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General Information:

Photochemical reactions were irradiated with blue LED (Opulant Americas make LED, 455nm, Power:
3W, Luminous Flux/Radiant Flux: 687 mW; Viewing Angle: 120 Deg) which were installed on a
passive cooling system of a custom-made six vials aluminium reactor and connected with a liquid
cooling system to maintain the temperature (Figure S1). Commercially available 7 mL screw cap vials
fitted with PTFE/silicone septa were purchased from Sigma-Aldrich. All the reactions were performed
by sealing the vials with nitrogen gas with the help of standard schlenk line techniques. The distance
between the base of the glass vial and the 3W blue LED was measured to be 4 mm. Chromatographic
purification of products was accomplished by Column chromatography on silica gel (230-400 mesh).
For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates
(silica gel 60 GFas4, 0.25 mm) were employed, using UV light as the visualizing agent. Organic
solutions were concentrated under reduced pressure on a Heidolph rotary evaporator. The products
obtained were characterised using *H NMR,2C NMR, ESI-HRMS. NMR spectra were recorded at 400
MHz and 500 MHz for *H, 101 MHz, 126 MHz for 3C and 471 MHz for °F NMR. The chemical shift
(8) for *H and *3C are given in ppm relative to internal standard/residual signals of the solvents (for *H
NMR (CHCI; @ 7.26 ppm and DMSO @ 2.5 ppm), for 3C NMR (CHCI; @ 77.00 ppm and DMSO @
39.52 ppm) and tetramethylsilane @ 0 ppm). Coupling constants are given in Hertz. The following
abbreviations are followed to indicate the multiplicity: s, singlet; d, doublet; t, triplet; g, quartet; m,
multiplet; dd, doublet of doublets; ddd, doublet of doublets of doublets. High-resolution mass spectra
(HRMS) were obtained from the High Resolution Mass Spectrometry unit on MicroTOF Focus with
electrospray ionization. A Shimadzu, Nexis GC-2030 gas chromatography (GC) instrument was used

for quantitative yield determination.

Materials: Synthesis grade solvents like tertiary butanol (‘BuOH) were used as purchased. Eosin Y was
purchased from Sigma-Aldrich. Heterocycles, aldehydes, and all the other commercial grade reagents
and solvents were purchased from Sigma-Aldrich, Spectrochem and GLR Innovations at the highest

commercial quality and used without further purification, unless otherwise stated.
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Reaction Setup and Photochemical Setup:

a b

Figure S2: (a) Sealed reaction vials, (b) Vials in photoreactor
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General Procedure for Photochemical Acylation of N-Heteroarenes with Aldehydes:

A 7 mL glass vial was charged with eosin Y (8 mol%), heterocycle (0.1 mmol), aldehyde (0.4 mmol),
TBHP in water (0.4 mmol) and a magnetic stirring bead. 'BUOH (1.0 mL) was added as the solvent.
The vial was sealed with a PTFE septum, purged with N2 by using schlenk line and coated with parafilm
layer (Figure S2a). The reactions were placed in a pre-programmed temperature (25 °C) controlled blue
LED reactor (Figure S2b) and the reaction mixtures were irradiated with a 455 nm blue LED and stirred
for 4 hours. After completion, the mixture was concentrated on a rotary evaporator and subjected to a
workup procedure for removal of any acid residues generated due to the oxidation of aldehydes. The
mixture was dissolved in EtOAc and transferred to a separating funnel wherein saturated sodium
bicarbonate (NaHCO3) wash was provided. The organic layer was extracted. This step was repeated
twice with EtOAC as the organic layer and the combined extracts were dried over Na,SQs, filtered, and
concentrated in vacuo. The residue was finally purified using silica gel (230-400 mesh) column

chromatography using hexane/EtOAc.

Optimization of Reaction Conditions:

Table S1. Catalyst and additive optimization for Minisci-type acylation of isoquinoline with
benzaldehyde?
Catalyst
X o 3 W Blue LED X
@i}\l * Ph)kH TBHP, rt, N, _N
BUOH, 20 h
1a 2a 3a
O Ph
Entry Catalyst Deviation Yield (%)
1 Eosin Y None 86 (80)°
2 Na.-Eosin Y None 6
3 Eosin Y No additive <5
4 Eosin Y H.O, (additive) <5
5 Eosin Y TBPB (additive) 23
6 Eosin Y Open Air 0
7 Eosin Y No light
8 None No light 0
o Eosin Y No additive, 60 °C <5

