TABLE OF CONTENTS

Data	Page
General Experimental Considerations	S-5
Two-Step Synthesis of 8-formyl-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (8)	S-5
One-Step Synthesis of 8-formyl-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (8)	S-7
3',5'-Di-O-(tert-butyldimethylsilyl)-8-formyl-2'-deoxyadenosine (9)	S-7
8-Hydroxymethyl-2', ${ }^{\prime}$, 5^{\prime}-tri-O-(tert-butyldimethylsilyl)adenosine (5)	S-8
8-Hydroxymethyl-3', 5'-di-O-(tert-butyldimethylsilyl)-2'-deoxyadenosine (10)	S-8
8-Azidomethyl-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (11)	S-9
8-Azidomethyl-3', ${ }^{\prime}$-di-O-(tert-butyldimethylsilyl)-2'-deoxyadenosine (12)	S-10
8-[(3,4,5-Trimethoxy-1H-1,2,3-triazol-4-yl)methyl]-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethyl silyl)adenosine (13)	S-10
8-[(3,4,5-Trimethoxy-1H-1,2,3-triazol-4-yl)methyl]-3',5'-di-O-(tert-butyldimethylsilyl)- 2'-deoxyadenosine (14)	S-11
8-Azidomethyladenosine (15)	S-12
Reductive amination of 8-formyladenosine with n-heptylamine, yielding compound 16	S-12
3-(2', $3^{\prime}, 5^{\prime}$-Tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)-N-methoxy-Nmethylacrylamide (17)	S-13
2-Fluoro-3-(2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)- N-methoxy- N methylacrylamide (18)	S-14
3-(3',5'-Di-O-(tert-butyldimethylsilyl)-2'-deoxyadenosin-8-yl)acrylaldehyde (19)	S-15
2-Fluoro-3-(2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)acrylaldehyde (20)	S-16
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-hydroxypropen-1-yl)-2'-deoxyadenosine (21)	S-16
8-(2-Fluoro-3-hydroxypropen-1-yl)-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (22)	S-17
Synthesis of Other Olefination Reagents: 5-(octylsulfonyl)-1-phenyl-1H-tetrazole (C)	S-18
Synthesis of Other Olefination Reagents: 1-bromooctan-2-one	S-19
Synthesis of Other Olefination Reagents: diethyl (2-oxooctyl)phosphonate (D)	S-19
Table S1 Julia-Kocienski olefination reactions of 8-formyladenine nucleosides 8 and 9 with PT-sulfone C	S-21
8-(Non-1-enyl)-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (23)	S-21
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(non-1-enyl)-2'-deoxyadenosine (24)	S-22
Table S2 Horner-Wadsworth-Emmons reactions of 8-formyladenine nucleosides 8 and 9 with phosphonate D	S-24
8-(3-Oxonon-1-enyl)-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)-adenosine (25)	S-24
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-oxonon-1-enyl)-2'-deoxyadenosine (26)	S-25
Fig. S1 Computed HOMO and LUMO orbitals of Weinreb enamides 17 and 18 (with OH groups)	S-27
Table S3 Calculated parameters for compound pairs 17/18 and 19/20	S-28
References	S-29
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 8 in CDCl_{3}	S-30

$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{8}$ in CDCl_{3}	S-31
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 9 in CDCl_{3}	S-32
$\left.125 \mathrm{MHz}{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of compound 9 in CDCl_{3}	S-33
$500 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound 5 in CDCl_{3}	S-34
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 5 in CDCl_{3}	S-35
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 10 in CDCl_{3}	S-36
	S-37
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 11 in CDCl_{3}	S-38
$\left.125 \mathrm{MHz}{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of compound 11 in CDCl_{3}	S-39
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 12 in CDCl_{3}	S-40
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 12 in CDCl_{3}	S-41
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 13 in CDCl_{3}	S-42
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of compound $\mathbf{1 3}$ in CDCl_{3}	S-43
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 14 in CDCl_{3}	S-44
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 14 in CDCl_{3}	S-45
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 15 in $\mathrm{CD}_{3} \mathrm{OD}$	S-46
$\left.125 \mathrm{MHz}{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of compound 15 in $5: 1 \mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMSO}-d_{6}$	S-47
$500 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound 16 in CDCl_{3}	S-48
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 16 in CDCl_{3}	S-49
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 17 in CDCl_{3}	S-50
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 17 in CDCl_{3}	S-51
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 18 in CDCl_{3}	S-52
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 18 in CDCl_{3}	S-53
$470 \mathrm{MHz}^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 18 in CDCl_{3}	S-54
gCOSY spectrum of compound 18 in CDCl_{3}	S-55
Expansion of gCOSY spectrum of compound 18 in CDCl_{3}	S-56
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 19 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	S-57
$\left.125 \mathrm{MHz}{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of compound 19 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	S-58
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 0}$ in CDCl_{3}	S-59
	S-60
$470 \mathrm{MHz}{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 0}$ in CDCl_{3}	S-61
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 21 in CDCl_{3}	S-62
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of compound $\mathbf{2 1}$ in CDCl_{3}	S-63
$500 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 2}$ in CDCl_{3}	S-64
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 2}$ in CDCl_{3}	S-65
$470 \mathrm{MHz}^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 2}$ in CDCl_{3}	S-66
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 3}$ in CDCl_{3}	S-67
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	S-68
$500 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound 24a in CDCl_{3}	S-69
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 24a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	S-70

