to produce Me₂CFCO₂H (4.2 g, 56% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 1.63 (d, *J* = 21.6 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ –148.2 (hept, *J*_{H-F} = 21.3 Hz, 1F). **1c** is a known compound and has been reported in the previous paper.³

2. Optimization of Monofluoroalkylation Reaction

To a 10 mL of Schlenk tube were added AgNO₃ (7.0 mg, 20 mol%) and K₂S₂O₈ (1.0-5.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times, 4picolinic acid ethyl ester (0.2 mmol, 1.0 equiv.), 2-fluoroacetic acid (2.0-3.0 equiv.) and solvent (1.5 mL) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (50-100 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature. Saturated solution of NaHCO₃ (3 mL) was added and the mixture was extracted with ethyl acetate (3×10 mL). The organic layer was washed with brine (10 mL), dried with anhydrous Na₂SO₄ and concentrated. The residue was purified by silica gel flash column chromatography to give product **3a**.

CO ₂ Et	+ FCH ₂ CO ₂ H — 1a	AgNO ₃ (20 mol%) K ₂ S ₂ O ₈ (5.0 equiv.) Solvent 50 °C, 20 h	CO ₂ Et
Entry	Solvent (v:v))	Yield (%)
1	DCE/H ₂ O (2:1)		44
2	MeCN/H ₂ O (2:1)		52
3	DCM/H ₂ O (2:1)		35
4	DMSO/H ₂ O (2:1)		28
5	dioxane/H ₂ O (2:1)		<5
6	DMF/H ₂ O (2:1)		0
7	toluene/H ₂ O (2:1)		trace
8	THF/H ₂ O (2:1)		0
9	MeCN/H ₂ O (3:1)		48
10	MeCN/H ₂ O (1:1)		45

Table S1. Optimization of solvents^a

^aReaction conditions: 2a (0.2 mmol, 1.0 equiv.), 1a (0.4 mmol). Isolated yield.

CO ₂ Et	+ FCH ₂ CO ₂ H — 1a	AgNO ₃ (20 mol %) Oxidant (x equiv.) MeCN:H ₂ O=2:1 50 °C, 20 h	CO ₂ Et
Entry	oxida	oxidant (x)	
1	K ₂ S ₂ O ₈ (1.0)		24
2	$K_2S_2O_8$ (3.0)		33
3	$K_2S_2O_8$ (5.0)		52
4	(NH ₄) ₂ S ₂ O ₈ (5.0)		32
5	'BuOOH (5.0)		0

Table S2. Optimization of oxidants^a

^aReaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (0.4 mmol). Isolated yield.

Table S3. Optimization of reaction temperature^{*a*}

CO ₂ Et	+ FCH ₂ CO ₂ H — 1a	AgNO ₃ (20 mol %) K ₂ S ₂ O ₈ (5.0 equiv.) MeCN:H ₂ O=2:1 T , 20 h	N CH ₂ F
Entry	T (°C)	Yield (%)
1	50		52
2	60		57
3	70		65
4	80		78
5	90		70
6	100		56

^aReaction conditions: 2a (0.2 mmol,1.0 equiv.), 1a (0.4 mmol). Isolated yield.

Table S4. Optimization of acid equivalent^a

CO ₂ Et	+ FCH ₂ CO ₂ H — 1a	AgNO ₃ (20 mol %) K ₂ S ₂ O ₈ (5.0 equiv.) MeCN:H ₂ O=2:1 80 °C, 20 h	CO ₂ Et
Entry	Acid Equival	ent	Yield (%)
1	2.0		78
2	3.0		72

^{*a*}Reaction conditions: **2a** (0.2 mmol, 1.0 equiv.). Isolated yield.

3. Substrate Scope of Monofluoroalkylation Reaction

Typical experiment procedure:

To a 10 mL of Schlenk tube were added the heteroarene (0.2 mmol, 1.0 equiv.), AgNO₃ (20 mol%) and $K_2S_2O_8$ (5.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times. Monofluoroalkyl carboxylic acids (1.5-3.0 equiv.), MeCN (1.0 mL) or DCE (1.0 mL) and water (0.5 mL) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature. Saturated solution of NaHCO₃ (3 mL) was added and the mixture was extracted with ethyl acetate (3×10 mL). The organic layer was washed with brine (10 mL), dried with anhydrous Na₂SO₄ and concentrated. The residue was purified by silica gel flash column chromatography to give product **3**.

Unsuccessful examples

None or a trace of the desired products was detected when the above substrates proceeded the monofluoromethylation reactions.

Ethyl 2-(trifluoromethyl)isonicotinate (3a)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3a** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, v/v) as a yellow oil (28 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 8.71 (d, *J* = 4.8 Hz, 1H), 8.00 (s, 1H), 7.79 (d, *J* = 4.8 Hz, 1H), 5.53 (d, *J* = 46.8 Hz, 2H), 4.41 (q, *J* = 7.2 Hz, 2H), 1.40 (t, *J* = 7.4 Hz, 3 H). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.0 (t, *J*_{F-H} = 47.0 Hz, 1F). GC-MS (*m/z*): 183. **3a** is a known compound and has been reported in the previous paper.⁴

2-(Fluoromethyl)isonicotinonitrile (3b)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3b** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a white solid (16 mg, 58%). M.p.: 49.8-51.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.75 (d, *J* = 4.8 Hz, 1H), 7.69 (s, 1H), 7.48 (d, *J* = 4.4 Hz, 1H), 5.53 (d, *J* = 46.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -224.3 (t, *J*_{F-H} = 45.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 158.4 (d, ²*J*_{C-F} = 23.0 Hz), 150.1, 124.4, 121.7 (d, ³*J*_{C-F} = 4.0 Hz), 121.3, 116.2, 83.3 (d, ¹*J*_{C-F} = 171.0 Hz). HRMS (ESI): calcd. For C₇H₆FN₂ (M+H)⁺: 137.0515, found: 137.0520.

(Note: the low isolated yield of **3b** is due to its easily volatile.)