& Optimized reaction conditions: Eosin Y (8 mol %), isoquinoline (0.1 mmol), benzaldehyde (0.4
mmol), and TBHP in H2O (0.4 mmol) are kept under photo irradiation by blue LED (455 nm, 3 W)
for 20 h using 'BUOH (1 mL) as solvent under N atmosphere. Yields were calculated using GC with
benzophenone as internal standard. ® Isolated yield. © 50 W Kessil lamp was used. ¢ 40 W white light
was used. TBPB: tert-butyl peroxybenzoate.
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Note: Initially, the experiments were conducted at room temperature (rt) using 3 W blue LED emitting
at 455 nm, 8 mol % of the photocatalyst Eosin Y, and TBHP (0.4 mmol) as additive for hydrogen atom
abstraction. We observed, to our delight, that under the optimized reaction conditions, the Minisci-
acylated product 3a was obtained in 86% yield (Table 1, entry 1). However, as we switched to the di-
sodium salt of Eosin Y, the yield drastically reduced to 6% (Table 1, entry 2). This indicated the need
for free -OH and -COOH groups in the active catalyst. In the absence of TBHP, <5% of 3a was formed
(Table 1, entry 3). Switching to H.O, and TBPB led to diminished yields (Table 1, entry 4 and 5).
Furthermore, the reaction does not proceed under open air conditions (Table 1, entry 6). This signifies
that O, must be quenching the Eosin Y triplet state which hampers the process. Similarly, product
formation was not observed both in the absence of light as well as when both light and photocatalyst
were removed (Table 1, entry 7 and 8). This proved that the presence of visible light and photoexcitation
of Eosin Y are crucial for the formation of 3a.

Table S2. Solvent and time optimization for Minisci-type acylation of isoquinoline with benzaldehyde?

Eosin Y (8 mol%)

AN o 3 W Blue LED AN
+ N
_N Ph H TBHP, N,

_N
1a 2a Solvent, th 3a
o Ph
Entry Solvent Time Yield® (%)
1 Acetone 20 11
2 MTBE 20 4
3 Acetonitrile 20 8
4 Hexane 20 16
) EtOAc 20 11
6 '‘BuCH 20 86
7 'BUuOH 17 64
8 'BUOH 24 85

#Reactions conditions: Unless otherwise stated, solvent (1 mL), Eosin Y (8 mol%), 1a (0.1 mmol), 2a
(0.4 mmol), TBHP in water (0.4 mmol) and irradiated (Blue LED, 455nm) under N, atmosphere. *Yields
were determined by GC.

Note: Upon completion of solvent screening, tert-butyl alcohol (‘BuOH) was chosen to be the optimal
reaction medium.
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Mechanistic Investigations:
1) Radical Inhibition Experiments and Trapping of Radical Intermediates:

A 7 mL glass vial was charged with eosin Y (8 mol%), 1a (0.1 mmol), 2a (0.4 mmol), TBHP in water
(0.4 mmol), TEMPO (4 equiv.) or BHT (4 equiv.), and a magnetic stirring bead. 'BuOH (1.0 mL) was
added as the solvent. The vial was sealed with a PTFE septum, purged with N, by using schlenk line
and coated with parafilm layer. The reactions were placed in a pre-programmed temperature (25 °C)
controlled blue LED reactor and the reaction mixtures were irradiated with a 455 nm blue LED and
stirred for 20 hours. After completion of the reaction, the mixtures were subjected to GC for observing
product formation. The desired product was not formed in both cases. Further, the TEMPO inhibited
reaction mixture was detected by HRMS from which the data of TEMPO adduct of benzaldehyde
(Figure S3) is given below.

Intens. . +MS, 0.3mir
x104 [M+Na] r *
2.04 calcd for C4gHp3NNaO,, 284.1621
i found, 284.1620
] +
1.54 + Na
@
QLNJL
llh‘u ’ + . . + — — - T T T T T T T T v "
500 1000 1500 2000 2500
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
284.1620 1 C16H23NNaO2 284.1621 0.5 n.a. 1 10000 55 even ok

Figure S3: HRMS data of TEMPO adduct of benzaldehyde
2) Photoacid Quenching Experiment:

A 7 mL glass vial was charged with eosin Y (8 mol%), 1a (0.1 mmol), 2a (0.4 mmol), TBHP in water
(0.4 mmol), triethylamine (4 equiv.), and a magnetic stirring bead. ‘BuOH (1.0 mL) was added as the
solvent. The vial was sealed with a PTFE septum, purged with N by using schlenk line and coated with
parafilm layer. The reactions were placed in a pre-programmed temperature (25 °C) controlled blue
LED reactor and the reaction mixtures were irradiated with a 455 nm blue LED and stirred for 20 hours.
After completion of the reaction, the mixtures were subjected to GC for observing product formation.
No product formation was observed.

