Supporting Information

Copper-Catalyzed Multiple Oxidation and Cycloaddition of Aryl-Alkyl Ketones (Alcohols) for Synthesis of 4-Acyl- and 4-Diketo-1,2,3-

Triazoles

Liangfeng Huang, ^{‡a} Lei Zheng, ^{‡b} Zhongzhen Zhou, ^{*b} and Yunfeng Chen^{*a}

^aSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China. Email: yfchen@wit.edu.cn;

^bDepartment of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. E-mail: zhouzz@smu.edu.cn;

Table of Contents

1. General information	2
2. Optimization of the Reaction Conditions	3
3. Experimental Procedures	.10
4. Control experiment	.14
5. Analytical Data for acyl-1,2,3-triazoles	.17
6. References	.38
7. ¹ H and ¹³ C NMR spectra of products	.38

1. General information

All reactions were carried out in 10 mL or 25 mL round-bottom flasks with air condensers. Unless otherwise stated, all chemicals used in the experiments were obtained from commercial sources and used directly without further treatment. TLC was performed with the detection of compounds with UV light. Flash column chromatography purification of the products was accomplished on silica gel (200–300 mesh). petroleum ether (PE) (60–90 °C) and ethyl acetate (EA) were used as eluents for silica gel chromatography. Melting points for all solid products were measured on an X-4A melting point apparatus without correction. ¹H and ¹³C NMR spectra were recorded at 22 °C on a Bruker AV 400 and 100 MHz spectrometers with tetramethylsilane (TMS) as an internal standard. 1H and ¹³C chemical shifts in NMR spectra were referenced relative to signals of CDCl₃ (δ 7.26 ppm for ¹H and 77.0 ppm for ¹³C). High-resolution mass spectra (HRMS) were acquired on Waters Acquity UPLC Class I/Xevo G2Q-TOF.

2. Optimization of the Reaction Conditions

2.1 synthesis of 4-acyl-1,2,3-triazoles

	0	copper salts, ligandOTEMPO, Et₃N↓	
	Ph + BnN ₃ -	DMC, air, 90 °C ► Ph	N−Bn N=N
	1a 2a		3a
ontry	copper salts	ligand	viald
entry	(10 mol %)	(15 mol %)	yleid
1	-	-	0
2	CuBr	-	48%
3	Cu ₂ O	-	15%
4	CuBr ₂	-	50%
5	CuCl	-	45%
6	$Cu(OAc)_2 \cdot H_2O$	-	60%
7	CuI	-	17%
8	$Cu(acac)_2$	-	0%
9	$Cu(NO_3)_2$	-	0%
10	Cu(OTf) ₂	-	64%
11	Cu(OTf) ₂	2,2'-bipyridine	95%
12	Cu(OTf) ₂	PPh ₃	91%
13	Cu(OTf) ₂	L-Proline	93%
14	Cu(OTf) ₂	1,10-phen	89%

Table S1. Optimized copper slats and ligands

^aReaction conditions:**1a** (0.4 mmol, 1.0 equiv), **2a** (0.6 mmol, 1.5 equiv), copper salt (0.04 mmol, 10 mol%), ligand (0.06 mmol, 0.15 equiv), TEMPO (0.12 mmol, 0.3 equiv) and Et₃N (0.16 mmol, 0.4 equiv) in DMC (1 mL) under air atmosphere at 90 °C for 12 h. ^bIsolated yields based on **1a**.

Table S2. Optimized solvent

		Cu(OTf) ₂ , 2,2'-bipyridine TEMPO, Et ₃ N	
	Ph Ph	solvent, air, <i>T</i> (°C)	Ph
	1a 2a		3a
entry	solvent	T (°C)	yield
1	toluene	90	89%
2	DMSO	90	0%
3	DMF	90	0%
4	DMC	90	95%
5	DMA	90	3%
6	CH ₃ CN	80	61%
7	1,4-dioxane	90	0%
8	THF	80	34%
9	H_2O	90	19%

^aReaction conditions: **1a** (0.4 mmol, 1.0 equiv), **2a** (0.6 mmol, 1.5 equiv), $Cu(OTf)_2$ (0.04 mmol, 10 mol%), 2,2'-bipyridine (0.06 mmol, 0.15 equiv), TEMPO (0.12 mmol, 0.3 equiv) and Et₃N (0.16 mmol, 0.4 equiv) in solvent (1 mL) under air atmosphere at 90 °C for 12 h. ^bIsolated yields based on **1a**.

Table S3. Optimized base

	0	+ BnNa -	Cu(OTf) ₂ , 2,2'-bipyridine TEMPO, base		
	Ph	- Dhha	DMC, air, 90 °C	Ph'	
	1a	2a		3a	
entry		solvent		yield	
1		Et ₃ N		95%	
2		DBU		16%	
3		ТМАОН		12%	
4		t-BuOK		0%	
5		K ₂ CO ₃		19%	
6		LiOH·H ₂	0	0%	
7		NaOH		trace	
8		CS_2CO_3		0%	
9		DABCO		0%	

^aReaction conditions: **1a** (0.4 mmol, 1.0 equiv), **2a** (0.6 mmol, 1.5 equiv), $Cu(OTf)_2$ (0.04 mmol, 10 mol%), 2,2'-bipyridine (0.06 mmol, 0.15 equiv), TEMPO (0.12 mmol, 0.3 equiv) and base (0.16 mmol, 0.4 equiv) in DMC (1 mL) under air atmosphere at 90 °C for 12 h. ^bIsolated yields based on **1a**.

Table S4. Other oxidants

	O Ph	+ BnN ₃ ·	Cu(OTf) ₂ , 2,2'-bipyridine TEMPO, Et ₃ N DMC, oxidant, 90 °C	Ph N-Bn N=N
	1a	2a		3a
entry		oxidant		yield
1		Air		95%
2		N_2		0
3		$K_2S_2O_8$		0%
4		DTBP		49%
5		Select-flou	ır	0%
6		TBHP		51%
7		H_2O_2		71%

^aReaction conditions: **1a** (0.4 mmol, 1.0 equiv), **2a** (0.6 mmol, 1.5 equiv), $Cu(OTf)_2$ (0.04 mmol, 10 mol%), 2,2'-bipyridine (0.06 mmol, 0.15 equiv), oxidant (0.8 mmol, 2 equiv), TEMPO (0.12 mmol, 0.3 equiv) and Et₃N (0.16 mmol, 0.4 equiv) in DMC (1 mL) under air atmosphere at 90 °C for 12 h. ^bIsolated yields based on **1a**.

	O ∥ + Bnl	copper salt TEMPO, oxidant		<u> </u>
	Ph	solvent, 90 °C	ΓΠ	∖´_N~Bn N≈ní
	1a 2a	a		3a
entry	catalyst	oxidant	solvent	yield (%)
1	CuBr	TBHP	toluene	0
2	Cu(OTf) ₂	TBHP	toluene	10
3	Cu ₂ O	TBHP	toluene	15
4	CuBr ₂	TBHP	toluene	0
5	CuCl	TBHP	toluene	45
6	$Cu(OAc)_2 \cdot H_2O$	TBHP	toluene	60
7	CuI	TBHP	toluene	0
8	$Cu(acac)_2$	TBHP	toluene	0
9	PdCl ₂	TBHP	toluene	trace
10	$Pd(OAc)_2$	TBHP	toluene	55
11	CH ₃ COOAg	TBHP	toluene	0
12	RuCl ₃	TBHP	toluene	0
13	$Fe(NO_3)_2 \cdot 9H_2O$	TBHP	toluene	15
14	CuO	TBHP	toluene	85
15	CuO	$K_2S_2O_8$	toluene	0
16	CuO	DTBP	toluene	79
17	CuO	Select-flour	toluene	0
18	CuO	H_2O_2	toluene	93
19	CuO	H_2O_2	DMSO	0
20	CuO	H_2O_2	DMF	0
21	CuO	H_2O_2	DMA	trace
22	CuO	H_2O_2	CH ₃ CN	61
23	CuO	H_2O_2	1,4-dioxane	0
24	CuO	H_2O_2	THF	34
25	CuO	H_2O_2	H_2O	10

Table S5. Other catalytic systems optimization

^aReaction conditions: **1a** (0.4 mmol, 1.0 equiv), **2a** (0.6 mmol, 1.5 equiv), copper salt (0.04 mmol, 10 mol%), TEMPO (0.12 mmol, 0.3 equiv) and oxidant (1.2 mmol, 3 equiv) in toluene (1 mL) under air atmosphere at 100 °C for 12 h. ^bIsolated yields based on **1a**.