1-(2-(Fluoromethyl)pyridin-4-yl)ethan-1-one (3c)

For 0.2 mmol scale, the standard procedure of method was followed to provide 3c

by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, v/v) as a yellow oil (21 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 8.76 (d, *J* = 4.4 Hz, 1H), 7.89 (s, 1H), 7.69 (d, *J* = 4.4 Hz, 1H), 5.57 (d, *J* = 46.8 Hz, 2H), 2.65 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.4 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 197.1, 158.0 (d, ²*J*_{C-F} = 22.0 Hz), 150.4, 143.7, 120.5, 118.0 (d, ³*J*_{C-F} = 6.0 Hz), 84.0 (d, ¹*J*_{C-F} = 170.0 Hz), 26.8. HRMS (ESI): calcd. For C₈H₉FNO (M+H)⁺: 154.0668, found: 154.0671.

2-(Fluoromethyl)-4-phenylpyridine (3d)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3d** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (25 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, *J* = 5.2 Hz, 1H), 7.69-7.68 (m, 2H), 7.66 (s, 1H), 7.52-7.44 (m, 4H), 5.56 (d, *J* = 46.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -221.4 (t, *J*_{F-H} = 45.1 Hz, 1F). GC-MS (*m/z*): 187. **3d** is a known compound and has been reported in the previous paper.⁵

Phenyl(2-(trifluoromethyl)pyridin-4-yl)methanone (3e)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3e** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (27 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 8.76 (d, *J* = 4.8 Hz, 1H), 7.82 (d, *J* = 24.8 Hz, 2H), 7.73 (s, 1H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.52 (m, 3H), 5.57 (d, *J* = 46.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.1 (t, *J*_{F-H} = 45.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 194.9, 157.3 (d, ²*J*_{C-F} = 21.0 Hz), 149.8 (d, *J* = 2.0 Hz), 145.5, 135.7, 133.6, 130.1, 128.7, 122.2, 119.6 (d, ³*J*_{C-F} = 6.0 Hz), 84.0 (d, ¹*J*_{C-F} = 170.0 Hz). HRMS (ESI): calcd. For C₁₃H₁₁FNO (M+H)⁺: 216.0825, found: 216.0824.

4-(2-(Fluoromethyl)pyridin-4-yl)benzoyl chloride (3f)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3f** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1, v/v) as a white solid (27 mg, 54%). M.p.: 65.9-66.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.76 (d, *J* = 4.4 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.70 (s, 1H), 7.50-7.48 (m, 3H), 5.57 (d, *J* = 46.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.4 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 193.7, 157.5 (d, ²*J*_{C-F} = 22.0 Hz), 149.9 (d, *J* = 2.0 Hz), 145.1, 140.3, 134.0, 131.5, 129.1, 122.0, 119.3 (d, ³*J*_{C-F} = 6.0 Hz), 84.0 (d, ¹*J*_{C-F} = 170.0 Hz). HRMS (ESI): calcd. For C₁₃H₁₀ClFNO (M+H)⁺: 250.0435, found: 250.0435.

4-(2-(Fluoromethyl)pyridin-4-yl)benzaldehyde (3g)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3g** by column chromatography on silica gel (petroleum ether/EtOAc = 8:1 to 4:1, v/v) as a white solid (24 mg, 53%). M.p.: 72.8-74.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.10 (s, 1H), 8.69 (d, *J* = 4.8 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.73 (s, 1H), 7.51 (d, *J* = 4.4 Hz, 1H), 5.59 (d, *J* = 46.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.1 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 191.6, 157.4 (d, ²*J*_{C-F} = 27.0 Hz), 149.9, 148.0, 143.8, 136.6, 130.4, 127.8, 121.1, 118.3 (d, ³*J*_{C-F} = 6.0 Hz), 84.3 (d, ¹*J*_{C-F} = 170.0 Hz). HRMS (ESI): calcd. For C₁₃H₁₁FNO (M+H)⁺: 216.0819, found: 216.0830.

Methyl 5-(fluoromethyl)pyrazine-2-carboxylate (3h)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3h** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1 to 2:1, v/v) as a yellow oil (17 mg, 50%). ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1H), 8.89 (s, 1H), 5.65 (d, *J* = 46.4 Hz, 2H), 4.07 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -226.3 (t, *J*_{F-H} = 47.0 Hz, 1F). GC-MS (*m*/*z*): 170. **3h** is a known compound and has been reported in the previous paper.⁶

5-(Fluoromethyl)-2,3-diphenylpyrazine (3i)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3i** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (22 mg, 42%). ¹H NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 7.38-7.36 (m, 3H), 7.28-7.21 (m, 7H), 5.58 (d, *J* = 46.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ - 222.2 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.2 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.2 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.2 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.2 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 151.7, 148.6 (d, ²*J*_{C-F} = 21.0 Hz), 139.9, 139.8, 138.2, 138.1, 129.6, 128.83, 128.76, 128.3 (d, ³*J*_{C-F} = 4.0 Hz), 83.0 (d, ¹*J*_{C-F} = 169.0 Hz). HRMS (ESI): calcd. For C₁₇H₁₄FN₂ (M+H)⁺: 265.1141, found: 265.1143.

2-(Fluoromethyl)quinoxaline (3j)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3j** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a white solid (20 mg, 61%). M.p.: 50.2-51.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.02 (s, 1H), 8.13-8.11 (m, 1H), 8.05-8.03 (m, 1H), 7.78-7.76 (m, 2H), 5.70 (d, *J* = 46.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -223.0 (t, *J*_{F-H} = 47.0 Hz, 1F). ¹³C NMR (100

MHz, CDCl₃): δ 150.9 (d, ²*J*_{C-F} = 21.0 Hz), 143.1 (d, ³*J*_{C-F} = 5.0 Hz), 142.3, 141.4, 130.5, 130.2, 129.4 129.1, 83.6 (d, ¹*J*_{C-F} = 169.0 Hz). HRMS (ESI): calcd. For C₉H₈FN₂ (M+H)⁺: 163.0672, found: 163.0679.