3) Normalized Emission Spectra of Eosin Y and UV-Vis Absorption Spectra of all other
components:

Fluorescence measurements were carried out using a Varian Cary Eclipse fluorimeter equipped with
Peltier using 1 cm path length quartz cuvette equipped with a Teflon® septum. Fluorescence emission
spectrum of Eosin Y in dry acetonitrile was collected from 500 nm to 800 nm with an excitation
wavelength of 450 nm. Solutions of isoquinoline (1a), benzaldehyde (2a) and TBHP in water, in dry
acetonitrile, were introduced to a 1 cm path length quartz cuvette equipped with a Teflon® septum. The
solutions were analyzed using a UV-Vis spectrophotometer (UV-2450, Shimadzu, Japan). The
normalized absorption spectra of these components along with the emission spectrum of Eosin Y are
shown below (Figure S4).
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Figure S4: a) Normalized absorption spectra of isoquinoline (1a), benzaldehyde (2a), TBHP in water,
and normalized emission spectra of Eosin Y (excited at 450 nm) in MeCN.

Note: The absence of any overlap between the absorption spectrum of the individual reactants and
the emission spectra of Eosin Y indicates that electron transfer is likely to be a more viable process
than energy transfer.

4) Fluorescence Quenching Experiment:

Fluorescence measurements were carried out using a Varian Cary Eclipse fluorimeter equipped with
Peltier using 1 cm path length quartz cuvette equipped with a Teflon® septum. A 0.375 mM solution
was prepared by mixing Eosin Y in CHsCN by an appropriate dilution of 0.002 M stock solution and
taken in a fluorescence cuvette (filled up to 800 xL). The excitation and emission slit widths were fixed
at 10 nm for data collection. Fluorescence emission spectra of Eosin Y were collected from 500 nm to
800 nm with an excitation wavelength of 450 nm. Amax(emission) of Eosin Y was observed at 563 nm.
For each fluorescence quenching experiment, 3 uL of 0.1 M solution of isoquinoline (1a) was added to
Eosin Y solution (0.375 mM) taken in a fluorescence cuvette, and emission spectra were recorded after
each sequential addition. Figure S5 (Figure 2a in manuscript) shows an increase in emission intensity
after each addition of TBHP (0 to 3.375 mM). Relevant spectrum is shown below. We thank Prof.
Shashank Deep, IIT Delhi for providing the access to Fluorimeter and enabling us to perform the
fluorescence quenching experiments.
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Figure S5: a) Fluorescence-quenching spectra of a 0.375 mM solution of Eosin Y in CH3CN with
isoquinoline (1a) as the quencher.

5) Fluorescence Lifetime Quenching Experiments:

Excited state lifetime measurements were performed using a time-correlated single photon counting
(TCSPC) spectrophotometer (Fluotime 300, PicoQuant, Germany). The instrument response function
(IRF) was obtained through the use of a scattering Ludox solution. The sample of neutral Eosin Y (0.375
mM) in dry acetonitrile was excited at 485 nm using a picosecond-pulsed diode laser. The picosecond
fluorescence lifetime decays were deconvoluted using Fluofit software. The lifetime decay of the
sample were collected at 558 nm (emission maxima) with a 5 nm emission slit width where the peak
counts were normalized to 10000 counts. The lifetime decay was fit in two exponentials. We thank Prof.
Pramit Kumar Chowdhury and Harshita Rastogi, IIT Delhi for providing the access to
spectrophotometer and enabling us to perform the fluorescence lifetime quenching experiments.
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A) Fluorescence lifetime quenching studies for 0.375 mM Eosin Y in dry CH3CN with increasing
concentration of isoquinoline (1a) as the quencher (addition from 0 to 3.375 mM).
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Figure S6: a) Fluorescence lifetime quenching spectra of a 0.375 mM solution of Eosin Y in CHsCN
with isoquinoline (1a) as the quencher; b) Benesi-Hildebrand plot (Plot of 1/[t-to] vs 1/[1a]).