2.2 synthesis of 1,4-diketotriazole

0	$\frac{\text{Cu(OTf)}_2, 2,2'-\text{bipyridir}}{\text{TEMPO}, \text{Et}_3\text{N}}$		+ Ph
Ph	solvent, air, T (°C)	Ph Y N N≈N	−Bn I I N−Bn O N≈ _N
1b	2a	5a	6a
entry	solvent	T (°C)	yield 5a/6a
1	DMC	90	93%/<5%
2	toluene	90	80%/13%
3	DMSO	90	0%/0%
4	DMF	90	0%/0%
5	DMA	90	0%/<5%
6	CH ₃ CN	80	55%/<5%
7	1,4-dioxane	90	0%/0%
8	THF	80	34%/<5%
9	H ₂ O	90	19%/<5%
10	toluene	100	70%/25%
11	toluene	120	63%/15%

Table S6. Optimized solvent and temperature

^aReaction conditions: **1b** (0.34 mmol, 1.0 equiv), **2a** (0.5 mmol, 1.5 equiv), $Cu(OTf)_2$ (0.034 mmol, 10 mol%), 2,2'-bipyridine (0.068 mmol, 0.2 equiv), TEMPO (0.14 mmol, 0.4 equiv) and Et₃N (0.16 mmol, 0.4 equiv) in toluene (1 mL) under air atmosphere at 100 °C for 24 h. ^bIsolated yields based on **1b**.

Table S7. Optimized ligands

Ph + Bn-N ₃		Cu(OTf) ₂ , ligand TEMPO, Et ₃ N		Ph
		toluene, air, 100°C	N=N N=N	∥ \ N−вп О N= _N ́
1b	2a		5a	6a
entry		ligand	yield 5a /	6a
1		-	35%/<5%	V ₀
2		2,2-bpy	70%/25%	/0
3		PPh ₃	35%/52	%
4		L-proline	41%/20%	/o
5		1,10- phenanthroline	31%/0%	

^aReaction conditions: **1b** (0.34 mmol, 1.0 equiv), **2a** (0.5 mmol, 1.5 equiv), $Cu(OTf)_2$ (0.034 mmol, 10 mol%), ligand (0.068 mmol, 0.2 equiv), TEMPO (0.14 mmol, 0.4 equiv) and Et₃N (0.16 mmol, 0.4 equiv) in toluene (1 mL) under air atmosphere at 100 °C for 24 h. ^bIsolated yields based on **1b**.

Table S8. Optimized base

	+ Bn-N ₃ - Cu(OTf	p_2 , PPh ₃ p_3 , base p_4 Ph N-Bn	+ Ph
16	20	N≈ _N ∕	Ó N≃ _N ′
ai	28	58	08
entry	base	yield	5a/6a
1	Et ₃ N	35%/	52%
2	DBU	13%/-	<5%
3	<i>t</i> BuOK	0%/0	%
4	ТМАОН	<5%	67%
5	LiOH·H ₂ O	0%/0	%
6	NaOH	0%/0	%
7	CS_2CO_3	0%/0	%
8	DABCO	<5%)	11%
9	tetrahydropyrro	ole <5%/-	<1%
10	pyridine	<5%/	<1%

^aReaction conditions: **1b** (0.34 mmol, 1.0 equiv), **2a** (0.5 mmol, 1.5 equiv), $Cu(OTf)_2$ (0.034 mmol, 10 mol%), PPh₃ (0.068 mmol, 0.2 equiv), TEMPO (0.14 mmol, 0.4 equiv) and base (0.16 mmol, 0.4 equiv) in toluene (1 mL) under air atmosphere at 100 °C for 24 h. ^bIsolated yields based on **1b**.

Table S9. Optimized copper catalyst

o ↓	Bn−N₃	copper salt, PPh ₃ TEMPO, TMAOH	Ph Ph Ph Ph Ph Ph Ph Ph	
Ph 🔨 🔪		toluene, air, 100 °C	N=N	0 N≈ _N
1b	2a		5a	6a
entry		Cu catalyst	Yield 5a	/6a
1		Cu(OTf) ₂	<5%/679	%
2		$Cu(OAc)_2 \cdot H_2O$	<3%/<3%	/ ₀
3		CuI	<1%/<5%	/0
4		CuBr ₂	<5%/50%	6
5		CuCl	2%/41%	
6		CuSO ₄	2%/53%	
7		$Cu(NO_3)_2 \cdot 3H_2O$	0%/0%	

^aReaction conditions: **1b** (0.34 mmol, 1.0 equiv), **2a** (0.5 mmol, 1.5 equiv), copper salt (0.034 mmol, 10 mol%), PPh₃ (0.068 mmol, 0.2 equiv), TEMPO (0.14 mmol, 0.4 equiv) and TMAOH (25% in methanol, 0.0425 mmol, 0.25 equiv) in toluene (1 mL) under air atmosphere at 100 °C for 24 h. ^bIsolated yields based on **1b**.

Table S10. Optimized equivalent of the base

Ph	+ Bn—N ₃	Cu(OTf) ₂ , PPh ₃ TEMPO, TMAOH (X equiv) toluene, air, 100 °C	Ph $N=N$ + $N=N$	Ph N-Bn N=N
1b	2a		5a	6a
entyr		Base loading	yield of 5	5a/6a
1		0.1 eq.	11%/71%	, D
2	0.2 eq.		9%/83%	
3	0.25 eq.		3%/92%	
4	0.3 eq.		0%/67%	
5	0.4 eq.		0%/32%	
6		0.6 eq.	0%/25%	
7		0.8 eq.	0%/9%	
8		1 eq.	0%/<1%	

^aReaction conditions: **1b** (0.34 mmol, 1.0 equiv), **2a** (0.5 mmol, 1.5 equiv), $Cu(OTf)_2$ (0.034 mmol, 10 mol%), PPh₃ (0.068 mmol, 0.2 equiv), TEMPO (0.14 mmol, 0.4 equiv) and TMAOH (25% in methanol, 0.1 - 1 equiv) in toluene (1 mL) under air atmosphere at 100 °C for 24 h. ^bIsolated yields based on **1b**.

3. Experimental Procedures

3.1 Typical procedure for synthesis of 4-acyl-1,2,3-triazoles

To a solution of ketone 1 (0.4 mmol, 50 mg) and azide 2 (0.6 mmol, 74 mg) in DMC (1 mL) were added Cu(OTf)₂ (0.04 mmol, 10 mol%), 2,2'-bipyridine (0.06 mmol, 6 mg), TEMPO (0.12 mmol, 17.4 mg) and Et₃N (0.16 mmol, 16 mg); the mixture was stirred at 90 °C in oil bath under air atmosphere for 16 - 24 h. The reaction was checked by TLC. After completion of the reaction, the mixture was poured into water, extracted by ethyl acetate, and dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure to obtain crude product. Further purification by column chromatography on silica gel gave the 4-acyl-1,2,3-triazoles.

Large-scale synthesis of 3a

To a solution of ketone **1a** (1 g, 7.45 mmol, 1.0 equiv) and azide **2a** (1.5 g, 11.20 mmol, 1.5 equiv) in DMC (15 mL) were added Cu(OTf)₂ (0.27 g, 0.75 mmol, 10 mol%), 2,2'bipyridine (0.17 g, 1.1 mmol, 15 mol%), TEMPO (0.35 g, 2.2 mmol, 0.3 equiv) and Et₃N (0.3 g, 2.98 mmol, 0.4 equiv); the mixture was stirred at 90 °C in oil bath under air atmosphere for 16 h. The reaction was checked by TLC. After completion of the reaction, the mixture was poured into water, extracted by ethyl acetate, and dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure to obtain crude product. Further purification by column chromatography on silica gel gave **3a**.