2-(Fluoromethyl)-3-methylquinoxaline (3k)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3k** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a white solid (19 mg, 54%). M.p.: 75.0-76.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.08-8.02 (m, 2H), 7.78-7.70 (m, 2H), 5.70 (d, J = 47.2 Hz, 2H), 2.84 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -217.5 (t, $J_{\text{F-H}}$ = 47.0 Hz, 1F). GC-MS (*m/z*): 176. **3k** is a known compound and has been reported in the previous paper.⁴

3-(Fluoromethyl)-2H-chromen-2-one (3l)

For 0.2 mmol scale, the standard procedure of method was followed to provide **31** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (24 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (s, 1H), 7.57-7.53 (m, 2H), 7.37-7.30 (m, 2H), 5.38 (d, J = 46.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ - 225.7 (t, $J_{\text{F-H}} = 47.0$ Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 159.5 (d, ³ $J_{\text{C-F}} = 6.0$ Hz), 153.4, 138.9 (d, ³ $J_{\text{C-F}} = 10.0$ Hz), 131.8, 128.0, 124.7, 124.3 (d, ² $J_{\text{C-F}} = 19.0$ Hz), 118.6, 116.7, 79.5 (d, ¹ $J_{\text{C-F}} = 170.0$ Hz). HRMS (ESI): calcd. For C₁₀H₈FO₂ (M+H)⁺: 179.0508, found: 179.0509.

Ethyl-2-(1-fluoroethyl)isonicotinate (3m)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3m** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, v/v) as a yellow oil (31 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 8.69 (d, *J* = 4.8 Hz, 1H), 8.00 (s, 1H), 7.78 (d, *J* = 4.8 Hz, 1H), 5.72 (dq, *J* = 47.6 Hz, 6.0 Hz, 1H), 4.41 (q, *J* = 6.8 Hz, 2H), 1.69 (dd, *J* = 25.2 Hz, 6.4 Hz, 3H), 1.40 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -178.0 (dq, *J*_{F-H} = 48.9 Hz, 26.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 161.8 (d, ²*J*_{C-F} = 24.0 Hz), 149.7, 138.7, 122.1, 118.5 (d, ³*J*_{C-F} = 7.0 Hz), 91.1 (d, ¹*J*_{C-F} = 170.0 Hz), 61.9, 21.6 (d, ²*J*_{C-F} = 23.0 Hz), 14.2. HRMS (ESI): calcd. For C₁₀H₁₃FNO₂ (M+H)⁺: 198.0930, found: 198.0939.

1-(2-(1-Ethyl)pyridin-4-yl)ethan-1-one hydrofluoride (3n)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3n** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (24 mg, 72%). ¹H NMR (400 MHz, CDCl₃): δ 8.75 (d, *J* = 4.4 Hz, 1H), 7.91 (s, 1H), 7.68 (d, *J* = 4.4 Hz, 1H), 5.76 (dq, *J* = 48.0 Hz, 6.4 Hz, 1H), 2.67 (s, 3H), 1.72 (dd, *J* = 24.4 Hz, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -178.3 (dq, *J*_{F-H} = 48.9 Hz, 26.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 197.1, 162.1 (d, ²*J*_{C-F} = 24.0 Hz), 150.0 (d, *J* = 2.0 Hz), 143.6, 120.2, 116.8 (d, ³*J*_{C-F} = 7.0 Hz), 91.0 (d, ¹*J*_{C-F} = 170.0 Hz), 26.6, 21.5 (d, ²*J*_{C-F} = 23.0 Hz). HRMS (ESI): calcd. For C₉H₁₁FNO (M+H)⁺: 168.0829, found: 168.0825.

2-(1-Fluoroethyl)-4-phenylpyridine (30)

For 0.2 mmol scale, the standard procedure of method was followed to provide 30

by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (32 mg, 79%). ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, *J* = 5.2 Hz, 1H), 7.70 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.51-7.43 (m, 4H), 5.75 (dq, *J* = 48.0 Hz, 6.4 Hz, 1H), 1.74 (dd, *J* = 24.4 Hz, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -177.5 (dq, *J*_{F-H} = 48.9 Hz, 22.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 161.2 (d, ²*J*_{C-F} = 24.0 Hz), 149.3 (d, *J* = 2.0 Hz), 138.1, 129.12, 129.07, 127.0, 127.0, 117.0 (d, ³*J*_{C-F} = 7.0 Hz), 91.4 (d, ¹*J*_{C-F} = 168.0 Hz), 21.7 (d, ²*J*_{C-F} = 23.0 Hz). HRMS (ESI): calcd. For C₁₃H₁₃FN (M+H)⁺: 202.1032, found: 202.1037.

(2-(1-Fluoroethyl)pyridin-4-yl)(phenyl)methanone (3p)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3p** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (29 mg, 64%). ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, *J* = 5.2 Hz, 1H), 7.70 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.51-7.43 (m, 4H), 5.75 (dq, *J* = 48.4 Hz, 6.4 Hz, 1H), 1.74 (dd, *J* = 24.4 Hz, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -178.1 (dq, *J*_{F-H} = 48.9 Hz, 26.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 195.1, 161.6 (d, ²*J*_{C-F} = 24.0 Hz), 149.5 (d, *J* = 2.0 Hz), 145.5, 135.7, 133.6, 130.1, 128.7, 122.0, 118.4 (d, ³*J*_{C-F} = 8.0 Hz), 91.1 (d, ¹*J*_{C-F} = 170.0 Hz), 21.6 (d, ²*J*_{C-F} = 23.0 Hz). HRMS (ESI): calcd. For C₁₄H₁₃FNO (M+H)⁺: 230.0981, found: 230.0986.

4-(2-(1-Fluoroethyl)pyridin-4-yl)benzaldehyde (3q)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3q** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as an orange oil (25 mg, 55%). ¹H NMR (400 MHz, CDCl₃): δ 10.10 (s, 1H), 8.66 (d, *J* =

4.8 Hz, 1H), 8.01 (d, J = 7.6 Hz, 2H), 7.83 (d, J = 7.6 Hz, 2H), 7.74 (s, 1H), 7.48 (d, J = 4.4 Hz, 1H), 5.77 (dq, J = 48.9 Hz, 6.4 Hz, 1H), 1.75 (dd, J = 24.4 Hz, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -178.1 (dq, $J_{\text{F-H}} = 48.0$ Hz, 22.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 191.6, 161.7 (d, ² $J_{\text{C-F}} = 23.0$ Hz), 149.6 (d, J = 2.0 Hz), 148.0, 143.9, 136.5, 130.4, 127.8, 120.8, 117.2 (d, ³ $J_{\text{C-F}} = 8.0$ Hz), 91.3 (d, ¹ $J_{\text{C-F}} = 169.0$ Hz), 21.7 (d, ² $J_{\text{C-F}} = 23.0$ Hz). HRMS (ESI): calcd. For C₁₄H₁₃FNO (M+H)⁺: 230.0984, found: 230.0981.

