Electronic Supplementary Information

Excellent catalytic properties of luminescent Cu@Cu₂S nanozymes and antibacterial application

Yuezhen He,*^a Manyue Yin, ^a Jian Sun, ^a Jie Chen, ^b Kuimin Jiao, ^a Jiantao Wen, ^a Yan Chen, ^a Baojuan Wang, ^{*b} Feng Gao, ^a and Lun Wang, ^a

a. College of Chemistry and Materials Science, Anhui Normal University, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Wuhu 241002, China

b. College of Life Sciences, Anhui Normal University, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Wuhu 241000, China

1 Experimental sectiom

Chemicals and Apparatus: L-ascorbic acid (AA), glutathione (GSH, Reduced) and Copper chloride were brought from Aladdin chemistry Co. Ltd (Shanghai, China). Other reagents were purchased from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). All the other reagents were analytical reagent grade and were used without further purification. Ultrapure water purified with a Millipore system (18.2 M Ω) was used throughout the experiments.

The morphology of Cu₂O@CuO and Cu@Cu₂S nanozymes were recorded with a HT-7700 transmission electron microscope (Hitachi, Japan). High-resolution transmission electron microscope (HRTEM) were captured by using a Tecnai G220S-TWIN transmission electron microscope (FEI, USA). The fluorescence spectra were obtained by a Lumina Fluorescence Spectrometer (Thermo Fisher Scientific, Korea). UV–vis absorption spectra were carried out on a Hitachi UV-2910 spectrophotometer (Hitachi, Japan).

Synthesis of Cu₂O@CuO nanozymes: 0.6 mmol of NaOH and 0.6 mmol of AA were dissolved in 50 mL of water to form a clear solution. 10 mL of the mixture was added dropwise

into 15 mL of CuCl₂ aqueous solution (0.025mM) under srirring to form Cu₂O@CuO nanoparticles. With the aid of AA, the CuO nanoparticles were spontaneously formed in the chemical precipitation process, and parts of CuO were reduced to Cu₂O by excess AA. The preparation of Cu₂O@CuO in the chemical precipitation was detailed in Eq S1.

Synthesis of Cu@Cu₂S nanozymes: The aqueous solution of GSH (20 mL, 40 mM) was mixed with the as prepared Cu₂O@CuO nanoparticles (3.5 mL), and stirring for 20 min at room temperature, until white precipitation was generated. The obtained Cu@Cu₂S nanozymes were collected by centrifugation at 8000 rpm for 10 min, and washed with ethanol three times. The product was dispersed again into the water and stored at 4 °C for further use. The Cu₂S nanoparticles were prepared from Cu₂O@CuO nanoparticles in the ligand exchange process due to the stronger affinity of Cu–S than of Cu–O, and only a tiny amount of Cu₂S nanoparticles were reduced to Cu nanoparticles by GSH. Only a tiny amount of Cu₂S nanoparticles were process was detailed in Eq S1. **Oxidase-like of two Cu-base nanozymes:** The oxidase-like activity of the Cu₂O@CuO nanozymes and Cu@Cu₂S nanozymes was evaluated by using *p*-terephthalic acid (*p*TA) as a substrates. *p*TA (50 mM) was dissolved in NaOH aqueous solution (1 M). The Cu₂O@CuO nanodots (0.5 mM) or Cu@Cu₂S nanodots (0.5 mM) were added to the *p*TA solutions (0.5 mM). After mixing for 30 min, the fluorescent spectrums were detected under 312 nm wavelength excitation.

Peroxidase-like activity of two Cu-base nanozymes: The peroxidase-like activity of the Cu₂O@CuO nanozymes and Cu@Cu₂S nanozymes was evaluated by using the oxidation of *p*TA and degradation of methylene blue (MB) in the presence of H₂O₂. For *p*TA oxidation, *p*TA (0.5 mM), H₂O₂ (1 mM), and Cu₂O@CuO nanodots (0.5 mM) or Cu@Cu₂S nanodots (0.5 mM) were mixed in the 25 mM phosphate buffer solutions (pH 5.0). After mixing for 10 min, the fluorescent spectrums were detected under 312 nm wavelength excitation. For MB degradation, MB (10 μ g mL⁻¹), H₂O₂ (1 mM), and Cu₂O@CuO nanodots (0.5 mM) or Cu@Cu₂S nanodots (0.5 mM) were mixed in the 25 mM phosphate buffer solutions (pH 5.0). After mixing for 10 min, the fluorescent spectrums were detected under 312 nm wavelength excitation. For MB degradation, MB (10 μ g mL⁻¹), H₂O₂ (1 mM), and Cu₂O@CuO nanodots (0.5 mM) or Cu@Cu₂S nanodots (0.5 mM) were mixed in the 25 mM phosphate buffer solutions (pH 7.4). ·OH-induced MB degradation was measured by UV-vis absorption spectrum in the range of 500 nm to 800 nm.