$500 \mathrm{MHz}^{1} \mathrm{H} \mathrm{NMR} \mathrm{spectrum} \mathrm{of} \mathrm{compound} \mathbf{2 4 b}$ in CDCl_{3}	S-71
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 4 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$	S-72
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 5}$ in CDCl_{3}	S-73
$\left.125 \mathrm{MHz}{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of compound $\mathbf{2 5}$ in CDCl_{3}	S-74
$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound 26 in CDCl_{3}	S-75
$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 26 in CDCl_{3}	S-76

General Experimental Considerations

THF was distilled over LiAlH_{4}, stored over Na , and distilled over Na prior to use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DME were distilled over CaH_{2}, and toluene was distilled over Na . For reactions that were performed under a nitrogen atmosphere, glassware was flame dried under vacuum. LDA (2.0 M solution in heptane/THF/EtPh), DIBAL-H (1.0 M in PhMe), LHMDS (1.0 M in THF), NaHMDS (0.6 M in PhMe), and KHMDS (0.5 M in PhMe) were obtained from commercial sources. For reactions requiring NaH , dry NaH (95\%) was used. All other reagents were obtained from commercial sources and used without further purification. Thin layer chromatography was performed on $200 \mu \mathrm{~m}$ aluminum-foil-backed silica plates and column chromatographic purifications were performed on 200-300 mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 500 MHz in either CDCl_{3}, or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, or $\mathrm{CD}_{3} \mathrm{OD}$, and are referenced to the residual proton resonance of the solvent. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 125 MHz in either CDCl_{3}, or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, or $\mathrm{CD}_{3} \mathrm{OD}$, and are referenced to the solvent resonance. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 470 MHz with CFCl_{3} as the internal standard. Chemical shifts (δ) are reported in parts per million and coupling constants (J) are in hertz (Hz).

Two-Step Synthesis of 8-formyl-2', $\mathbf{3}^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (8)

Step 1. In a clean, dry, 25 mL round-bottom flask equipped with a stir bar were placed the silylprotected 8 -vinyl nucleoside $\mathbf{6}^{1}$ ($846 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.00$ equiv.) and NMO ($202.6 \mathrm{mg}, 1.73 \mathrm{mmol}$, 1.30 equiv.) in THF (9.5 mL). A solution of $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(24.5 \mathrm{mg}, 0.0665 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ in $\mathrm{H}_{2} \mathrm{O}$ $(2.4 \mathrm{~mL})$ was added to the mixture that was then stirred at room temperature for 24 h . Another aliquot of $\mathrm{NMO}\left(202.6 \mathrm{mg}, 1.73 \mathrm{mmol}, 1.30\right.$ equiv.) and $\mathrm{K}_{2} \mathrm{OsO}_{4} \bullet 2 \mathrm{H}_{2} \mathrm{O}(24.5 \mathrm{mg}, 0.0665 \mathrm{mmol}, 5.0$ mol\%) were added to the mixture and the stirring was continued for an additional 24 h . The reaction was quenched with 10% aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(10 \mathrm{~mL})$ and the mixture was stirred for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed with 1% aq. $\mathrm{NaHSO}_{3}(3 \times 50 \mathrm{~mL})$, and brine (20 mL). The organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 50% EtOAc
in hexanes followed by EtOAc gave 775.4 mg (87% yield) of the diastereomeric mixture of products $\mathbf{7 a}$ and $\mathbf{7 b}$ as light-brown solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.40 .{ }^{1} \mathrm{H}$ NMR of the earlyeluting diastereomer $7 \mathrm{a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.08\left(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.45$ $\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.01(\mathrm{dt}, J=7.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.64(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}\right), 4.20$ (dt, J = 11.8, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.10-4.02 (m, 2H, H-4', CH), 3.98 (dd, J = 11.3, 5.3 Hz, 1H, $\left.\mathrm{H}-5^{\prime}\right), 3.70\left(\mathrm{dd}, \mathrm{J}=11.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 0.96,0.79$, and 0.77 (3s, 27H, $t-\mathrm{Bu}), 0.18,0.15,-0.01,-0.04,-0.08$, and $-0.27(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{1} \mathrm{H}$ NMR of the lateeluting diastereomer 7b ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.08\left(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.47-$ $5.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{NH}_{2}\right), 5.03(\mathrm{dt}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.44\left(\mathrm{dd}, \mathrm{J}=4.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.17$ (dt, J = 11.8, 4.0 Hz, 1H, CH), 4.15-4.10 (m, 1H, H-4'), 4.08-4.02 (m, 2H, CH, H-5'), 3.74 (dd, J = $\left.11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.40(\mathrm{dd}, J=8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 0.95,0.86$, and $0.75(3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}), 0.16,0.14,0.06,0.04,-0.08$, and $-0.40(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe})$.