Methyl-5-(1-fluoroethyl)pyrazine-2-carboxylate (3r)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3r** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, v/v) as a yellow oil (28 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 9.22 (s, 1H), 8.87 (s, 1H), 5.80 (dq, J = 47.6 Hz, 6.4 Hz, 1H), 4.04 (s, 3H), 1.73 (dd, J = 24.4 Hz, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -182.3 (dq, $J_{\text{F-H}} = 48.9$ Hz, 26.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 158.9 (d, ² $_{\text{C-F}} = 24.0$ Hz), 144.9 (d, J = 2.0 Hz), 142.3, 140.9 (d, ³ $_{\text{J-F}} = 8.0$ Hz), 89.9 (d, ¹ $_{\text{J-F}} = 170.0$ Hz), 53.2, 20.1 (d, ² $_{\text{J-F}} = 23.0$ Hz). HRMS (ESI): calcd. For C₈H₁₀FN₂O₂ (M+H)⁺: 185.0726, found: 185.0729.

2-(Fluoroethyl)quinoxaline (3s)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3s** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (25 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 9.07 (s, 1H), 8.14-8.06 (m, 2H), 7.80-7.78 (m, 2H), 5.92 (dq, *J* = 48.0 Hz, 6.8 Hz, 1H), 1.83 (dd, *J* = 24.4 Hz, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -179.6 (dq, *J*_{F-H} = 48.9 Hz, 26.3 Hz, 1F). ¹³C

NMR (100 MHz, CDCl₃): δ 154.9 (d, ${}^{2}J_{C-F}$ = 24.0 Hz), 142.4 (d, ${}^{3}J_{C-F}$ = 7.0 Hz), 142.2, 141.3 (d, J = 2.0 Hz), 130.4, 130.0, 129.3, 129.2, 90.8 (d, ${}^{1}J_{C-F}$ = 168.0 Hz), 21.3 (d, ${}^{2}J_{C-F}$ = 23.0 Hz). HRMS (ESI): calcd. For C₁₀H₁₀FN₂ (M+H)⁺: 177.0831, found: 177.0828.

2-(1-Fluoroethyl)-3-methylquinoxaline (3t)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3t** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (24 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 7.6 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.75-7.68 (m, 2H), 6.01 (dq, *J* = 47.6 Hz, 6.4 Hz, 1H), 2.85 (s, 3H), 1.86 (dd, *J* = 24.0 Hz, 6.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -173.8 (dq, *J*_{F-H} = 48.9 Hz, 24.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 152.1 (d, ²*J*_{C-F} = 19.0 Hz), 141.7 (d, *J* = 1.0 Hz), 140.2, 130.2, 129.2 (d, ³*J*_{C-F} = 5.0 Hz), 128.3, 89.6 (d, ¹*J*_{C-F} = 167.0 Hz), 22.4 (d, *J* = 4.0 Hz), 18.9 (d, ²*J*_{C-F} = 23.0 Hz). HRMS (ESI): calcd. For C₁₁H₁₂FN₂ (M+H)⁺: 191.0988, found: 191.0985.

Ethyl 2-(2-fluoropropan-2-yl)isonicotinate (3u)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3u** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, v/v) as a yellow oil (35 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, *J* = 4.8 Hz, 1H), 8.12 (s, 1H), 7.77 (d, *J* = 4.8 Hz, 1H), 4.44 (q, *J* = 7.2 Hz, 2H), 1.74 (d, *J* = 22.0 Hz, 6H), 1.43 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -144.1 (hept, *J*_{H-F} = 22.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.1 (d, ²*J*_{C-F} = 27.0 Hz), 165.0, 149.3 (d, *J* = 2.0 Hz), 138.4 (d, *J* = 2.0 Hz), 121.4, 117.4 (d, ³*J*_{C-F} = 10.0 Hz), 96.6 (d, ¹*J*_{C-F} = 169.0 Hz), 61.7,

27.7 (d, ${}^{2}J_{C-F} = 24.0$ Hz), 14.1. HRMS (ESI): calcd. For $C_{11}H_{15}FNO_{2}$ (M+H)⁺: 212.1089, found: 212.1087.

2-(2-Fluoropropan-2-yl)isonicotinonitrile (3v)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3v** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (21 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 8.71 (d, *J* = 4.4 Hz, 1H), 7.79 (s, 1H), 7.42 (d, *J* = 4.8 Hz, 1H), 1.70 (d, *J* = 22.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -145.0 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.8 (d, ²*J*_{C-F} = 28.0 Hz), 149.6 (d, *J* = 2.0 Hz), 123.7, 121.1 (d, *J* = 2.0 Hz), 120.1 (d, ³*J*_{C-F} = 11.0 Hz), 116.5, 96.6 (d, ¹*J*_{C-F} = 171.0 Hz), 27.6 (d, ²*J*_{C-F} = 23.0 Hz). HRMS (ESI): calcd. For C₉H₁₀FN₂ (M+H)⁺: 165.0833, found: 165.0828.

1-(2-(2-Fluoropropan-2-yl)pyridin-4-yl)ethan-1-one (3w)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3w** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (26 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 8.72 (d, *J* = 4.8 Hz, 1H), 7.98 (s, 1H), 7.64 (d, *J* = 4.8 Hz, 1H), 2.65 (s, 3H), 1.73 (d, *J* = 22.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -144.2 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 165.7 (d, ²*J*_{C-F} = 27.0 Hz), 149.8 (d, *J* = 2.0 Hz), 143.7, 119.7, 116.5 (d, ³*J*_{C-F} = 11.0 Hz), 96.9 (d, ¹*J*_{C-F} = 169.0 Hz), 27.9 (d, ²*J*_{C-F} = 24.0 Hz), 26.8. HRMS (ESI): calcd. For C₁₀H₁₃FNO (M+H)⁺: 182.0988, found: 182.0981.