Minimum inhibitory concentration: Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were chosen as the representatives of Gram-positive and Gram-negative bacteria in the test. The bacteriun were cultured at 37 °C and 180 rpm in 5 mL of Luria–Bertani (LB) liquid medium until the OD₆₀₀ reached 0.6. First, we test the antibacterial activity of Cu₂O@CuO and Cu@Cu₂S nanozymes, the results (Fig. S15) showed that the antibacterial activity of Cu@Cu₂S nanozymes was much stronger than that of Cu₂O@CuO nanozymes, so we focused on Cu@Cu₂S nanozymes in following experiment. Various concentrations of Cu@Cu₂S nanozymes (0, 0.46, 0.94, 1.88, 3.75, 7.5, 15.0, 30.0 and $60.0 \ \mu g \ mL^{-1}$) were seperately added to the bacterium with continuous shaking at 180 rpm, then growth of organisms was observed by measuring OD at 600 nm until 24 h.

Bacterial growth curves test: The growth curves of the bacterium (including *S. aureus and E. coli*) were determined by consecutive double dilution method with different doses of Cu@Cu₂S nanozymes (0, 0.46, 0.94, 1.88, 3.75, 7.5, 15.0, 30.0 and 60.0 μ g mL⁻¹). At first, the concentration of bacterium were adjusted to 0.6 of OD₆₀₀. The different doses of Cu@Cu₂S nanozymes were added to the bacteria with continuous shaking at 180 rpm, then growth of organisms was observed by measuring OD at 600 nm every two hours until 24 h.

Inhibition zone test: The antibacterial performance of Cu@Cu₂S nanozymes was assessed by inhibition zone method. The bacterium were cultured until whose optical density (OD₆₀₀) reached 0.6. Then, 100 μ L of the bacterial suspension was uniformly spreaded to sterile LB agar plates. Subsequently, 200 μ L various concentrations of Cu@Cu₂S nanozymes (0.25, 0.50, 1.0 mg mL⁻¹), and PBS buffer were separately added to four sterilized Oxford cup, and the plate was incubated at 37 °C. The inhibition diameters of the zone were detected after incubation for 24 h. The experiment of Oxford cup was repeated three times independently.

Bacterial imaging with Cu@Cu₂S **nanozymes:** *S. aureus* or *E. coli* solution ($OD_{600} = 0.6$) were cultured in 1 mL LB liquid medium with 10 mg mL⁻¹ Cu@Cu₂S nanozymes for 2.5 h at 37 °C and 180 rpm. The bacterium were seperately collected by centrifugation at 8000 rpm for 5 min and re-dispersed in 1mL of PBS buffer solution (pH=7.4). Fluorescent images were taken using an upright fluorescence microscope Axio Image A2 (Zeiss, Germany).

Morphological observation for bacterium by SEM: The bacterium (*S. aureus* and *E. coli*) were severally incubated in LB liquid medium with $Cu@Cu_2S$ nanozymes (60.0 µg mL⁻¹) for

4 h, while the control group was treated without Cu@Cu₂S nanozymes. The bacteria was collected by 8000 rpm centrifugation for 10 min, and cleared by PBS buffer for three times. Next, we added 2.5% glutaraldehyde to fix the bacteria for 30 min. Then the bacteria was dehydrated with gradient ethanol. Finally, it was transferred to the clean silicon slice to dry by vacuum and sputter-coated with gold before observed by SEM.

Fig. S1 XRD patterns of Cu₂O@CuO nanozymes. The main characteristic diffraction peaks of Cu₂O@CuO nanozymes at 29.6°, 36.4°, and 42.3° agreed well with the (110), (111), and (200) reflections of Cu₂O (JCPDS no. 05-0667), which indicated that the nanozymes contained of Cu₂O. Moreover, two XRD peaks located at 61.3°, and 73.5° were indexed to (11-3) and (004) reflections of CuO (JCPDS no. 48-1548), which indicated that the nanozymes included CuO.

Fig. S2 XRD patterns of Cu@Cu₂S nanozymes. The XRD peaks at 22.6°, 27.8° and 46.1° of Cu@Cu₂S nanozymes were indexed to the (110), (111) and (220) of the face-centered cubic

(fcc) form of Cu_2S (JCPDS no. 53-0522), which illustrated that the nanozymes composed mainly of Cu_2S .