S8



Datasets of Lifetime Decay studies with Isoquinoline (1a) as quencher:
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Figure S7: Lifetime dataset for 0.375 mM neutral Eosin Y
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Figure S8: Lifetime dataset for 0.375 mM neutral Eosin Y + 0.375 mM 1la.
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Figure S9: Lifetime dataset for 0.375 mM neutral Eosin Y + 0.750 mM 1la.
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Figure S10: Lifetime dataset for 0.375 mM neutral Eosin Y + 1.125 mM 1la.
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Figure S11: Lifetime dataset for 0.375 mM neutral Eosin Y + 1.500 mM 1la.
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A) Fluorescence lifetime quenching studies for 0.375 mM Eosin Y in dry CH3CN with increasing
concentration of TBHP as the quencher (addition from 0 to 3.375 mM).
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Figure S18: a) Fluorescence lifetime quenching spectra of a 0.375 mM solution of Eosin Y in CH;CN
with TBHP as the quencher.
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Datasets of Lifetime Decay studies with TBHP as quencher:
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Figure S19: Lifetime dataset for 0.375 mM neutral Eosin Y
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Characterization of Products:

Isoquinolin-1-yl(phenyl)methanone (3a):! The crude mixture was purified by
column chromatography on silica gel (Hexane/EtOAcC as eluent). Product 3a (18.7 mg,
80% yield) was obtained as a yellow solid.

'H NMR (400 MHz, CDCl3) § 8.61 (d, J = 5.6 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 8.00
~7.89 (m, 3H), 7.81 (d, J = 5.6 Hz, 1H), 7.75 (dd, J = 11.1, 4.0 Hz, 1H), 7.62 (td, J =
7.7,3.2 Hz, 2H), 7.48 (t, J = 7.7 Hz, 2H); *C NMR (101 MHz, CDCls) & 194.7, 156.4, 141.1, 136.7,
136.6, 133.6, 130.7, 130.7, 128.4, 128.3, 127.1, 126.4, 126.1, 122.6.

. §4
\
&

Isoquinolin-1-yl(o-tolyl)methanone (3b):! The crude mixture was purified by
column chromatography on silica gel (Hexane/EtOAc as eluent). Product 3b (19.5
mg, 79% yield) was obtained as a colorless oil.

H NMR (400 MHz, CDCls) § 8.57 (d, J = 5.6 Hz, 1H), 8.42 (d, J = 8.5 Hz, 1H), 7.92
(d, J = 8.3 Hz, 1H), 7.82 — 7.7 (m, 2H), 7.66 (t, J = 7.7 Hz, 1H), 7.42 (dd, J = 14.8,
7.5Hz, 2H), 7.32 (d, J = 7.6 Hz, 1H), 7.21 (t, = 7.5 Hz, 1H), 2.54 (s, 3H); *C NMR (101 MHz, CDCl5)
§197.7,156.9, 141.3, 139.7, 137.2, 136.7, 132.0, 131.8, 131.7, 130.6, 128.5, 127.1, 126.3, 126.2, 125.4,
122.8, 21.4.

o
T
<

. §4
N/
s

Isoquinolin-1-yl(m-tolyl)methanone (3c):* The crude mixture was purified by
column chromatography on silica gel (Hexane/EtOAc as eluent). Product 3¢ (17.6
mg, 71% yield) was obtained as a colorless oil.

. §4
N\
Q-
(@}
&

'H NMR (500 MHz, CDCl3) & 8.60 (d, J = 5.6 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H),
7.92 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 5.6 Hz, 1H), 7.79 — 7.69 (m, 3H), 7.62 (t, J
= 7.6 Hz, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 2.39 (s, 3H); *C NMR (126 MHz,
CDCls) § 195.0, 156.7, 141.2, 138.3, 136.7, 136.6, 134.5, 131.0, 130.7, 128.3, 128.2, 128.1, 127.1,
126.3, 126.2, 122.5, 21.3.

Isoquinolin-1-yl(p-tolyl)methanone (3d):* The crude mixture was purified by
column chromatography on silica gel (Hexane/EtOAc as eluent). Product 3d (20
mg, 81% yield) was obtained as a colorless oil.

Y,
N/
N

'H NMR (400 MHz, CDCl3) § 8.51 (d, J =5.7 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H),
CHs 782 (d, J=8.3 Hz, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 5.7 Hz, 1H), 7.67
—7.60 (m, 1H), 7.55—7.47 (m, 1H), 7.18 (d, J = 8.0 Hz, 2H), 2.33 (s, 3H); 1*C NMR (101 MHz, CDCls)
5 194.4,156.8, 144.7, 141.1, 136.6, 134.1, 130.8, 130.6, 129.1, 128.1, 127.0, 126.3, 126.2, 122.3, 21.7.

Isoquinolin-1-yl(2-methoxyphenyl)methanone (3e): The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent). Product

OCH: 3¢ (17.1 mg, 65% yield) was obtained as a brown gum.