2-(2-Fluoropropan-2-yl)-4-phenylpyridine (3x)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3x** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (35 mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, *J* = 4.4 Hz, 1H), 7.81 (s, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.50-7.41 (m, 4H), 1.77 (d, *J* = 22.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -143.7 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 164.6 (d, ²*J*_{C-F} = 26.0 Hz), 149.2, 149.1 (d, *J* = 2.0 Hz), 138.3, 129.0 (d, *J* = 2.0 Hz), 127.1, 120.2, 116.0 (d, ³*J*_{C-F} = 11.0 Hz), 97.0 (d, ¹*J*_{C-F} = 168.0 Hz), 28.0 (d, ²*J*_{C-F} = 24.0 Hz). HRMS (ESI): calcd. For C₁₄H₁₅FN (M+H)⁺: 216.1193, found: 216.1189.

(2-(2-Fluoropropan-2-yl)pyridin-4-yl)(phenyl)methanone (3y)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3y** by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 8:1, v/v) as a yellow oil (32 mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, *J* = 4.8 Hz, 1H), 7.72 (d, *J* = 5.6 Hz, 2H), 7.69 (s, 1H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.40-7.35 (m, 3H), 1.63 (d, *J* = 22.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -144.0 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 195.1, 164.8 (d, ²*J*_{C-F} = 27.0 Hz), 149.1 (d, *J* = 2.0 Hz), 145.3 (d, *J* = 2.0 Hz), 135.7, 133.4, 130.0, 128.5, 121.4, 117.3 (d, ³*J*_{C-F} = 10.0 Hz), 96.7 (d, ¹*J*_{C-F} = 169.0 Hz), 27.7 (d, ²*J*_{C-F} = 24.0 Hz). HRMS (ESI): calcd. For C₁₅H₁₅FNO (M+H)⁺: 244.1136, found: 244.1138.

For 0.2 mmol scale, the standard procedure of method was followed to provide **3z** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a white solid (33 mg, 83%). M.p.: 71.6-72.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 8.93 (s, 1H), 4.01 (s, 3H), 1.71 (d, *J* = 22.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -147.5 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 162.2 (d, ²*J*_{C-F} = 27.0 Hz), 144.6 (d, *J* = 2.0 Hz), 141.8, 140.1 (d, ³*J*_{C-F} = 11.0 Hz), 96.2 (d, ¹*J*_{C-F} = 169.0 Hz), 53.0, 27.5 (d, ²*J*_{C-F} = 24.0 Hz). HRMS (ESI): calcd. For C₉H₁₂FN₂O₂ (M+H)⁺: 199.0884, found: 199.0883.

2-(2-Fluoropropan-2-yl)quinoxaline (3aa)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3aa** by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 8:1, v/v) as an orange oil (32 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 9.16 (s, 1H), 8.13-8.11 (m, 1H), 8.06-8.04 (m, 1H), 7.77-7.75 (m, 2H), 1.85 (d, *J* = 22.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -145.2 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 158.2 (d, ²*J*_{C-F} = 27.0 Hz), 141.86, 141.82, 141.76, 141.1 (d, *J* = 1.0 Hz), 130.1, 129.7, 129.2 (d, ³*J*_{C-F} = 5.0 Hz), 96.8 (d, ¹*J*_{C-F} = 167.0 Hz), 27.7 (d, ²*J*_{C-F} = 23.0 Hz). HRMS (ESI): calcd. For C₁₁H₁₂FN₂ (M+H)⁺: 191.0989, found: 191.0985.

2-(2-Fluoropropan-2-yl)-3-methylquinoxaline (3ab)

For 0.2 mmol scale, the standard procedure of method was followed to provide 3ab

by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a semi solid (28 mg, 69%). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.73-7.66 (m, 2H), 2.93 (d, *J* = 5.6 Hz, 3H), 1.88 (d, *J* = 22.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -142.4 (hq, *J*_{H-F} = 21.9 Hz, 5.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 156.1 (d, ²*J*_{C-F} = 27.0 Hz), 152.2 (d, *J* = 2.0 Hz), 141.0, 139.5 (d, *J* = 3.0 Hz), 129.8, 129.0 (d, ³*J*_{C-F} = 4.0 Hz), 128.1, 98.0 (d, ¹*J*_{C-F} = 165.0 Hz), 27.3 (d, ²*J*_{C-F} = 24.0 Hz), 24.7 (d, *J* = 11.0 Hz). HRMS (ESI): calcd. For C₁₂H₁₄FN₂ (M+H)⁺: 205.1143, found: 205.1141.

4,6-Dichloro-4'-(2-fluoropropan-2-yl)-5-(2-methoxyphenoxy)-2,2'-bipyrimidine (3ac)

For 0.2 mmol scale, the standard procedure of method was followed to provide **3ac** by column chromatography on silica gel (petroleum ether: EtOAc = 5:1 to 2:1, v/v) as a white solid (51 mg, 62%). M.p.: 117.6-119.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.00 (d, *J* = 4.8 Hz, 1H), 7.68 (d, *J* = 4.8 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 1H), 6.88 (t, *J* = 7.8 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 3.87 (s, 3H), 1.79 (d, *J* = 22.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -146.2 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 173.8 (d, ²*J*_{C-F} = 29.0 Hz), 159.9 (d, *J* = 3.0 Hz), 158.7 (d, *J* = 2.0 Hz), 157.1, 155.4, 149.1, 144.6, 124.8, 120.9, 116.3, 115.9 (d, ³*J*_{C-F} = 10.0 Hz), 112.9, 96.3 (d, ¹*J*_{C-F} = 170.0 Hz), 56.2, 27.3 (d, ²*J*_{C-F} = 23.0 Hz). HRMS (ESI): calcd. For C₁₈H₁₆Cl₂FN₄O₂: 409.0639, found: 409.0634.

4. Substrate Scope of Bis-monofluoroalkylation Reaction

Typical experiment procedure:

To a 10 mL of Schlenk tube were added the heteroarene (0.2 mmol, 1.0 equiv.), AgNO₃ (20 mol%) and $K_2S_2O_8$ (5.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times. Monofluoroalkyl carboxylic acids (2.0-5.0 equiv.), CH₃CN (1.0 mL) or DCE (1.0 mL) and water (0.5 mL) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature. Saturated solution of NaHCO₃ (3 mL) was added and the mixture was extracted with ethyl acetate (3×10 mL). The organic layer was washed with brine (10 mL), dried with anhydrous Na₂SO₄ and concentrated. The residue was purified with silica gel chromatography (petroleum ether) to give product **4**.