Note. The NMR data listed above were obtained from the diol diastereomers, 7a and 7b, that were separated by column chromatography from a small-scale reaction.

Step 2. In a clean, dry, 50 mL round-bottom flask equipped with a stir bar was placed the diastereomeric mixture of diols $\mathbf{7 a}$ and $\mathbf{7 b}$ ($0.900 \mathrm{~g}, 1.343 \mathrm{mmol}$, 1.00 equiv.) in THF (24.7 mL). A solution of NaIO_{4} ($574.6 \mathrm{mg}, 2.686 \mathrm{mmol}, 2.00$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(12.3 \mathrm{~mL})$ was added to the mixture that was then stirred for 16 h at room temperature. The mixture was diluted with water (20 mL) and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 10% acetone in hexanes gave 702.9 mg (82% yield) of silyl-protected 8 -formyladenosine 8, as a pale-yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 30 \% \mathrm{EtOAc}\right.$ in hexanes): 0.50. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=$ $\left.5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.89\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.37\left(\mathrm{dd}, \mathrm{J}=5.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.60(\mathrm{dd}, J=4.4,3.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.08$ (dt, J = 6.8, 3.5 Hz, 1H, H-4'), 4.03 (dd, $\left.J=10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.72$ (dd, J = 10.8, $\left.4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 0.97,0.82$, and $0.76(3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}), 0.16(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 0.01,-0.04,-0.07$, and 0.38 (4s, 12H, SiMe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 183.0,157.3,155.4,151.4,145.2,121.1$, 88.8, 85.7, 73.3, 72.3, 62.5, 26.1, 26.0, 25.8, 18.5, 18.3, 18.0, -4.2, $-4.35,-4.36,-5.0,-5.2,-5.3$. HRMS (ESI/TOF): m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 638.3584$, found 638.3607.

One-Step Synthesis of 8-Formyl-2', $\mathbf{3}^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (8)
 In a flame-dried 250 mL round-bottom flask containing a stir bar, a 2.0 M solution of LDA in heptane/THF/EtPh ($7.5 \mathrm{~mL}, 15 \mathrm{mmol}, 5.0$ equiv.) was added to dry THF (27.0 mL) at $-78{ }^{\circ} \mathrm{C}$, under a nitrogen atmosphere. A solution of silyl-protected adenosine $\mathbf{1}^{2}(1.83 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.00$ equiv.) in dry THF (33.0 mL) was added slowly so that the external bath temperature did not rise above $70^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . DMF ($5.81 \mathrm{~mL}, 75.0 \mathrm{mmol}, 25.0$ equiv.) was then added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 2.5 h . The reaction was quenched with water (40 mL) and the mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 10% EtOAc in hexanes followed by 15% EtOAc in hexanes gave 1.57 g (82% yield) of silyl-protected 8 -formyladenosine $\mathbf{8}$, as a pale-yellow solid. The NMR data were identical to that reported above.

Note. Although this material is stable for about a month in a freezer, it is best to use it soon after preparation.