. §
\
g

'H NMR (500 MHz, CDCls) & 8.49 (d, J = 5.6 Hz, 1H), 8.39 (d, J = 8.5 Hz, 1H), 7.89
(d, J = 8.2 Hz, 1H), 7.84 (dd, J = 7.6, 1.4 Hz, 1H), 7.76 — 7.69 (m, 2H), 7.64 (t, J =
7.5 Hz, 1H), 7.52 (dd, J = 11.4, 4.3 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 3.40 (s,
3H); ¥C NMR (126 MHz, CDCls) § 195.9, 159.2, 157.9, 141.1, 136.6, 134.2, 131.2, 130.3, 128.3,
128.1, 126.8, 126.4, 1255, 122.3, 120.9, 112.1, 55.6. HRMS (ESI*) m/z [M+Na]* calcd for
C17H13NNaO,, 286.0838, found 286.0831.
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Isoquinolin-1-yl(4-methoxyphenyl)methanone (3f):2 The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3f (19 mg, 72% yield) was obtained as a pale-brown solid.

N

O !H NMR (400 MHz, CDCls) § 8.58 (d, J = 5.7 Hz, 1H), 8.16 (d, J = 8.5 Hz, 1H),
OCHs 7,92 (dd, J = 15.8, 8.6 Hz, 3H), 7.78 (d, J = 5.7 Hz, 1H), 7.72 (t, J = 7.6 Hz,

1H), 7.59 (t, J = 7.7 Hz, 1H), 6.94 (d, J = 8.9 Hz, 2H), 3.85 (s, 3H); *C NMR (101 MHz, CDCls) &

193.3, 164.1, 157.0, 141.1, 136.6, 133.1, 130.6, 129.4, 128.1, 126.9, 126.2, 126.2, 122.2, 113.7, 55.5.

Y,
\

(4-bromophenyl)(isoquinolin-1-yl)methanone (3g):! The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3g (10.9 mg, 35% yield) was obtained as a brown solid.

. §2
N/
z

O 'H NMR (400 MHz, CDCls) & 8.60 (d, J = 5.6 Hz, 1H), 8.26 (dd, J = 8.5, 0.6 Hz,

B 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.87 — 7.81 (m, 3H), 7.79 — 7.73 (m, 1H), 7.67 —
7.60 (m, 3H); *C NMR (101 MHz, CDCls) § 193.6, 155.5, 141.1, 136.8, 135.4, 132.2, 131.7, 130.8,
128.9, 128.5, 127.1, 126.4, 126.0, 122.9.

(4-chlorophenyl)(isoquinolin-1-yl)methanone (3h):! The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3h (11.2 mg, 42% vyield) was obtained as a pale-brown solid.

Y,
N\
=z

'H NMR (400 MHz, CDCl3) & 8.60 (d, J = 5.6 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H),

¢ 7.93(dd,J =7.8, 5.8 Hz, 3H), 7.83 (d, J = 5.6 Hz, 1H), 7.79 — 7.72 (m, 1H), 7.65

(dd, J =11.4, 4.1 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H); *C NMR (101 MHz, CDCls) 5 193.4, 155.6, 141.1,
140.1, 136.8, 135.0, 132.1, 130.8, 128.8, 128.5, 127.1, 126.4, 126.0, 122.9.

(4-fluorophenyl)(isoquinolin-1-yl)methanone (3i):! The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3i (17.6 mg, 70% yield) was obtained as a white solid.

. §4
\
P4

O IH NMR (500 MHz, CDCls) § 8.60 (d, J = 5.6 Hz, 1H), 8.23 (dd, J = 8.5, 0.6 Hz,

F1H), 8.05—7.98 (m, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 5.6 Hz, 1H), 7.79 —
7.73 (m, 1H), 7.64 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.19 — 7.12 (m, 2H); *C NMR (126 MHz, CDCl3) &
193.0, 166.1 (d, J=256 Hz), 155.9, 141.1, 136.8, 133.5 (d, J=8.8 Hz), 133.0 (d, J=3.8 Hz), 130.8, 128.4,
127.1,126.4, 126.1, 122.8, 115.6 (d, J=21.4 Hz). °F NMR (471 MHz, CDCls) 5 -103.94.

Isoquinolin-1-yl(thiophen-2-yl)methanone (3j):! The crude mixture was purified by
column chromatography on silica gel (Hexane/EtOAc as eluent). Product 3j (10.8 mg,
45% yield) was obtained as a yellow solid.

| ) H NMR (400 MHz, CDCls) § 8.63 (d, J = 5.6 Hz, 1H), 8.55 (d, J = 8.6 Hz, 1H), 7.91

(dd, J = 4.3, 3.1 Hz, 2H), 7.84 (d, J = 5.6 Hz, 1H), 7.75 (ddd, J = 9.3, 6.6, 1.1 Hz, 2H),
7.66 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.16 (dd, J = 4.9, 3.9 Hz, 1H):; *C NMR (101 MHz, CDCls) &
186.0, 154.6, 142.6, 140.8, 136.9, 136.5, 135.9, 130.6, 128.6, 128.0, 127.0, 126.4, 126.2, 123.5.