(2,6-Bis(trifluoromethyl)pyridin-4-yl)0(phenyl)methanone (4a)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4a** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (33 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.69-7.65 (m, 3H), 7.53 (t, *J* = 7.4 Hz, 2H), 5.55 (d, *J* = 46.4 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ -222.2 (t, *J*_{F-H} = 47.0 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 194.8, 157.0 (dd, *J*_{C-F} = 22.0 Hz, 2.0 Hz), 146.6, 135.6, 133.8, 130.1, 128.8, 119.0 (d, *J*_{C-F} = 6.0 Hz), 83.8 (d, *J*_{C-F} = 170.0 Hz). HRMS (ESI): calcd. For C₁₄H₁₂F₂NO (M+H)⁺: 248.0887, found: 248.0887.

2,5-Bis(fluoromethyl)-3,6-dimethylpyrazine (4b)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4b** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (28 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 5.52 (d, *J* = 48.4 Hz, 4H), 2.63 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -216.4 (t, *J*_{F-H} = 47.0 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 150.0, 147.8 (d, *J*_{C-F} = 20.0 Hz), 83.5 (d, *J*_{C-F} = 167.0 Hz), 20.4. HRMS (ESI): calcd. For C₈H₁₁F₂N₂ (M+H)⁺: 173.0893, found: 173.0890.

2,3-Bis(fluoromethyl)quinoxaline (4c)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4c** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (26 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ 8.14 (m, 2H), 7.84 (m, 2H), 5.82 (d, *J* = 46.8 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ -218.6 (t, *J*_{F-H} = 47.0 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 149.2 (d, *J*_{C-F} = 19.0 Hz), 141.3, 131.0 129.3, 83.6 (d, *J*_{C-F} = 168.0 Hz). HRMS (ESI): calcd. For C₁₀H₉F₂N₂ (M+H)⁺: 195.0739, found: 195.0734.

Ethyl 2,6-bis(1-fluoroethyl)isonicotinate (4d)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4d** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, v/v) as a yellow oil (40 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (s, 2H), 5.69 (dq, *J* = 48.0 Hz, 6.4 Hz, 2H), 4.42 (q, *J* = 7.2 Hz, 2H), 1.67 (dd, *J* = 24.4 Hz, 6.4 Hz, 6H), 1.42 (t, *J* =

7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -177.9 (dq, $J_{\text{F-H}}$ = 45.1 Hz, 22.6 Hz, 1F), -178.1 (dq, $J_{\text{F-H}}$ = 48.9 Hz, 24.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 164.9, 161.2 (dt, $J_{\text{C-F}}$ = 24.0 Hz, 2.0 Hz), 139.6, 117.7 (t, $J_{\text{C-F}}$ = 6.5 Hz), 91.0 (dd, $J_{\text{C-F}}$ = 169.0 Hz, 6.0 Hz), 61.9, 21.5 (dd, $J_{\text{C-F}}$ = 23.0 Hz, 7.0 Hz), 14.2. HRMS (ESI): calcd. For C₁₂H₁₆F₂NO₂ (M+H)⁺: 244.1152, found: 244.1149.

2,6-Bis-1-fluoroethyl)-4-phenylpyridine (4e)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4e** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (37 mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 6.8 Hz, 2H), 7.63 (s, 2H), 7.52-7.44 (m, 3H), 5.71 (dq, 48.0 Hz, 6.1 Hz, 2H), 1.72 (dd, *J* = 24.8 Hz, 6.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -177.3 (dq, *J*_{F-H} = 45.1 Hz, 24.1 Hz, 1F), -177.8 (dq, *J*_{F-H} = 48.9 Hz, 24.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 160.6 (d, *J*_{C-F} = 23.0 Hz), 150.3, 138.2, 129.2, 129.1, 127.1, 116.1 (dd, *J*_{C-F} = 11.0 Hz, 7.0 Hz), 91.5 (dd, *J*_{C-F} = 168.5 Hz, 7.5 Hz), 21.8 (dd, *J*_{C-F} = 22.5 Hz, 7.5 Hz). HRMS (ESI): calcd. For C₁₅H₁₆F₂N (M+H)⁺: 248.1256, found: 248.1251.

(2,6-Bis(-1-fluoroethyl)pyridin-4-yl)(phenyl)methanone (4f)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4f** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (38 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.58 (s, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 8.6 Hz, 2H), 5.63 (dq, *J* = 48.0 Hz, 6.4 Hz, 2H), 1.61 (dd, *J* = 24.4 Hz, 6.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -177.9

(dq, $J_{\text{F-H}}$ = 48.9 Hz, 24.8 Hz, 1F), -178.2 (dq, $J_{\text{F-H}}$ = 45.1 Hz, 24.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 194.9 (d, J = 7.0 Hz), 160.9 (d, $J_{\text{C-F}}$ = 25.0 Hz), 146.5, 135.7, 133.5, 130.0, 128.6, 117.5 (dd, $J_{\text{C-F}}$ = 10.0 Hz, 7.0 Hz), 91.0 (dd, $J_{\text{C-F}}$ = 169.0 Hz, 3.5 Hz), 21.4 (dd, $J_{\text{C-F}}$ = 23.0 Hz, 5.0 Hz). HRMS (ESI): calcd. For C₁₆H₁₆F₂NO (M+H)⁺: 276.1207, found: 276.1200.

4-(2,6-Bis(1-fluoroethyl)pyridin-4-yl)benzaldehyde (4g)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4g** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a colorless oil (36 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 10.10 (s, 1H), 8.01 (d, *J* = 7.6 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.65 (s, 2H), 5.73 (dq, *J* = 48.0 Hz, 5.6 Hz, 2H), 1.72 (dd, *J* = 24.8 Hz, 6.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ -177.9 (dq, *J*_{F-H} = 48.9 Hz, 24.1 Hz, 1F), -178.4 (dq, *J*_{F-H} = 48.9 Hz, 24.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 161.0 (d, *J*_{C-F} = 23.0 Hz), 148.9, 144.0, 136.5, 130.4, 127.9, 116.2 (dd, *J*_{C-F} = 9.5 Hz, 7.5 Hz), 91.3 (dd, *J*_{C-F} = 169.0 H, 7.0 Hz), 21.7 (dd, *J*_{C-F} = 23.5 Hz, 7.5 Hz). HRMS (ESI): calcd. For C₁₆H₁₆F₂NO (M+H)⁺: 276.1201, found: 276.1200.