3.2 Typical procedure for synthesis of 1,4-diketotriazole

To a solution of ketone **1** (0.34 mmol, 50 mg) and azide **2** (0.5 mmol, 68 mg) in toluene (1 mL) were added Cu(OTf)₂ (0.034mmol, 10 mol%), PPh₃ (0.068 mmol, 18 mg), TEMPO (0.14 mmol, 22 mg) and TMAOH (25% in methanol, 0.0425 mmol, 15 mg); the mixture was stirred at 100 °C in oil bath under an air atmosphere for 24 h. The reaction was checked by TLC. After completion of the reaction, the mixture was poured into water, extracted by ethyl acetate, and dried with anhydrous Na₂SO₄, and then the solvent was removed under reduced pressure to obtain crude product. Further purification by column chromatography on silica gel gave the α , β -diketotriazole.

Large-scale synthesis of 6a

To a solution of ketone **1b** (1.0 g, 6.70 mmol, 1.0 equiv) and azide **2a** (1.3 g, 10.0 mmol, 1.5 equiv) in toluene (20 mL) were added Cu(OTf)₂ (0.24 g, 0.67 mmol, 10 mol%), PPh₃ (0.35 g, 1.34 mmol, 20 mol%), TEMPO (0.42 g, 2.68 mmol, 0.4 equiv) and TMAOH (25% in methanol, 0.6 g, 1.7 mmol, 0.25 equiv); the mixture was stirred at 100 °C in oil bath under an air atmosphere for 24 h. The reaction was checked by TLC. After completion of the reaction, the mixture was poured into water, extracted by ethyl acetate and dried with anhydrous Na₂SO₄, and then the solvent was removed under reduced pressure to obtain crude product. Further purification by column chromatography on silica gel gave the **6a**.

3.3 Synthesis application

$\begin{array}{c} & & & \\ & &$

1-(3'-chloro-6-methoxy-[1,1'-biphenyl]-3-yl)propan-1-ol (1c')

To a solution of 3-bromo-4-methoxybenzaldehyde (1c'-0, 108 mg, 0.5 mmol), (3chlorophenyl)boronic acid (94 mg, 0.6 mmol), PdCl₂(dppf) (18 mg, 0.025 mmol), K₂CO₃ (138 mg, 1 mmol) in 1,4-dioxane/H₂O (v/v = 4:1, 2 mL, 0.25 M) under N₂ at 85 °C for 4 hours. After completion of the reaction, the mixture was diluted with ethyl acetate (15 mL), washed with saturated brine (5 mL for three times), and dried over Na₂SO₄. The solvent was removed under vacuum to give 1c'-1 without further purification. ¹H NMR (400 MHz, CDCl₃): δ 9.92 (s, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.82 (s, 1H), 7.51 (s, 1H), 7.39 – 7.31 (m, 3H), 7.09 (d, J = 8.0 Hz, 1H), 3.90 (s, 3H). Spectral data match those previously reported in the literature.¹ Under N₂ atmosphere, a solution of the aldehyde 1c'-1 in THF (2 mL) was added dropwise EtMgBr (1.0 M in THF, 1.05 mL, 1.05 mmol) at 0 °C. The mixture was warmed to room temperature for 2 hours. After completion of the reaction, saturated aqueous NH₄Cl solution (0.5 mL) was added. The mixture was extracted with EtOAc. The organic layer was then washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum and finally purified by silica gel rapid chromatography (Petroleum ether / ethyl acetate) to give product 1c' as colorless oil (112 mg, 81% yield for two steps). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (s, 1H), 7.43 (d, J = 6.9 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 4H), 6.98 (d, *J* = 8.4 Hz, 1H), 4.61 (t, *J* = 6.1 Hz, 1H), 3.84 (s, 3H), 1.99 - 1.64 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 140.2, 137.0, 133.8, 129.6, 129.2, 128.5, 127.7, 127.0, 126.7, 111.2, 75.5, 55.7, 31.9, 10.2.

4-propionyl-N,N-dipropylbenzenesulfonamide (1d)

To a solution of probenecid (**1d-0**, 143 mg, 0.5 mmol) in DCM (5 mL) was added DMF (1.8 mg, 0.0025 mmol) and oxalyl chloride (2.0 M in DCM, 1 mL) at room temperature. The mixture was stirred for 1 hours and the solvent was removed under vacuum. The residue solid

was dissolved in DCM (2 mL) at 0 °C. To this solution was slowly added *N*,*O*-dimethylhydroxylamine hydrochloride (74 mg, 0.75 mmol), and triethylamine (126 mg, 1.25 mmol) and stirred for 2 hours at room temperature. After completion of the reaction, more DCM (25 mL) was added to the mixture. Then, the organic phase was washed with HCl solution (4.0 M in H₂O, 5 mL for three times), saturation Na₂CO₃ solution (5 mL for three times), brine (5 mL for three times), and dried with anhydrous Na₂SO₄. The solvent was removed under vacuum to give Weinreb amine **1d-1** (156 mg, 95% yield) as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.1 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 3.52 (s, 3H), 3.38 (s, 3H), 3.09 (t, *J* = 7.7 Hz, 4H), 1.77 – 1.42 (m, 4H), 0.87 (t, *J* = 7.3 Hz, 6H).

To a solution of Weinreb amine 1d-1 (120 mg, 0.36 mmol) in THF (2 mL) was added dropwise EtMgBr (1.0 M in THF, 0.4 mL, 0.4 mmol) at - 20 °C. The mixture was warmed to room temperature for 8 hours. After completion of the reaction, saturated aqueous NH₄Cl solution (1 mL) was added and the mixture was extracted with EtOAc. The organic layer was then washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum and finally purified by silica gel rapid chromatography (Petroleum ether / ethyl acetate) to give product 1d as white solid (90 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 8.10 – 8.00 (m, 2H), 7.88 (d, *J* = 8.2 Hz, 2H), 3.09 (t, *J* = 7.5 Hz, 4H), 3.03 – 2.99 (m, 2H), 1.59 – 1.46 (m, 4H), 1.22 (d, *J* = 7.2 Hz, 3H), 0.85 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 144.0, 139.5, 128.5, 127.2, 49.9, 32.2, 21.9, 11.1, 7.9.

1-(4-hydroxy-3-methoxyphenyl)propan-1-one (1e)

To a solution of 2-methoxyphenol (124 mg, 1 mmol) and powdered aluminum chloride (AlCl₃, 399 mg, 3 mmol) in CS₂ (5 mL) was added propionyl chloride (370 mg, 4 mmol). The mixture was heated to reflux for 8 hours. After completion of the reaction, The reaction mixture was poured into cold HCl solution (4.0 M in H₂O, 15 mL) and extracted with DCM. The organic phase was washed with H₂O and brine, dried with anhydrous Na₂SO₄. After evaporation of solvent, the residue was subjected to column chromatography for isolation (gradient eluent: petroleum ether/ethyl acetate/dichloromethane 40:1:1) to give product **1e** (135 mg, 75%) as colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.64 – 7.43 (m, 2H), 6.94 (d, *J* = 8.7 Hz, 1H), 6.05 (s, 1H), 3.95 (s, 3H), 2.95 (q, *J* = 7.3 Hz, 2H), 1.21 (t, *J* = 7.3 Hz, 3H). Spectral data match those previously reported in the literature.²

4. Control experiment

4.1 Analytical data for enone intermediate

¹**H NMR (400 MHz, CDCl₃)**: δ 7.92 (d, J = 7.8 Hz, 2H), 7.61 – 7.53 (m, 1H), 7.49 (d, J = 7.3 Hz, 2H), 7.19 – 7.12 (m, 1H), 6.43 (d, J = 17.1 Hz, 1H), 5.93 (d, J = 10.5 Hz, 1H); Spectral data match those previously reported in the literature.³

1H), 6.90 (d, J = 15.2 Hz, 1H), 2.04 – 1.86 (m, 3H); Spectral data match those previously reported in the literature.⁴

¹H NMR (400 MHz, CDCl₃): δ 8.07 – 7.97 (m, 2H), 7.91 – 7.74 (m, 1H), 7.62 – 7.41 (m, 6H), 7.38 – 7.33 (m, 3H); Spectral data match those previously reported in the literature.³

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

9d was prepared accrouding the reported method.⁵ ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.7 Hz, 1H), 7.51 (t, J = 8.0 Hz, 2H), 6.79 – 6.72 (m, 1H), 6.49 – 6.37 (m, 1H), 6.24 (d, J = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 193.3, 192.8, 134.8, 134.8, 132.8, 132.5, 130.0, 128.9. Spectral data match those previously reported in the literature.⁶