3',5'-Di-O-(tert-butyldimethylsilyl)-8-formyl-2'-deoxyadenosine (9)

In a flame-dried 100 mL round-bottom flask containing a stir bar, a 2.0 M solution of LDA in heptane/THF/EtPh ($7.5 \mathrm{~mL}, 15 \mathrm{mmol}, 5.0$ equiv.) was added to dry THF (27.0 mL), at $-78^{\circ} \mathrm{C}$, under a nitrogen atmosphere. A solution of silyl-protected 2^{\prime}-deoxyadenosine $\mathbf{2}^{3}(1.44 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.00$ equiv.) in dry THF (33.0 mL) was added slowly so that the external bath temperature did not rise above $-70^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . DMF ($5.81 \mathrm{~mL}, 75.0 \mathrm{mmol}, 25.0$ equiv.) was then added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 2.5 h . The reaction was quenched with water (40 mL) and the mixture was extracted with EtOAc ($3 \times$ 50 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in hexanes followed by 40% EtOAc in hexanes gave 1.325 g (87% yield) of silyl-protected 8 -formyl-2'-deoxyadenosine 9 , as a pale-yellow solid.
$\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 50 \%\right.$ EtOAc in hexanes): 0.38. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.99$ (s, 1H, CHO), 8.39 (s, 1H, Ar-H), $7.13\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{1}^{\prime}\right), 5.99\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.86\left(\mathrm{dt}, \mathrm{J}=6.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.96$ (app q, $J_{\text {app }} \sim 4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $3.91\left(\mathrm{dd}, J=10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.71(\mathrm{dd}, J=10.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5^{\prime}$), 3.39 ($\mathrm{dt}, \mathrm{J}=13.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.29 ($\mathrm{ddd}, J=13.0,7.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 0.94 and 0.82 $(2 \mathrm{~s}, 18 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.14(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}),-0.01$ and $-0.05(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta 183.3,157.5,155.6,151.2,144.7,121.0,87.9,84.6,72.4,62.9,38.4,26.01,25.99,18.5,18.2,-$ 4.47, -4.57, $-5.27,-5.32$. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 508.2770$, found 508.2767.

Note. Although this material is stable for about a month in a freezer, it is best to use it soon after preparation.

8-Hydroxymethyl-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (5) ${ }^{2}$

In a 50 mL round-bottom flask equipped with a stir bar, a solution of silylprotected 8 -formyladenosine 8 ($0.638 \mathrm{~g}, 1.00 \mathrm{mmol}, 1.00$ equiv.) was prepared in MeOH (20.0 mL). NaBH_{4} ($83.3 \mathrm{mg}, 2.20 \mathrm{mmol}, 2.20$ equiv.) was added in a single portion to the flask with stirring, and the mixture was stirred at room temperature for a total of 1 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$, and then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, deionized water (20 mL), and brine $(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 25\% EtOAc in hexanes, 35\% EtOAc in hexanes, and 50\% EtOAc in hexanes gave 544.2 $\mathrm{mg}\left(85 \%\right.$ yield) of carbinol 5, as a white solid. $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,500 \mathrm{MHz}\right): \delta 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.93$ (br s, 2H, NH2), 5.92 (d, J = $\left.5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.33\left(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.95-4.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $4.49\left(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.09\left(\mathrm{dt}, J=5.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.01$ (dd, $\left.J=11.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 3.72 (dd, $\left.J=11.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 0.95,0.83$, and 0.76 ($3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}$), $0.16,0.14,0.03,-0.01,-$ 0.07, and -0.37 ($6 \mathrm{~s}, 18 \mathrm{H}$, SiMe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 155.4,153.1,152.7,151.1$, $118.5,88.6,85.7,72.8,72.3,62.5,57.2,26.1,26.0,25.8,18.5,18.3,18.0,-4.2,-4.4,-4.5,-5.0,-$ 5.3, -5.4. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 640.3740$, found 640.3745 .