Ethyl 2,6-bis(2-fluoropropan-2-yl)isonicotinate (4h)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4h** by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, v/v) as a yellow

oil (48 mg, 89%). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (s, 2H), 4.42 (q, *J* = 7.2 Hz, 2H), 1.69 (d, *J* = 22.0 Hz, 12H), 1.41 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ -144.5 (hept, *J*_{H-F} = 21.9 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 164.1 (dd, *J*_{C-F} = 28.0 Hz, 2.0 Hz), 139.4, 116.1 (d, *J*_{C-F} = 10.0 Hz), 96.8 (d, *J*_{C-F} = 169.0 Hz), 61.8, 27.7 (d, *J*_{C-F} = 24.0 Hz), 14.2. HRMS (ESI): calcd. For C₁₄H₂₀F₂NO₂ (M+H)⁺: 272.1465, found: 272.1462.

(2,6-Bis(1-fluoroethyl)pyridin-4-yl)(phenyl)methanone (4i)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4i** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (46 mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 7.2 Hz, 2H), 7.31 (s, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 1.73 (d, *J* = 22.4 Hz, 12H). ¹⁹F NMR (376 MHz, CDCl₃): δ -144.5 (hept, *J*_{H-F} = 21.9 Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 195.5, 163.8 (dd, *J*_{C-F} = 27.0 Hz, 2.0 Hz), 146.4, 135.9, 133.5, 130.1, 128.6, 115.9 (d, *J*_{C-F} = 10.0 Hz), 96.9 (d, *J*_{C-F} = 169.0 Hz), 27.8 (d, *J*_{C-F} = 24.0 Hz). HRMS (ESI): calcd. For C₁₈H₂₀F₂NO (M+H)⁺: 304.1518, found: 304.1513.

1-(2,6-Bis(1-fluoroethyl)pyridin-4-yl)ethan-1-one (4j-C6)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4j**-**C6** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (33 mg, 69%). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (s, 1H), 2.65 (s, 1H), 1.70 (d, *J* = 22.0 Hz, 12H). ¹⁹F NMR (376 MHz, CDCl₃): δ -144.6 (hept, *J*_{H-F} = 22.6

Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 164.6 (dd, $J_{C-F} = 27.0$ Hz, 2.0 Hz), 144.7, 114.4 (d, $J_{C-F} = 10.0$ Hz), 96.9 (d, $J_{C-F} = 169.0$ Hz), 27.8 (d, $J_{C-F} = 24.0$ Hz), 26.9. HRMS (ESI): calcd. For C₁₃H₁₈F₂NO (M+H)⁺: 242.1356, found: 242.1356.

1-(2,5-Bis(1-fluoroethyl)pyridin-4-yl)ethan-1-one (4j-C5)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4j**-**C5** by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1, v/v) as a yellow oil (10 mg, 21%). ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 7.33 (s, 1H), 2.53 (s, 3H), 1.74 (t, *J* = 47.2 Hz, 12H). ¹⁹F NMR (376 MHz, CDCl₃): δ -130.3 (hept, *J*_{H-F} = 22.6 Hz, 1F), -144.3 (hept, *J*_{H-F} = 21.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 203.9, 163.6 (d, *J*_{C-F} = 26.0 Hz), 147.8 (dd, *J*_{C-F} = 2.0 Hz, 4.0 Hz), 145.8 (dd, *J*_{C-F} = 7.0 Hz, 2.0 Hz), 134.9 (d, *J*_{C-F} = 22.0 Hz), 113.7 (d, *J*_{C-F} = 10.0 Hz), 96.8 (d, *J*_{C-F} = 169.0 Hz), 96.0 (d, *J*_{C-F} = 168.0 Hz), 31.2 (d, *J* = 6.2 Hz), 29.4 (d, *J*_{C-F} = 25.0 Hz), 27.7 (d, *J*_{C-F} = 24.0 Hz). HRMS (ESI): calcd. For C₁₃H₁₈F₂NO (M+H)⁺: 242.1361, found: 242.1356.

4,6-Dichloro-4',6'-bis(2-fluoropropan-2-yl)-5-(2-methoxyphenoxy)-2,2'bipyrimidine (4k)

For 0.2 mmol scale, the standard procedure of method was followed to provide **4k** by column chromatography on silica gel (petroleum ether: EtOAc = 10:1 to 5:1, v/v) as a white solid (52 mg, 56%). M.p.: 101.3-103.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.71

(d, J = 8.0 Hz, 1H), 3.91 (s, 3H), 1.79 (d, J = 22.4 Hz, 12H). ¹⁹F NMR (376 MHz, CDCl₃): δ -146.0 (hept, $J_{\text{H-F}} = 22.6$ Hz, 2F). ¹³C NMR (100 MHz, CDCl₃): δ 174.4 (dd, $J_{\text{C-F}} = 28.0$ Hz, 2.0 Hz), 159.9 (t, J = 2.5 Hz), 157.8, 155.4, 149.2, 144.7, 144.3, 124.8, 120.8 116.0, 113.0, 110.0 (t, $J_{\text{C-F}} = 10.0$ Hz), 96.4 (d, $J_{\text{C-F}} = 171.0$ Hz), 56.2, 27.4 (d, $J_{\text{C-F}} = 23.0$ Hz). HRMS (ESI): calcd. For C₂₁H₂₁Cl₂F₂N₄O₂: 469.1016, found: 469.1010.

5. Control Experiments and Competition Experiments

5.1 Control Experiments of Bis-fluoroalkylation

Procedure: To a 10 mL of Schlenk tube were added AgNO₃ (7.0 mg, 20 mol%) and $K_2S_2O_8$ (270.3 mg, 5.0 equiv.). The mixture was evacuated and backfilled with N_2 for three times, **3y** (48.6 mg, 0.2 mmol, 1.0 equiv.), **1c** (106 mg, 5.0 equiv.), solvent (1.0 mL) and H₂O (0.5 ml) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature. Using a mixture of MeCN and H₂O (2:1) as a solvent, the reaction afforded the product **4i** in 59% yield, while the yield of product **4i** was trace using a mixture of DCE and H₂O (2:1) as a solvent

5.2 Competition Experiments

Procedure: To a 10 mL of Schlenk tube were added AgNO₃ (7.0 mg, 20 mol%) and $K_2S_2O_8$ (270.3 mg, 5.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times. **2a** (30.2 mg, 0.2 mmol, 1.0 equiv.), **1a** (31.2 mg, 2.0 equiv.), **1b** (39.2 mg, 2.0 equiv.), **1c** (42.4 mg, 2.0 equiv.), MeCN or DCE (1.0 mL) and H₂O (0.5 ml) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature.