4.2 Control experiment

4.3 Proposed reaction pathway of the formation of 6a

5. Analytical Data for acyl-1,2,3-triazoles

(1-Benzyl-1H-1,2,3-triazol-4-yl)(phenyl)methanone (3a)

The title compound was prepared on 1.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 375 mg, 95% yield. White solid. Mp: 116–117 °C. R_f = 0.2 in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.43 – 8.40 (m, 2H), 8.16 (s, 1H), 7.63 – 7.57 (m, 1H), 7.54 – 7.48 (m, 2H), 7.42 – 7.38 (m, 3H), 7.35 – 7.31 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 185.6, 148.4, 136.5, 133.7, 133.3, 130.6, 129.3, 129.2, 128.4, 128.2, 54.5; Spectral data match those previously reported in the literature.⁷

(1-Benzyl-1H-1,2,3-triazol-4-yl)(4-methoxyphenyl)methanone (3b)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 249 mg, 71% yield. White solid. Mp: 129–131°C. R_f = 0.2 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.43 – 8.40 (m, 2H), 8.16 (s, 1H), 7.63 – 7.57 (m, 3H), 7.54 – 7.48 (m, 2H), 7.42 – 7.38 (m, 2H), 7.35 – 7.31 (m, 2H), 5.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 183.9, 163.8, 148.8, 133.7, 133.1, 129.3, 129.1, 128.4, 128.1, 113.6, 55.5, 54.4; Spectral data match those previously reported in the literature.⁸

(1-Benzyl-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (3c)

The title compound was prepared on 1.3 mmol scale following General Procedure 3.1. The

crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 263 mg, 73% yield. White solid. Mp: 130–132 °C. R_f = 0.1 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, *J* = 8.2 Hz, 2H), 8.13 (s, 1H), 7.35 (d, *J* = 6.9 Hz, 3H), 7.30 – 7.25 (m, 4H), 5.56 (s, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.1, 148.5, 144.1, 133.8(d, *J* = 23.6 Hz), 133.7, 130.6, 129.2, 129.02, 128.3, 128.1, 54.3, 21.6; Spectral data match those previously reported in the literature.⁹

(1-Benzyl-1H-1,2,3-triazol-4-yl)(2-flfluorophenyl)methanone (3d)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 311 mg, 85% yield. White solid. Mp: 101-102 °C. R_f = 0.2 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.10 (s, 1H), 7.91 – 7.77 (m, 1H), 7.56 – 7.47 (m, 1H), 7.44 – 7.39 (m, 3H), 7.35 – 7.31 (m, 2H), 7.28 (d, *J* = 6.5 Hz, 1H), 7.21 – 7.15 (m, 1H), 5.60 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.8, 159.5, 148.0, 133.8 (d, *J* = 8.7 Hz), 133.5, 131.3, 129.4, 129.2, 128.4, 127.4, 124.1, 116.5 (d, *J* = 21.8 Hz), 54.5; Spectral data match those previously reported in the literature.¹⁰

(1-Benzyl-1H-1,2,3-triazol-4-yl)(4-flfluorophenyl)methanone (3e)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 296 mg, 81% yield. White solid. Mp: 145-147 °C. $R_f = 0.2$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.55 – 8.52 (m, 2H), 8.17 (s, 1H), 7.43 – 7.39 (m, 3H), 7.35 – 7.32 (m, 2H), 7.21 – 7.16 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 183.8, 166.8, 165.8, 148.3, 133.6, 133.4, 132.7 (d, *J* = 2.9 Hz), 129.3, 129.2, 128.3, 115.5 (d, *J* = 21.7 Hz), 54.5; Spectral data match those previously reported in the literature.⁸

(1-Benzyl-1H-1,2,3-triazol-4-yl)(3-chlorophenyl)methanone (3f)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 296 mg, 83% yield. White solid. Mp: 93-97 °C. R_f = 0.3 in EtOAc/petroleum ether (1:3).¹H NMR (400 MHz, CDCl₃): δ 8.41 – 8.36 (m, 2H), 8.17 (s, 1H), 7.59 – 7.57 (m, 1H), 7.48 – 7.40 (m, 4H), 7.36 – 7.33 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 148.0, 137.9, 134.6, 133.5, 133.2, 130.5, 129.7, 129.4, 129.3, 128.9, 128.4, 54.6; HRMS (ESI) m/z [M+H]⁺: calcd for C₁₆H₁₃ClN₃O, 298.0742; found, 298.0721.

(1-Benzyl-1H-1,2,3-triazol-4-yl)(4-chlorophenyl)methanone (3g)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 307 mg, 86% yield. White solid. Mp: 158-160 °C. R_f = 0.3 in EtOAc/ petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 8.7 Hz, 2H), 8.17 (s, 1H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.42 – 7.38 (m, 3H), 7.36 – 7.32 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 148.2, 139.8, 134.7, 133.5, 132.1, 129.4, 129.2, 128.7, 128.4, 54.5; Spectral data match those previously reported in the literature.¹⁰

(1-Benzyl-1H-1,2,3-triazol-4-yl)(4-bromophenyl)methanone (3h)

The title compound was prepared on 0.9 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 240 mg, 78% yield. White solid. Mp: 149–151 °C. R_f = 0.2 in EtOAc/ petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.38 – 8.31 (m, 2H), 8.18 (s, 1H), 7.67 – 7.63 (m, 2H), 7.42 – 7.39 (m, 3H), 7.35 – 7.32 (m, 2H), 5.60 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.3, 148.1, 135.1, 133.5, 132.2, 131.7, 129.3, 129.2, 128.6, 128.4, 54.5; Spectral data match those previously reported in the literature.⁸

(1-(2- Bromophenyl) -1H-1,2,3-triazol-4-yl)(phenyl)methanone (3i)

The title compound was prepared on 1.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 10% EtOAc in petroleum ether) to afford the title compound 336 mg, 82% yield. White solid. Mp: 103–106 °C. $R_f = 0.2$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.45 – 8.41 (m, 2H), 8.16 (s, 1H), 7.64 – 7.58 (m, 2H), 7.54 – 7.48 (m, 2H), 7.44 – 7.37 (m, 1H), 7.35 – 7.31 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 185.5, 148.1, 136.4, 133.4, 133.2, 133.2, 130.8, 130.8, 130.5, 128.5, 128.3, 123.8, 54.1; HRMS (ESI) m/z [M+H]⁺: calcd for C₁₆H₁₃BrN₃O, 342.0237; found, 342.0213.

(1-(2- Bromophenyl) -1H-1,2,3-triazol-4-yl)(p-toyl)methanone (3j)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 10% EtOAc in petroleum ether) to afford the title compound 333 mg, 72% yield. White solid. Mp: 97–100 °C. R_f = 0.3 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.35 – 8.30 (m, 2H), 8.22 (s, 1H), 7.63 – 7.61 (m, 1H), 7.35 – 7.26 (m, 4H), 7.24 (d, *J* = 4.4 Hz, 1H), 5.72 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.1, 148.4, 144.2, 133.9, 133.4, 133.3, 130.8, 130.8, 130.7, 129.1, 128.4, 128.3, 123.9, 54.1, 21.7; HRMS (ESI) m/z [M + H]⁺: calcd for

(1-(2- Bromophenyl) -1H-1,2,3-triazol-4-yl)(2-fluorophenyl)methanone(3k)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 10% EtOAc in petroleum ether) to afford the title compound 395 mg, 84% yield. White solid. Mp: 60-62 °C. R_f = 0.2 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 7.88 – 7.83 (m, 1H), 7.67 – 7.64 (m, 1H), 7.57 – 7.52 (m, 1H), 7.38 – 7.34 (m, 1H), 7.31 – 7.27 (m, 3H), 7.20 – 7.15 (m, 1H), 5.74 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.8, 147.9, 133.8 (d, *J* = 8.9 Hz), 133.5, 133.1, 131.3, 131.0, 130.9, 128.4, 127.6, 124.1, 116.5 (d, *J* = 21.8 Hz), 54.2; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₆H₁₂BrFN₃O, 360.0142; found, 360.0145.