8-Hydroxymethyl-3',5'-di-O-(tert-butyldimethylsilyl)-2'-deoxyadenosine (10)

In a 100 mL round-bottom flask equipped with a stir bar, a solution of silylprotected 8 -formyl 2'-deoxyadenosine 9 ($1.016 \mathrm{~g}, 2.00 \mathrm{mmol}, 1.00$ equiv.) was prepared in MeOH (40.0 mL). NaBH_{4} ($166.5 \mathrm{mg}, 4.40 \mathrm{mmol}, 2.20$ equiv.) was added in a single portion to the flask with stirring, and the mixture was stirred at room temperature for a total of 1 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$, and then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, deionized water (20 mL), and brine (10 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 50% EtOAc in hexanes, 75% EtOAc in hexanes, and EtOAc gave 0.897 g (88% yield) of carbinol 10, as a pale-yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 50 \%\right.$ EtOAc in hexanes): 0.12. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}): \delta 8.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.42\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.68(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH} 2), 4.91\left(\mathrm{ABq}, \Delta \delta_{\mathrm{AB}}=0.03\right.$, $\left.J_{A B}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.71\left(\mathrm{dt}, J=6.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.29-4.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.95(\mathrm{app} \mathrm{q}$, $\left.J_{\text {app }} \sim 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.90\left(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.72\left(\mathrm{dd}, J=11.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, $3.18\left(\mathrm{dt}, J=13.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.32\left(\mathrm{ddd}, J=12.2,7.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 0.92$ and $0.86(2 \mathrm{~s}$, $18 \mathrm{H}, t-\mathrm{Bu}), 0.124,0.118,0.04$, and $0.02(4 \mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 155.2$, $152.8,152.6,151.0,118.3,87.7,84.5,72.0,62.7,57.8,39.1,26.06,26.01,18.6,18.2,-4.4,-4.6$, $-5.31,-5.33$. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 510.2926$, found 510.2926.

8-Azidomethyl-2', 3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (11)

In an 8 mL vial equipped with a stir-bar, a solution of silyl-protected 8hydroxymethyladenosine 5 ($0.300 \mathrm{~g}, 0.469 \mathrm{mmol}, 1.00$ equiv.) was prepared in dry THF (3.0 mL). DPPA ($404 \mu \mathrm{~L}, 1.87 \mathrm{mmol}, 4.00$ equiv.) and DBU ($350 \mu \mathrm{~L}$, $2.34 \mathrm{mmol}, 4.99$ equiv.) were added. The vial was sealed, and the mixture was stirred at room temperature for 6 h . The mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 15\% EtOAc in hexanes and 30% EtOAc in hexanes gave 280.6 mg (90% yield) of the azido nucleoside 11, as a white solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 50 \%\right.$ EtOAc in hexanes): 0.69. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.30(\mathrm{~s}$,

1H, Ar-H), 5.90 (d, J = $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.86 (br s, 2H, NH2), $5.38\left(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.64(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.52\left(\mathrm{dd}, J=4.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.08\left(\mathrm{dt}, J=6.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.00(\mathrm{dd}, J=11.1$, $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.71\left(\mathrm{dd}, \mathrm{J}=11.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 0.95,0.82$, and $0.78(3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}), 0.16$, $0.14,0.02,-0.02,-0.06$, and $-0.33(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 155.3,152.6$, $151.2,147.9,119.2,88.8,85.8,73.0,72.2,62.4,47.5,26.1,26.0,25.8,18.5,18.3,18.1,-4.2,-$ 4.36, $-4.4,-5.1,-5.2,-5.4$. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{NaO}_{4} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$687.3625, found 687.3630.

8-Azidomethyl-3',5'-di-O-(tert-butyldimethylsilyl)-2'-deoxyadenosine (12)

In a 25 mL round-bottom flask equipped with a stir bar, a solution of silylprotected 8-hydroxymethyl 2'-deoxyadenosine $10(0.800 \mathrm{~g}, 1.57 \mathrm{mmol}, 1.00$ equiv.) was prepared in dry THF (10.5 mL). DPPA ($1.35 \mathrm{~mL}, 6.26 \mathrm{mmol}, 3.99$ equiv.) and DBU ($1.20 \mathrm{~mL}, 8.02 \mathrm{mmol}, 5.11$ equiv.) were added. The flask was stoppered and the mixture was stirred at room temperature for 6 h . The mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with $30 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $50 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 797.6 mg (95% yield) of the azido nucleoside 12, as a white solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 30 \%\right.$ EtOAc in hexanes): $0.65 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.37\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{1}^{\prime}\right), 6.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.73(\mathrm{dt}, J=6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3^{\prime}), 4.71-4.65 (m, 2H, CH2), 3.93 (app q, Japp $\sim 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.87 (dd, J = 11.1, 4.9 Hz, 1H, H$\left.5^{\prime}\right), 3.69\left(\mathrm{dd}, J=11.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.28\left(\mathrm{dt}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.29$ (ddd, $J=13.2,6.6$, $\left.3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 0.92$ and $0.83(2 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.123,0.118,0.01$, and $-0.02(4 \mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 155.6,152.9,151.1,147.3,119.1,87.7,84.5,72.0,62.6,47.8$, 39.0, 26.04, 26.02, 18.5, 18.2, -4.5, -4.6, -5.28, -5.33 . HRMS (ESI/TOF): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 535.2991$, found 535.2982 .