The product yields were determined by 19 F NMR spectroscopy using PhCF₃ as an internal standard.

Figure S1. ¹⁹F NMR analysis of competition experiment of 1 and 2a using MeCN/H₂O as

solvent

Figure S2. ¹⁹F NMR analysis of competition experiment of 1 and 2a using DCE/H₂O as solvent

Procedure: To a 10 mL of Schlenk tube were added **2d** (31.0 mg, 0.2 mmol, 1.0 equiv.), AgNO₃ (7.0 mg, 20 mol%) and $K_2S_2O_8$ (270.3 mg, 5.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times. **1a** (15.6 mg, 1.0 equiv.), **1b** (19.6 mg, 1.0 equiv.), **1c** (21.2 mg, 1.0 equiv.), MeCN (1.0 mL) and H₂O (0.5 ml) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature. The molar ratio of corresponding products was determined by ¹⁹F NMR using PhCF₃ as internal standard.

Figure S3. ¹⁹F NMR analysis of competition experiment of 1 and 2d using MeCN/H₂O as

solvent

Procedure: To a 10 mL of Schlenk tube were added **2e** (37.0 mg, 0.2 mmol, 1.0 equiv.), AgNO₃ (7.0 mg, 20 mol%) and K₂S₂O₈ (270.3 mg, 5.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times. **1a** (78.0 mg, 5.0 equiv.), **1b** (98.1 mg, 5.0 equiv.), **1c** (106.1 mg, 5.0 equiv.), MeCN or DCE (1.0 mL) and H₂O (0.5 ml) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature. The product yields were determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Figure S4. ¹⁹F NMR analysis of competition experiment of 1 and 2e using MeCN/H₂O

as solvent

Figure S5. ^{19}F NMR analysis of competition experiment of 1 and 2e using DCE/H2O as

solvent

6. Radical Inhibition Experiments and Plausible Reaction

Mechanism

Procedure: To a 10 mL of Schlenk tube were added 4-pyridylpyridine **2d** (31.0 mg, 0.2 mmol, 1.0 equiv.), AgNO₃ (7.0 mg, 20 mol %), $K_2S_2O_8$ (270.3 mg, 5.0 equiv.) and TEMPO (62.5 mg, 2.0 equiv.) or BHT (88.1 mg, 2.0 equiv.). The mixture was evacuated and backfilled with N₂ for three times. 2-Difluoropropionic acid (39.0 mg, 2.0 equiv.), MeCN (1.0 mL) and H₂O (0.5 ml) were then added. The Schlenk tube was screw capped and put into a preheated oil bath (80 °C). After stirring for 20 h, the reaction mixture was cooled to room temperature. The yield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. The adduct of TEMPO and monofluoroethyl radical detected by GC-MS was in agreement with the reported in the literature.⁷

Figure S6. GC-MS analysis of adding TEMPO to standard reaction conditions

Based on these results, the reaction mechanism was proposed as shown in Figure S7. Initially, the oxidative decarboxylation of α -fluorocarboxylic acids afforded monofluoroalkyl radical in the presence of silver catalyst and K₂S₂O₈. Subsequently, monofluoroalkyl radical reacts the protonated heteroaromatic ring (I) to generate a cyclohexadienyl-type radical cation (II). After that, the intermediate (II) is oxidated and deprotonated to give the cationic intermediate (III), followed by deprotonation to give the monofluoralkylated product.

Figure S7. Plausible reaction mechanism.

7. References

1. Straub, M. R.; Birman, V. B. Organocatalytic Enantioselective Synthesis of α -Fluoro- β -aminoacid Derivatives, *Org. Lett.* **2019**, *21*, 3, 849-849.

2. Keller, M.; Maschauer, S.; Brennauer, A.; Tripal, P.; Koglin, N.; Dittrich, R.; Bernhardt, G.; Kuwert, T.; Wester, H.-J.; Buschauer, A.; Prante, O. Prototypic ¹⁸Flabeled Argininamide-type Neuropeptide Y Y₁R Antagonists as Tracers for PET Imaging of Mammary Carcinoma, *ACS Med. Chem. Lett.* **2017**, *8*, 304-309.

3. Velayutham, D.; Jayaraman, K.; Kulangiappar, K.; Ilayaraja, N.; Ram Babu, Y.; Narayana Reddy, S.; Victor Babu, K.; Noel, M. Free Radical and Isomerisation Processes during the Electrochemical Fluorination of *n*-Butyryl Chloride, *i*-Butyryl Chloride and Pivaloyl Chloride in Anhydrous Hydrogen Fluoride. *J. Fluorine Chem.* **2006**, *127*, 8, 1111–1118.

4. Fujiwara, Y.; Dixon, J.; O'Hara, F.; Daa Funder, E.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Practical and Innate Carbon–Hydrogen Functionalization of Heterocycles. *Nature*, **2012**, *492*, 95-99.

5. Hu, C.-C.; Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. 2-Position-selective C–H Fluoromethylation of Six-membered Heteroaryl *N*-oxides with (Fluoromethyl)triphenylphosphonium Iodide. *J. Fluorine Chem.* **2021**, *242*, 109695.

6. Hall, Adrian; Farthing, Christopher Neil; Castro Pineiro, Jose, Luis. Fused Aminodihyrothiazine Derivatives Useful as Bace Inhibitors [P]. EP, WO2012, 098213.
7. Taniguchi, R.; Noto, N.; Tanaka, S.; Takahashi, K.; Sarkar, S. K.; Oyama, R.; Abe, M.; Koike, T.; Akita, M. Simple Generation of Various α-Monofluoroalkyl Radicals by Organic Photoredox Catalysis: Modular Synthesis of β-Monofluoroketones. *Chem. Commun.* 2021, *57*, 2609-2612.

8. ¹H, ¹⁹F and ¹³C NMR Spectra of Isolated Products

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 f1 (ppm)

80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 f1 (ppm)

S57

-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 f1 (ppm)

S65

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 f1 (ppm)

120 110 100 f1 (ppm) 150 140