(1-(2- Bromophenyl) -1H-1,2,3-triazol-4-yl)(4-bromophenyl)methanone (31)

The title compound was prepared on 0.9 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 10% EtOAc in petroleum ether) to afford the title compound 326 mg, 86% yield. White solid. Mp: 106-108 °C. R_f = 0.2 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.37 – 8.32 (m, 2H), 8.27 (s, 1H), 8.27 (s, 3H), 7.65 – 7.62 (m, 1H), 7.37 – 7.25 (m, 2H), 5.73 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 147.9, 135.0, 133.4, 133.1, 132.1, 131.6, 130.9, 130.9, 128.7, 128.6, 128.3, 123.9, 54.2; Spectral data match those previously reported in the literature.¹¹

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (3m)

The title compound was prepared on 1.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 363 mg, 86% yield. White solid. Mp: 140–145 °C. R_f = 0.2 in EtOAc/ petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.42 – 8.39 (m, 2H), 8.18 (s, 1H), 7.64 – 7.57 (m, 1H), 7.54 – 7.47 (m, 2H), 7.37 – 7.30 (m, 2H), 7.15 – 7.04 (m, 2H), 5.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 185.6, 164.3, 161.8, 148.4, 136.4, 133.3, 130.6, 130.3 (d, *J* = 8.5 Hz), 129.6 (d, *J* = 3.4 Hz), 128.4, 128.1, 116.4 (d, *J* = 21.8 Hz), 53.7; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₆H₁₃FN₃O, 282.1037; found, 282.1014.

(1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)(4-methoxyphenyl)-methanone (3n)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 269 mg, 72% yield. White solid. Mp: 131–132 °C. $R_f = 0.2$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.54 – 8.47 (m, 2H), 8.14 (s, 1H), 7.36 – 7.30 (m, 2H), 7.12 – 7.07 (m, 2H), 7.01 – 6.96 (m, 2H), 5.58 (s, 2H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 183.8, 163.9, 163.8, 162.2, 148.9, 133.1, 130.3 (d, *J* = 8.4 Hz), 129.6 (d, *J* = 3.4 Hz), 129.3, 128.0, 116.35 (d, *J* = 21.9 Hz), 113.7, 55.5, 53.6; Spectral data match those previously reported in the literature.¹¹

(1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (30)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 288 mg, 75% yield. White solid. Mp: 145–147 °C.

 R_f = 0.3 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, J = 8.2 Hz, 2H), 8.15 (s, 1H), 7.36 – 7.30 (m, 4H), 7.12 – 7.06 (m, 2H), 5.58 (s, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.1, 164.3, 161.8, 148.7, 144.3, 133.8, 130.7, 130.3 (d, J = 8.5 Hz), 129.6, 129.1, 128.0, 116.4 (d, J = 21.9 Hz), 53.6, 21.7; Spectral data match those previously reported in the literature.¹¹

(1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)(4-fluorophenyl)methanone (3p)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 315 mg, 81% yield. White solid. Mp: 165–168 °C. $R_f = 0.1$ in EtOAc/ petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.56 – 8.49 (m, 2H), 8.18 (s, 1H), 7.35 – 7.31 (m, 2H), 7.20 – 7.15 (m, 2H), 7.12 – 7.07 (m, 2H), 5.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 183.7, 167.2, 164.7, 164.3, 161.8, 148.4, 133.4 (d, *J* = 9.3 Hz), 132.6, 130.3 (d, *J* = 8.5 Hz), 129.5 (d, *J* = 3.4 Hz), 128.2, 116.4 (d, *J* = 21.9 Hz), 115.5 (d, *J* = 21.8 Hz), 53.7; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₆H₁₂F₂N₃O, 300.0943; found, 316.0920.

(1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)(3-chlorophenyl)methanone (3q)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 314 mg, 83% yield. White solid. Mp: 123–125 °C. R_f = 0.2 in EtOAc/ petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.40 – 8.34 (m, 2H), 8.19 (s, 1H), 7.58 – 7.56 (m, 1H), 7.45 (t, *J* = 7.9 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.16 – 7.02 (m, 2H), 5.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.0, 164.3, 161.8, 148.0, 137.8, 134.6,

133.2, 130.4, 130.4, 130.3, 129.7, 129.4 (d, J = 3.4 Hz), 128.8, 128.3, 116.4 (d, J = 21.9 Hz), 53.7; **HRMS (ESI)** m/z [M + H]⁺: calcd for C₁₆H₁₁ClFN₃O, 316.0647; found, 316.0640.

(1-(4-Chlorobenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (3r)

The title compound was prepared on 1.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 310 mg, 87% yield. White solid. Mp: 150-152 °C. R_f = 0.3 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.43 – 8.39 (m, 2H), 8.18 (s, 1H), 7.65 – 7.58 (m, 1H), 7.54 – 7.47 (m, 2H), 7.41 – 7.36 (m, 2H), 7.29 – 7.27 (m, 2H), 5.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 185.5, 148.5, 136.4, 135.3, 133.3, 132.2, 130.6, 129.6, 129.5, 128.4, 128.2, 53.7; Spectral data match those previously reported in the literature.⁸

((4-Bromophenyl)(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methanone (3s)

The title compound was prepared on 0.9 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 285 mg, 84% yield. White solid. Mp: 175–177 °C. R_f = 0.2 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.37 – 8.33 (m, 2H), 8.18 (s, 1H), 7.68 – 7.64 (m, 2H), 7.40 – 7.37 (m, 2H), 7.30 – 7.23 (m, 2H), 5.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 148.3, 135.4, 135.0, 132.2, 132.0, 131.7, 129.7, 129.6, 128.8, 128.3, 53.8; Spectral data match those previously reported in the literature.¹¹

(4-Bromophenyl)(1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methanone (3t)

The title compound was prepared on 0.9 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 235 mg, 72% yield. White solid. Mp: 120–123 °C. R_f = 0.2 in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.49 – 8.41 (m, 2H), 7.75 – 7.63 (m, 4H), 7.57 – 7.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 147.6, 135.1, 134.1, 132.2, 131.8, 131.4, 130.9, 130.5, 128.8, 128.7, 128.1, 127.6; Spectral data match those previously reported in the literature.¹¹

Phenyl(1-phenyl-1H-1,2,3-triazol-4-yl)methanone (3u)

The title compound was prepared on 1.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 10% EtOAc in petroleum ether) to afford the title compound 299 mg, 80% yield. White solid. Mp: 126–127 °C. R_f = 0.2 in EtOAc/petroleum ether (1:6). ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 8.49 (d, J = 7.6 Hz, 2H), 7.82 (d, J = 7.5 Hz, 2H), 7.66 – 7.50 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 185.6, 136.4, 133.4, 130.7, 130.0, 129.6, 128.5, 126.4, 120.8; Spectral data match those previously reported in the literature.⁷

(1-Phenyl-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (3v)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 10% EtOAc in petroleum ether) to afford the title compound 243 mg, 71% yield. White solid. Mp: 152–154 °C. $R_f = 0.1$ in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 8.42 (d, J = 8.2 Hz, 2H), 7.87 – 7.73 (m, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.54 – 7.49 (m, 1H), 7.35 (d, J = 8.0 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.0, 148.8, 144.4, 136.4, 133.9,

130.8, 129.9, 129.4, 129.2 126.2, 120.8, 21.7; Spectral data match those previously reported in the literature.⁹

Ethyl 2-(4-benzoyl-1H-1,2,3-triazol-1-yl)acetate (3w)

The title compound was prepared on 1.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 338 mg, 87% yield. White solid. Mp: 125–126 °C. R_f = 0.2 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.44 – 8.41 (m, 3H), 7.66 – 7.61 (m, 1H), 7.57 – 7.51 (m, 2H), 5.27 (s, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 1.50 – 1.01 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.5, 165.6, 148.4, 136.4, 133.3, 130.6, 129.8, 128.4, 62.8, 51.0, 14.0; Spectral data match those previously reported in the literature.¹²

Ethyl 2-(4-(4-methylbenzoyl)-1H-1,2,3-triazol-1-yl)acetate (3x)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 270 mg, 76% yield. White solid. Mp: 148–150 °C. R_f = 0.3 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.43 – 8.29 (m, 3H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.25 (s, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.0, 165.6, 148.6, 144.2, 133.9, 130.7, 129.7, 129.1, 62.7, 51.0, 21.7, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₄H₁₆N₃O₃, 274.1186; found, 274.1172.