(4-hydroxyphenyl)(isoquinolin-1-yl)methanone (3K): The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3k (23.9 mg, 96% yield, mp 205-206°C) was obtained as a pale-yellow

Y,
N
P4

solid.
O on HNMR (500 MHz, DMSO) § 10.66 (s, 1H), 8.57 (d, J = 5.6 Hz, 1H), 8.07 (d, J
=8.3 Hz, 1H), 7.99 (d, J = 5.6 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.85 - 7.77 (m,
1H), 7.72 (d, J = 8.8 Hz, 2H), 7.69 — 7.61 (m, 1H), 6.89 (d, J = 8.8 Hz, 2H); **C NMR (126 MHz,
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DMSO) 6 192.8, 163.1, 157.3, 141.2, 136.1, 133.0, 130.9, 128.4, 127.6, 127.3, 125.5, 125.2, 122.0,
115.6. HRMS (ESI*) m/z [M+Na]" calcd for C1sH1:NNaO2, 272.0682, found 272.0674.

[1,1'-biphenyl]-4-yl(isoquinolin-1-yl)methanone (3l):2 The crude mixture
was purified by column chromatography on silica gel (Hexane/EtOAc as
eluent). Product 3l (24.7 mg, 80% yield) was obtained as a yellow solid.

IH NMR (500 MHz, CDCls) § 8.63 (d, J = 5.6 Hz, 1H), 8.27 (d, J = 8.5 Hz,
1H), 8.04 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 5.6 Hz,
1H), 7.76 (dd, J = 11.2, 3.9 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.64 (dd, J = 8.4,
7.3 Hz, 3H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H); C NMR (126 MHz, CDCls) & 194.3,
156.5, 146.4, 141.2, 139.9, 136.7, 135.4, 131.3, 130.7, 128.9, 128.3, 128.3, 127.3, 127.2, 127.1, 126.5,
126.2, 122.6.

(4-(tert-butyl)phenyl)(isoquinolin-1-yl)methanone (3m):! The crude mixture
was purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3m (20.8 mg, 72% yield) was obtained as a colorless oil.

O IH NMR (500 MHz, CDCl3) § 8.60 (d, J = 5.6 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H),
7.91 (dd, J = 8.0, 6.0 Hz, 3H), 7.79 (d, J = 5.6 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H),
7.61 (t, J = 7.7 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 1.34 (s, 9H); 3C NMR (126
MHz, CDCls) & 194.4, 157.6, 156.8, 141.2, 136.7, 134.0, 130.7, 130.7, 128.2, 127.1, 126.4, 126.3,
125.5, 122.4, 35.2, 31.1.

. §4
\
=z

1-(isoquinolin-1-yl)butan-1-one (30):®* The crude mixture was purified by column
N chromatography on silica gel (Hexane/EtOAc as eluent). Product 30 (14.3 mg, 72%
yield) was obtained as a pale-yellow oil.

o

07 > CyH,

'H NMR (400 MHz, CDCls) & 8.83 (d, J = 8.5 Hz, 1H), 8.56 (d, J = 5.5 Hz, 1H), 7.85
(d, J = 7.6 Hz, 1H), 7.78 (d, J = 5.5 Hz, 1H), 7.73 — 7.61 (m, 2H), 3.29 (dd, J = 9.2, 5.5 Hz, 2H), 1.80
(dt, J=14.7, 7.4 Hz, 2H), 1.04 (t, J = 7.4 Hz, 3H); *C NMR (101 MHz, CDCls) § 204.8, 153.5, 141.0,
136.9, 130.3, 128.9, 126.9, 126.7, 125.7, 124.2, 42.2, 17.6, 13.9.

1-(isoquinolin-1-yl)pentan-1-one (3p):® The crude mixture was purified by column
N chromatography on silica gel (Hexane/EtOAc as eluent). Product 3p (15.6 mg, 73%
yield) was obtained as a yellow oil.

o

07 C4Hq

IH NMR (500 MHz, CDCls) & 8.83 (d, J = 8.4 Hz, 1H), 8.56 (d, J = 5.3 Hz, 1H), 7.85
(d, J = 8.0 Hz, 1H), 7.79 (d, J = 5.4 Hz, 1H), 7.68 (dt, J = 15.2, 7.1 Hz, 2H), 3.32 (t, J = 7.3 Hz, 2H),
1.76 (td, J = 15.0, 7.6 Hz, 2H), 1.51 — 1.40 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); *C NMR (126 MHz,
CDCls) 5 204.9, 153.6, 141.0, 136.9, 130.3, 128.9, 126.9, 126.7, 125.7, 124.1, 40.1, 26.3, 22.5, 13.9.