Fig. S3 XPS spectrum of Cu₂O@CuO nanozymes

Fig. S4 XPS spectrum of Cu@Cu₂S nanozymes

Fig. S5 FTIR spectra of Cu₂O@CuO nanozymes, AA, Cu@Cu₂S nanozymes, and GSH. Some functional groups of AA were found on the surface of the Cu₂O@CuO nanozymes, and the vibration intensity of O–H bone at 3318 cm⁻¹ disappeared, verifying that AA molecules bind onto the Cu₂O@CuO nanozymes through Cu–O bonds. For Cu@Cu₂S nanozymes, the vibration intensity of S–H bone at 2524 cm⁻¹ disappeared, which could be attributed to the GSH anchoring at the nanomaterial surface through Cu–S bonding.

Fig. S6 Excitation and emission spectra of $Cu_2O@CuO$ and $Cu@Cu_2S$, Inset: Photo of $Cu_2O@CuO$ and $Cu@Cu_2S$ (right), and their fluorescent photo under 365-nm UV light

Fig. S7 Luminescence spectra of Cu@Cu₂S aggregates at different pH values. The Cu@Cu₂S exhibit a pH-responsive emission, the fluorescence intensity increased significantly with the pH decreased from 6.0 to 3.0. These indicate that a variation in the pH of an aqueous solution changes the structure of Cu@Cu₂S from monodispersed states to aggregates.

Fig. S8 TEM image of Cu@Cu₂S nanozymes at: a) pH 6.0, and b) pH 3.0. The aggregates of nanozymes at pH 3.0 are more than that at pH 6.0. Therefore, it is reasonable to believe that the as-prepared Cu@Cu₂S have a pH-responsive aggregation-induced emission.

Fig. S9 Peroxidase-like activity of Cu₂O@CuO and Cu@Cu₂S with MB degradation

Fig. S10 Degradation process of MB in the presence of Cu₂O@CuO and H₂O₂

Fig. S11 Degradation process of MB in the presence of Cu@Cu₂S and H₂O₂

Fig. S12 Peroxidase-like activity of Cu₂O@CuO and Cu@Cu₂S with *p*TA oxidation and H₂O₂

Fig. S13 MB degradation at different pH conditions in the presence of $Cu_2O@CuO$ and H_2O_2 . The reaction speed of MB degradation increased with increasing of pH values, and the rate in pH 7.4 raised by 26.8% over that in pH 5.0.

Fig. S14 Fluorescent spectra of *p*TA oxidation at different pH conditions in the presence of $Cu_2O@CuO$ and H_2O_2 . The oxidation of *p*TA had dramatically declined with the increase of pH values, and the rate in pH 7.4 was only a tenth of the speed in pH 5.0.

Fig. S15 MB degradation at different pH conditions in the presence of $Cu@Cu_2S$ and H_2O_2 . The reaction rates of MB degradation also increased with the increasing of pH values, and the rate in pH 7.4 raised four times as compared to that in pH 5.

Fig. S16 Fluorescent spectra of *p*TA oxidation at different pH conditions in the presence of $Cu@Cu_2S$ and H_2O_2 . *p*TA oxidation in pH 7.4 remained at 73% of the rates in pH 5.0.

Fig. S17 oxidase-like activity of Cu₂O@CuO and Cu@Cu₂S with pTA oxidation.

Fig. S18 Turbidity changes of *S. aureus* with Cu₂O@CuO, Cu@Cu₂S and antibiotics in test tubes: 2: Contral; 3: Antibiotics; 4, 5: Cu₂O@CuO; 6, 7: Cu@Cu₂S

Table S1 OD₆₀₀ values of the above-mentioned S. aureus' turbidity

Sample	Control	Antibiotics	Cu ₂ O@CuO		Cu@Cu ₂ S	
OD ₆₀₀	2.029	0.016	0.291	0.796	0.007	0.009

Fig. S19 Zeta potential of Cu₂O@CuO and Cu@Cu₂S

Fig. S20 (a) and (b) Antibacterial zone test against E. coli and S. aureus

Fig. S21 (a) and (b) Reproduction curves of *E. coli* and *S. aureus* at different concentrations of Cu@Cu₂S nanozymes

Fig. S22 MICs testing for S. aureus with Cu@Cu₂S nanodots in test tubes

Fig. S23 MIC testing for *E. coli* with Cu@Cu₂S nanodots in test tubes