Ethyl 2-(4-(3-chlorobenzoyl)-1H-1,2,3-triazol-1-yl)acetate (3y)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 299 mg, 85% yield. White solid. Mp: 84–88 °C. R_f = 0.3 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 8.41 – 8.36 (m, 2H), 7.60 – 7.57 (m, 1H), 7.47 (t, *J* = 7.9 Hz, 1H), 5.26 (s, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.71 – 1.08 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 184.0, 165.5, 148.0, 137.8, 134.6, 133.3, 130.4, 130.0, 129.7, 128.8, 62.8, 51.0, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₃H₁₃ClN₃O₃, 294.0640; found, 294.0626.

Ethyl 2-(4-(4-bromobenzoyl)-1H-1,2,3-triazol-1-yl)acetate (3z)

The title compound was prepared on 0.9 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 247 mg, 82% yield. White solid. Mp: 162–164 °C. R_f = 0.2 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 8.38 – 8.29 (m, 2H), 7.71 – 7.63 (m, 2H), 5.26 (s, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 184.2, 165.6, 148.2, 135.1, 132.2, 131.7, 130.0, 128.7, 62.8, 51.0, 14.0; Spectral data match those previously reported in the literature.¹¹

(1-benzyl-1H-1,2,3-triazol-4-yl)(furan-2-yl)methanone (3aa)

The title compound was prepared on 1.6 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 30% EtOAc in petroleum ether) to afford the title compound 357 mg, 88% yield. White solid. Mp: 142–145 °C. R_f = 0.3 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.30 – 8.01 (m, 2H), 7.69 (s, 1H), 7.36 – 7.30 (m, 5H), 6.90 – 6.31 (m, 1H), 5.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 150.7, 147.6, 146.9, 133.6, 129.2, 129.0, 128.2, 127.6, 122.7, 112.5, 54.3; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₄H₁₁N₃O₂Na, 276.0743; found, 276.0742.

(1-benzyl-1H-1,2,3-triazol-4-yl)(pyridin-4-yl)methanone (3ab)

The title compound was prepared on 1.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 30% EtOAc in petroleum ether) to afford the title compound 337 mg, 85% yield. White solid. Mp: 120–123 °C. $R_f = 0.1$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.79 (d, J = 4.7 Hz, 2H), 8.31 – 7.99 (m, 3H), 7.40 – 7.27 (m, 5H), 5.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 184.4, 150.4, 147.4, 142.3, 133.4, 129.2, 129.1, 128.5, 128.2, 123.2, 54.4; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₅H₁₂N₄O, 265.1084; found, 265.1083.

(1-benzyl-1H-1,2,3-triazol-4-yl)(naphthalen-2-yl)methanone (3ac)

The title compound was prepared on 1.1 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 259 mg, 75% yield. White solid. Mp: 155–157 °C. R_f = 0.2 in EtOAc/ petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 9.24 (s, 1H), 8.32 (t, J = 10.2 Hz, 1H), 8.20 (d, J = 22.5 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.95 – 7.88 (m, 2H), 7.63 – 7.53 (m, 2H), 7.44 – 7.35 (m, 5H), 5.63 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 185.3, 148.6, 135.7, 133.7, 133.4, 132.5, 131.9, 130.0, 129.3, 129.1, 128.6, 128.4, 128.1, 127.6, 126.5, 125.4, 54.4. Spectral data match those previously reported in the literature.¹³

(1-benzyl-1H-1,2,3-triazol-4-yl)(3'-chloro-6-methoxy-[1,1'-biphenyl]-3-yl)methanone(3ad)

The title compound was prepared on 0.4 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in

petroleum ether) to afford the title compound 139 mg, 85% yield. Light yellow solid. Mp: 182–185 °C. R_f = 0.4 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, J = 8.6 Hz, 1H), 8.42 (s, 1H), 8.16 (s, 1H), 7.56 (s, 2H), 7.45 – 7.38 (m, 4H), 7.36 – 7.30 (m, 4H), 7.08 (d, J = 8.8 Hz, 1H), 5.60 (s, 2H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 183.8, 160.5, 148.7, 139.3, 133.8, 133.7, 133.4, 133.0, 129.6, 129.4, 129.3, 129.3, 129.2, 129.2, 128.4, 128.1, 127.8, 127.4, 110.6, 55.9, 54.5. MS (ESI) [M + H]⁺: calcd for C₂₄H₁₈ClN₃O₂, 404.1160; found, 404.2.

4-(1-benzyl-1H-1,2,3-triazole-4-carbonyl)-N,N-dipropylbenzenesulfonamide(3ae)

The title compound was prepared on 0.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (10% to 40% EtOAc in petroleum ether) to afford the title compound 113 mg, 95% yield. White solid. $R_f = 0.2$ in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.55 (d, J = 8.0 Hz, 2H), 8.20 (s, 1H), 7.93 (d, J = 8.0 Hz, 2H), 7.45 – 7.38 (m, 3H), 7.34 (d, J = 6.6 Hz, 2H), 5.62 (s, 2H), 3.11 (t, J = 7.5 Hz, 4H), 1.77 – 1.37 (m, 4H), 0.88 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 184.3, 147.9, 144.0, 139.2, 133.4, 131.2, 129.4, 129.3, 128.5, 128.4, 126.9, 54.6, 50.1, 22.0, 11.1. MS (ESI) [M + H]⁺: calcd for C₂₃H₂₆N₄O₃S, 427.1798; found, 427.2.

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-hydroxy-3-methoxyphenyl)methanone(3af)

The title compound was prepared on 0.5 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (10% to 40% EtOAc in petroleum ether) to afford the title compound 96 mg, 62% yield. White solid. $R_f = 0.2$ in EtOAc/petroleum ether (1:2). ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, J = 8.4 Hz, 1H), 8.14 (s, 1H), 8.03 (s, 1H), 7.46 – 7.28 (m, 5H), 7.01 (d, J = 8.4 Hz, 1H), 6.25 (br, 1H), 5.59 (s, 2H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 183.6, 150.8, 148.8, 146.4, 133.7, 129.3, 129.1, 129.0,

128.4, 128.2, 126.6, 114.0, 112.4, 56.1, 54.4. **MS (ESI)** $[M + H]^+$: calcd for C₁₈H₁₅N₃O₃, 310.1186; found, 310.2.

(1-benzyl-5-phenyl-1H-1,2,3-triazol-4-yl)(phenyl)methanone (4a)

The title compound was prepared on 0.9 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 30% EtOAc in petroleum ether) to afford the title compound 263 mg, 86% yield. Colorless liquid. R_f = 0.2 in EtOAc/petroleum ether (1:6). ¹H NMR (400 MHz, CDCl₃): δ 8.36 – 8.24 (m, 2H), 7.63 – 7.54 (m, 1H), 7.50 – 7.43 (m, 5H), 7.31 – 7.24 (m, 5H), 7.12 – 7.01 (m, 2H), 5.47 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 186.2, 143.7, 141.7, 137.0, 134.6, 132.9, 130.6, 129.9, 129.7, 128.7, 128.6, 128.3, 128.1, 127.5, 126.2, 51.9; Spectral data match those previously reported in the literature.¹²

(1-benzyl-5-phenyl-1H-1,2,3-triazol-4-yl)(2-bromophenyl)methanone (4b)

The title compound was prepared on 0.7 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 40% EtOAc in petroleum ether) to afford the title compound 231 mg, 79% yield. Light yellow liquid. $R_f = 0.3$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.53 (m, 1H), 7.51 – 7.43 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 7.30 – 7.26 (m, 5H), 7.26 – 7.25 (m, 1H), 7.11 – 6.97 (m, 2H), 5.47 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 187.9, 143.1, 141.2, 140.0, 134.4, 133.0, 131.4, 130.0, 129.7, 129.5, 128.6 (d, *J* = 19.9 Hz), 128.5, 128.3, 127.3, 126.9, 125.4, 119.8, 51.9; Spectral data match those previously reported in the literature.¹⁴

(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)(phenyl)methanone (5a)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 335 mg, 93% yield. Colorless liquid. R_f = 0.2 in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.59 – 8.12 (m,2H), 7.63 – 7.54 (m, 1H), 7.54 – 7.44 (m, 2H), 7.39 – 7.30 (m, 3H), 7.24 – 7.15 (m, 2H), 5.56 (s, 2H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.5, 143.7, 139.3, 137.3, 133.9, 132.8, 130.5, 129.1, 128.5, 128.1, 127.2, 51.7, 9.5; Spectral data match those previously reported in the literature.¹⁵

(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)(3-methoxyphenyl)methanone (5b)

The title compound was prepared on 1.1 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 247 mg, 73% yield. Light yellow liquid. R_f = 0.3 in EtOAc/petroleum ether (v/v = 1:5). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (t, *J* = 13.1 Hz, 1H), 7.85 (t, *J* = 8.8 Hz, 1H), 7.45 – 7.34 (m, 4H), 7.24 – 7.19 (m, 2H), 7.16 – 7.12 (m, 1H), 5.57 (s, 2H), 3.88 (s, 3H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.2, 159.5, 143.8, 139.4, 138.6, 134.0, 129.2, 129.2, 128.6, 127.3, 123.6, 119.6, 114.5, 55.4, 51.8, 9.6; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₈H₁₈N₃O₂, 308.1394; found, 308.1321.