1-(isoquinolin-1-yl)heptan-1-one (3q):* The crude mixture was purified by column
N chromatography on silica gel (Hexane/EtOAc as eluent). Product 3q (19.3 mg, 80%
yield) was obtained as a yellow oil.

o

o CeHi3

'H NMR (400 MHz, CDCls) & 8.83 (d, J = 8.5 Hz, 1H), 8.57 (d, J = 5.5 Hz, 1H), 7.86
(d, J =7.8 Hz, 1H), 7.80 (d, J = 5.5 Hz, 1H), 7.75 — 7.62 (m, 2H), 3.31 (t, J = 7.5 Hz, 2H), 1.83 — 1.71
(m, 2H), 1.47 — 1.31 (m, 6H), 0.89 (t, J = 6.9 Hz, 3H); *C NMR (101 MHz, CDCls) § 205.0, 153.6,
141.0, 136.9, 130.3, 128.9, 126.9, 126.7, 125.7, 124.2, 40.4, 31.7, 29.0, 24.1, 22.5, 14.0.
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1-(isoquinolin-1-yl)-3-phenylpropan-1-one (3r):®* The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3r (14.6 mg, 56% yield) was obtained as a yellow oil.

O 'H NMR (400 MHz, CDCls) § 8.88 (d, J = 8.5 Hz, 1H), 8.57 (d, J = 5.5 Hz, 1H),

7.86 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 5.5 Hz, 1H), 7.75 — 7.64 (m, 2H), 7.33 —
7.27 (m, 4H), 7.19 (ddd, J = 8.5, 5.7, 3.0 Hz, 1H), 3.74 — 3.67 (m, 2H), 3.14 (t, J = 7.7 Hz, 2H); 1°C
NMR (101 MHz, CDCl3) § 203.6, 152.9, 141.3, 141.0, 136.9, 130.3, 128.9, 128.5, 128.4, 126.9, 126.7,
125.9, 125.7, 124.4, 41.8, 30.1.

. §4
N/
P4

Br (5-bromoisoquinolin-1-yl)(phenyl)methanone (3aa):! The crude mixture was
N purified by column chromatography on silica gel (Hexane/EtOAc as eluent). Product

O N 3aa (28.7 mg, 92% vyield) was obtained as a white solid.
o 'H NMR (400 MHz, CDCls) 8 8.71 (d, J = 5.4 Hz, 1H), 8.18 (t, J = 6.0 Hz, 2H), 8.03

O (d, J=7.3Hz, 1H), 7.92 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.51 — 7.42 (m,
3H); °C NMR (101 MHz, CDCl3) & 194.2, 156.8, 142.6, 136.3, 135.7, 134.4, 133.9,
130.7, 128.6, 128.5, 127.4, 125.9, 122.0, 121.4.

HaC (6-methylisoquinolin-1-yl)(phenyl)methanone (3ab):! The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3ab (13.8 mg, 56% yield) was obtained as a colorless oil.

° O 'H NMR (400 MHz, CDCls) § 8.55 (d, J = 5.6 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H),

7.99 - 7.89 (m, 2H), 7.77 — 7.66 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.46 (ddd, J =

7.5, 6.8, 4.6 Hz, 3H), 2.56 (s, 3H); °C NMR (101 MHz, CDCl3) 5§ 194.9, 156.0, 141.2, 137.0, 136.7,
133.6, 130.7, 130.6, 128.4, 125.9, 125.9, 124.9, 122.1, 21.9.

(1H-indazol-3-yl)(phenyl)methanone (3ac):® The crude mixture was purified by
column chromatography on silica gel (Hexane/EtOAc as eluent). Product 3ac (15.8
mg, 71% yield) was obtained as a yellow solid.

'H NMR (500 MHz, DMSO) & 14.01 (s, 1H), 8.31 (d, J = 8.1 Hz, 1H), 8.28 —8.22 (m,
2H), 7.73 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 2H), 7.50
(dd, J = 11.3, 4.0 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H); *C NMR (126 MHz, DMSO) & 188.2, 142.1, 140.7,
137.7, 132.4, 130.1, 128.2, 127.0, 123.5, 122.9, 121.8, 111.0.