(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)(4-chlorophenyl)methanone (5c)

The title compound was prepared on 1.1 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 298 mg, 87% yield. Yellow liquid. $R_f = 0.3$ in

EtOAc/petroleum ether (1:6). ¹H NMR (400 MHz, CDCl₃): δ 8.42 – 8.23 (m, 2H), 7.51 – 7.44 (m, 2H), 7.41 – 7.32 (m, 3H), 7.24 – 7.18 (m, 2H), 5.57 (s, 2H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 186.0, 143.6, 139.6, 139.3, 135.6, 133.9, 132.1, 129.2, 128.7, 128.5, 127.3, 51.8, 9.6; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₇H₁₅ClN₃O, 312.0898; found, 312.0901.

(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)(pyridin-2-yl)methanone (5d)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 40% EtOAc in petroleum ether) to afford the title compound 314 mg, 87% yield. Yellow liquid. $R_f = 0.3$ in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 9.51 (s, 1H), 8.98 – 8.57 (m, 2H), 7.49 – 7.34 (m, 4H), 7.22 (d, J = 6.7 Hz, 2H), 5.60 (d, J = 15.5 Hz, 2H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.8, 152.7, 151.5, 143.4, 139.8, 138.2, 133.7, 129.2, 128.7, 127.3, 123.3, 51.8, 9.6; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₆H₁₄N₄O, 279.1240; found, 279.1238.

(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)(thiophen-2-yl)methanone (5e)

The title compound was prepared on 1.4 mmol scale following <u>General Procedure 3.1</u>. The crude product was purified by silica gel column chromatography (0% to 40% EtOAc in petroleum ether) to afford the title compound 329 mg, 83% yield. Yellow liquid. R_f = 0.4 in EtOAc/ petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.67 (d, *J* = 3.8 Hz, 1H), 7.71 (d, *J* = 4.9 Hz, 1H), 7.34 (t, *J* = 6.7 Hz, 3H), 7.21 – 7.20 (m, 3H), 5.56 (s, 2H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 178.8, 143.1, 139.0, 135.9, 134.6, 133.9, 129.2, 128.6, 128.2, 127.3, 51.8, 9.5; HRMS (ESI) m/z [M + Na]⁺: calcd for C₁₅H₁₃N₃OSNa, 306.0672; found, 306.0671.

1-(1-benzyl-1H-1,2,3-triazol-4-yl)-2-phenylethane-1,2-dione (6a)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 348 mg, 92% yield. Yellow solid. Mp: 114-116 °C. R_f = 0.2 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 8.03 – 7.97 (m, 2H), 7.67 – 7.61 (m, 1H), 7.52 – 7.46 (m, 2H), 7.42 – 7.37 (m, 3H), 7.35 – 7.30 (m, 2H), 5.60 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 185.5, 144.4, 134.9, 133.3, 132.3, 130.2, 129.4, 129.3, 128.9, 128.4, 128.2, 54.5; Spectral data match those previously reported in the literature.¹⁶

1-(1-benzyl-1H-1,2,3-triazol-4-yl)-2-(3-methoxyphenyl)ethane-1,2-dione (6b)

The title compound was prepared on 1.1 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 258 mg, 73% yield. Yellow solid. Mp: 109-111 °C. $R_f = 0.3$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, J = 2.6 Hz, 1H), 7.55 (d, J = 10.1 Hz, 2H), 7.44 – 7.31 (m, 6H), 7.20 (d, J = 8.2 Hz, 1H), 5.61 (s, 2H), 3.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 185.6, 160.0, 144.6, 133.6, 133.3, 130.0, 129.5, 129.4, 128.5, 128.1, 123.5, 122.1, 113.2, 55.5, 54.6; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₈H₁₆N₃O₃, 322.1186; found, 322.1175.

1-(1-benzyl-1H-1,2,3-triazol-4-yl)-2-(4-fluorophenyl)ethane-1,2-dione (6c)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 307 mg, 83% yield. Yellow solid. $R_f = 0.2$

EtOAc/petroleum ether (1:2). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (s, 1H), 8.05 (d, J = 4.7 Hz, 2H), 7.36 (d, J = 19.3 Hz, 5H), 7.17 (t, J = 7.5 Hz, 2H), 5.63 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.1, 185.1, 167.9, 165.4, 144.1, 133.3, 132.9 (d, J = 9.8 Hz), 129.2 (d, J = 9.7 Hz), 128.6, 128.5, 128.3, 116.3, 116.1, 54.4. HRMS (ESI) m/z [M + H]⁺: calcd for C₁₇H₁₃FN₃O₂, 310.0992; found, 310.0979.

1-(1-benzyl-1H-1,2,3-triazol-4-yl)-2-(4-chlorophenyl)ethane-1,2-dione (6d)

The title compound was prepared on 1.1 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 308 mg, 86% yield. Yellow solid. Mp: 115-117 °C. R_f = 0.3 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1H), 7.99 – 7.96 (m, 2H), 7.52 – 7.45 (m, 2H), 7.44 – 7.37 (m, 3H), 7.33 – 7.31 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.5, 184.9, 144.3, 141.7, 133.2, 131.6, 130.7, 129.4, 129.4, 129.4, 128.4, 128.3, 54.6; Spectral data match those previously reported in the literature.⁷

1-(1-benzyl-1H-1,2,3-triazol-4-yl)-2-(4-bromophenyl)ethane-1,2-dione (6e)

The title compound was prepared on 0.8 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 248 mg, 84% yield. Yellow solid. Mp: 104-107 °C. R_f = 0.2 in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1H), 7.89 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 7.44 – 7.39 (m, 3H), 7.34 – 7.32 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.7, 184.9, 144.3, 133.2, 132.3, 131.6, 131.1, 130.6, 129.4, 128.4, 128.3, 54.6; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₇H₁₃BrN₃O₂, 370.0186; found, 370.0177.

1-phenyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)ethane-1,2-dione (6f)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 30% EtOAc in petroleum ether) to afford the title compound 299 mg, 83% yield. off-White solid. Mp: 131-132 °C. R_f = 0.3 in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.13 – 8.03 (m, 2H), 7.79 – 7.76 (m, 2H), 7.70 – 7.66 (m, 1H), 7.60 – 7.50 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 185.3, 144.6, 136.0, 135.0, 132.3, 130.3, 130.0, 129.9, 129.0, 126.4, 121.0; HRMS (ESI) m/z [M+H]⁺: calcd for C₁₆H₁₂N₃O₂, 278.0924; found, 278.0921.

1-(4-chlorophenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)ethane-1,2-dione (6g)

The title compound was prepared on 1.1 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 277 mg, 81% yield. Yellow solid. Mp: 121-123 °C. R_f = 0.3 in EtOAc/petroleum ether (1:6). ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.12 – 7.97 (m, 2H), 7.83 – 7.71 (m, 2H), 7.64 – 7.46 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 190.3, 184.7, 144.4, 141.8, 131.6, 130.7, 130.1, 129.9, 129.4, 126.6, 121.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₆H₁₁ClN₃O₂, 312.0534; found, 312.0529.

ethyl 2-(4-(2-oxo-2-phenylacetyl)-1H-1,2,3-triazol-1-yl)acetate (6h)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 295 mg, 79% yield. Yellow liquid. $R_f = 0.3$ in EtOAc/petroleum ether (1:5). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.11 – 7.98 (m, 2H), 7.71 – 7.58 (m, 1H), 7.58 – 7.47 (m, 2H), 5.24 (d, J = 12.0 Hz, 2H), 4.54 – 4.17 (m, 2H), 1.57 – 1.04 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 185.4, 165.4, 144.5, 135.0, 132.3, 130.0, 128.9, 62.9, 51.0, 14.0; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₄H₁₄N₃O₄, 288.0979;

found, 288.0978.

1-(1-benyl-1H-1,2,3-triazol-4-yl)-2-(thiophen-2-yl)ethane-1,2-dione (6i)

The title compound was prepared on 1.3 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 235 mg, 61% yield. Yellow solid. $R_f = 0.3$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 8.10 (s, 1H), 7.85 (s, 1H), 7.36 (d, J = 27.9 Hz, 5H), 7.20 (d, J = 3.3 Hz, 1H), 5.62 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 194.23, 181.49, 142.95, 138.19, 137.9, 137.6, 133.4, 129.7, 129.4 (, 129.3, 128.8, 128.4, 54.5; HRMS (ESI) m/z [M+H]⁺: calcd for C₁₅H₁₂N₃O₂S, 298.0650; found, 298.0645.

1-(1-benyl-1H-1,2,3-triazol-4-yl)-2-(furan-2-yl)ethane-1,2-dione (6j)

The title compound was prepared on 1.4 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 263 mg, 67% yield. Yellow solid. $R_f = 0.3$ in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1H), 7.73 (d, J = 21.2 Hz, 2H), 7.35 (d, J = 24.9 Hz, 5H), 6.63 (s, 1H), 5.61 (s, 2H);¹³C NMR (101 MHz, CDCl₃): δ 181.0, 176.7, 149.6, 149.1, 142.8, 133.4, 129.7, 129.3, 129.2, 128.3, 125.2, 113.2, 54.5; HRMS (ESI) m/z [M + H]⁺: calcd for C₁₅H₁₂N₃O₃, 282.0879; found, 282.0873.

1-(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)-2-(furan-2-yl)ethane-1,2-dione (6k)

The title compound was prepared on 1.4 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in
petroleum ether) to afford the title compound 259 mg, 62% yield. Yellow solid. $R_f = 0.3$ in EtOAc/petroleum ether (1:3). ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 7.76 (d, J = 14.9 Hz, 2H), 7.33 (s, 2H), 7.10 (t, J = 7.7 Hz, 2H), 6.64 (s, 1H), 5.60 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 180.9, 176.6, 149.7, 149.1, 142.9, 130.3 (d, J = 8.4 Hz), 129.6, 125.4, 116.6, 116.3, 113.3, 53.7; HRMS (ESI) m/z [M+H]⁺: calcd for C₁₅H₁₁FN₃O₃, 300.0784; found, 300.0779.

1-benzyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione (8)

The title compound was prepared on 1.2 mmol scale following <u>General Procedure 3.2</u>. The crude product was purified by silica gel column chromatography (0% to 20% EtOAc in petroleum ether) to afford the title compound 271 mg, 78% yield. Brown solid. Mp: 194–196 °C. R_f = 0.2 in EtOAc/petroleum ether (1:4). ¹H NMR (400 MHz, CDCl₃): δ 8.37 – 8.26 (m, 1H), 8.26 – 8.18 (m, 1H), 7.87 – 7.76 (m, 2H), 7.54 – 7.46 (m, 2H), 7.39 – 7.31 (m, 3H), 6.01 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 175.3, 145.6, 135.2, 134.2, 133.8, 133.4, 133.1, 132.8, 129.0, 128.6, 127.8, 127.4, 53.8; Spectral data match those previously reported in the literature.¹⁷

6. References

- 1 L. Tang, C. Huang, J. Zhong, J. He, J. Guo, M. Liu, J.-P. Xu, H.-T. Wang and Z.-Z. Zhou, *Eur. J. Med. Chem.*, 2019, **168**, 221-231.
- 2 B. P. Joshi, A. Sharma and A. K. Sinha, *Can. J. Chem.*, 2005, **83**, 1826-1832.
- X.-W. Zhang, G.-Q. Jiang, S.-H. Lei, X.-H. Shan, J.-P. Qu and Y.-B. Kang, *Org. Lett.*, 2021, 23, 1611-1615.
- 4 Y. Lan, P. Fan, X.-W. Liu, F.-F. Meng, T. Ahmad, Y.-H. Xu and T.-P. Loh, *Chem. Commun.*, 2017, **53**, 12353-12356.
- 5 T. Kashiwabara and M. Tanaka, J. Org. Chem., 2009, 74, 3958-3961.
- 6 L. W. Habel, S. De Keersmaecker, J. Wahlen, P. A. Jacobs and D. E. De Vos, *Tetrahedron Lett.*, 2004, **45**, 4057-4059.
- 7 J. Thomas, V. Goyvaerts, S. Liekens and W. Dehaen, Chem. Eur. J., 2016, 22, 9966-9970.
- 8 M. A. Pinto Martins, G. C. Paveglio, L. V. Rodrigues, C. P. Frizzo, N. Zanatta and H. G. Bonacorso, *New J. Chem.*, 2016, **40**, 5989-5992.
- 9 J.-X. Zhang, Y.-J. Wang, N.-X. Wang, W. Zhang, C.-B. Bai, Y.-H. Li and J.-L. Wen, *Synlett*, 2014, 25, 1621-1625.
- 10 P. M. Diz, A. Coelho, A. El Maatougui, J. Azuaje, O. Caamano, A. Gil and E. Sotelo, J. Org. Chem., 2013, 78, 6540-6549.
- 11 Y. Liu, G. Nie, Z. Zhou, L. Jia and Y. Chen, J. Org. Chem., 2017, 82, 9198-9203.
- 12 D. Janreddy, V. Kavala, C.-W. Kuo, W.-C. Chen, C. Ramesh, T. Kotipalli, T.-S. Kuo, M.-L. Chen, C.-H. He and C.-F. Yao, *Adv. Synth. Catal.*, 2013, **355**, 2918-2927.
- 13 S. Hwang, H. Bae, S. Kim and S. Kim, *Tetrahedron*, 2012, **68**, 1460-1465.
- 14 Y. Wang, P. Yu, Q. Ren, F. Jia, Y. Chen and A. Wu, J. Org. Chem., 2020, 85, 2688-2696.
- 15 A. De Nino, V. Algieri, M. A. Talllarida, P. Constanzo, M. Pedron, T. Tejero, P. Merino and L. Maiuolo, *Eur. J. Org. Chem.*, 2019, **2019**, 5725-5731.
- 16 C. Menendez, S. Gau, S. Ladeira, C. Lherbet and M. Baltas, *Eur. J. Org. Chem.*, 2012, 2012, 409-416.
- 17 D. Gangaprasad, J. P. Raj, T. Kiranmye, K. Karthikeyan and J. Elangovan, *Eur. J. Org. Chem.*, 2016, **2016**, 5642-5646.

7. ¹H and ¹³C NMR spectra of products

210 200 190 180 170 160 150 140 130 -10

210 200 190 180 170 160 150 -10

210 200 190 180 170 160 150 140 -10

180 170 160 150

8.35 8.35 8.35 8.34 8.34 8.33 8.33 7.65 7.64 7.63 7.62 7.62 7.62 7.33 7.33 7.28 7.28 5.73

210 200 190 180 170 160 150 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 140 130 -10

210 200 190 180 170 160 140 130 -10

Ò

Ó

210 200 190 180 170 160 150 140 130 -10

210 200 190 180 170 160 -10

-5.63

-8.31 -8.06 -8.04 -8.04 -7.33 -7.19 -7.15 -7.15

190.1 185.0	167.9 165.3	144.1 132.9 132.8 132.8 129.1 128.6 128.4 128.3 116.2 116.2 116.2	77.32	140
	5.2			Ï

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

80

8.50 -8.05 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55 -7.56 -7.56 -7.56 -7.56 -7.56 -7.56 -7.56 -7.56 -7.57 -7.56 -7.56 <

-181.0	 77.32 77.00 ^_76.68	-54.47
		1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 160 150 140 130 120 ò -10