Phenyl(quinoxalin-2-yl)methanone (3ad):* The crude mixture was purified by

N
@i A column chromatography on silica gel (Hexane/EtOAc as eluent). Product 3ad (10.5
N mg, 45% yield) was obtained as a white solid.
(0]

'H NMR (500 MHz, CDCl3) § 9.48 (s, 1H), 8.26 —8.22 (m, 2H), 8.22 — 8.18 (m, 2H),
7.87 (dtd, J = 16.5, 7.0, 1.2 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H); 3C NMR (126
MHz, CDCls) & 192.3, 148.6, 145.3, 143.1, 140.4, 135.5, 133.6, 131.9, 131.2, 130.7, 130.4, 129.4,
128.3.

0 Quinoxaline-2,3-diylbis(phenylmethanone) (3ae):! The crude mixture was

Ny o, Ppurified by column chromatography on silica gel (Hexane/EtOAc as eluent). Product
@i P e 3ae (5 mg, 15% yield) was obtained as a white solid.
N

o HNMR (500 MHz, CDCls) & 8.23 (dd, J = 6.4, 3.4 Hz, 2H), 8.15 — 8.09 (m, 4H),
7.95 (dt, J = 6.4, 3.1 Hz, 2H), 7.66 (t, J = 7.4 Hz, 2H), 7.52 (t, J = 7.8 Hz, 4H); 13C NMR (126 MHz,
CDCls) § 192.6, 152.0, 140.2, 135.2, 133.9, 132.1, 130.9, 129.9, 128.5.
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O X Phenyl(quinolin-2-yl)methanone (3af):* The crude mixture was purified by
= column chromatography on silica gel (Hexane/EtOAc as eluent). Product 3af
S (10.7 mg, 46% yield) was obtained as a red solid.

'H NMR (500 MHz, CDCls)  8.35 (d, J = 8.5 Hz, 1H), 8.22 (dd, J = 18.3, 8.0 Hz, 3H), 8.11 (d, J = 8.5
Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.79 (t, = 7.3 Hz, 1H), 7.71— 7.59 (m, 2H), 7.52 (t, J = 7.7 Hz, 2H);
13C NMR (126 MHz, CDCls) & 193.8, 154.7, 146.7, 137.1, 136.1, 133.0, 131.4, 130.5, 130.1, 128.9,
128.4,128.1, 127.6, 120.8.

cH,  (2-methylquinolin-4-yl)(p-tolyl)methanone (3ag):®* The crude mixture was

o O purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
Product 3ag (18.3 mg, 70% yield) was obtained as a yellow gum.

AN

IH NMR (500 MHz, CDCls) § 8.15 (d, J = 8.5 Hz, 1H), 7.75 (dt, J = 8.4, 4.5 Hz,
N7 cHy 4H), 7.49 — 7.43 (m, 1H), 7.29 (dd, J = 6.6, 3.9 Hz, 3H), 2.81 (s, 3H), 2.4 (s,
3H); 3C NMR (126 MHz, CDCls) & 195.8, 158.2, 148.0, 145.3, 145.2, 134.1, 130.3, 129.9, 129.4,
128.9, 126.6, 125.2, 123.3, 120.2, 25.2, 21.7.

(4-methylquinolin-2-yl)(phenyl)methanone (3ah):* The crude mixture was
purified by column chromatography on silica gel (Hexane/EtOAc as eluent).
O o O Product 3ah (10.1 mg, 41% yield) was obtained as a pale-yellow solid.

IH NMR (500 MHz, CDCls) & 8.21 (dd, J = 15.2, 8.0 Hz, 3H), 8.08 (d, J = 8.3
Hz, 1H), 7.94 (s, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.68 (t, J = 7.4 Hz, 1H), 7.62 (t, J
=7.3Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 2.81 (s, 3H); *C NMR (126 MHz, CDCls) § 194.1, 154.4, 146.6,
145.6, 136.2, 133.0, 131.4, 131.1, 129.7, 128.9, 128.1, 128.1, 123.7, 121.3, 18.9.

3-benzoyl-1-methylquinoxalin-2(1H)-one (3ai):” The crude mixture was
\ purified by column chromatography on silica gel (Hexane/EtOAc as eluent).

@Nm Product 3ai (19.0 mg, 72% yield) was obtained as a pale-yellow solid.
N/

IH NMR (500 MHz, DMSO) & 7.98 (d, J = 7.8 Hz, 2H), 7.88 (d, J = 8.0 Hz, 1H),
7.79 - 7.71 (m, 2H), 7.68 (d, J = 8.5 Hz, 1H), 7.57 (t, J = 7.6 Hz, 2H), 7.45 (t, J
= 7.6 Hz, 1H), 3.67 (s, 3H); *C NMR (126 MHz, DMSO) & 192.2, 154.8, 152.8, 134.6, 134.4, 133.9,
131.9, 131.7, 129.9, 129.7, 128.9, 123.9, 115.2, 28.9.
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