8-[(3,4,5-Trimethoxy-1H-1,2,3-triazol-4-yl)methyl]-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (13)
In an 8 mL vial equipped with a stir bar, a solution of silyl-protected 8-azidomethyladenosine $\mathbf{1 1}$ ($0.200 \mathrm{~g}, 0.301 \mathrm{mmol}, 1.00$ equiv.) and 3,4,5-trimethoxyethynylbenzene ${ }^{4}$ ($115.6 \mathrm{mg}, 0.601 \mathrm{mmol}$,

2.00 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 mL) was prepared. To this stirred solution at room temperature, sodium ascorbate (11.9 mg , $0.060 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{mg}, 0.030 \mathrm{mmol}, 10$ mol\%), and $\mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{~mL})$ were added, and the stirring was continued at room temperature for 3 h . The mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 30% EtOAc in hexanes and 50\% EtOAc in hexanes gave 242.4 mg (94% yield) of triazole 13, as a white solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / \mathrm{EtOAc}\right): 0.74 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.05$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.12 (br s, 2H, NH2), 6.07-6.02 (m, 2H, H-1', NCH), 5.88 (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 5.23 (dd, J = 5.5, 4.6 Hz, 1H, H-2'), 4.48 (t, J = $3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 4.12 (app q, Japp $\sim 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4^{\prime}), 3.98 ($\mathrm{dd}, \mathrm{J}=11.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), $3.91(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.74 (dd, J=11.4, $\left.3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 0.96,0.79$, and $0.74(3 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.17,0.14,0.02,-0.05,-0.06$, and $-0.38(6 \mathrm{~s}$, $18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): δ 155.6, 153.8, 153.1, 151.1, 148.4, 146.0, 138.4, 126.2, 120.1, 119.3, 103.3, 88.6, 85.8, 73.5, 71.9, 62.2, 61.1, 56.4, 47.4, 26.1, 25.9, 25.8, 18.4, 18.3, 18.0, $-4.2,-4.4,-4.5,-5.1,-5.3,-5.5$. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{69} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{Si}_{3}[\mathrm{M}+$ $H]^{+} 857.4592$, found 857.4604.

8-[(3,4,5-Trimethoxy-1H-1,2,3-triazol-4-yl)methyl]-3',5'-di-O-(tert-butyldimethylsilyl)-2'deoxyadenosine (14)

In an 8 mL vial equipped with a stir bar, a solution of silylprotected 8 -azidomethyl-2'-deoxyadenosine 12 (0.100 g , 0.187 mmol, 1.00 equiv.) and 3,4,5-trimethoxyethynylbenzene ${ }^{4}$ ($71.9 \mathrm{mg}, 0.374 \mathrm{mmol}, 2.00$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.9 mL) was prepared. To this stirred solution at room temperature, sodium ascorbate ($7.4 \mathrm{mg}, 0.037$ $\mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}(4.7 \mathrm{mg}, 0.019 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{~mL})$ were added, and the stirring was continued at room temperature for 3 h . The mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and evaporated under
reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 30% EtOAc in hexanes and 50% EtOAc in hexanes gave 128.5 mg (95% yield) of the triazole 14, as a white solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / E t \mathrm{OAc}\right): 0.35 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.88 (s, 1H, Ar-H), 7.05 (s, 2H, Ar-H), 6.49 (t, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{B}^{\prime}$), $6.04(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 5.89 (d, J = $15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 5.54 (br s, 2H, NH2), 4.77 (dt, J = 6.3, 4.2 Hz, 1H, H-3'), 3.96 (app q, $J_{\text {app }} \sim 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.91 (s, 6H, OMe), 3.91-3.87 (m, 1H, H-5'), 3.87 (s, 3H, OMe), 3.73 (dd, J $\left.=11.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.20\left(\mathrm{dt}, \mathrm{J}=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.29(\mathrm{ddd}, \mathrm{J}=13.1,6.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.2^{\prime}\right), 0.92$ and $0.80(2 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.12(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}),-0.01$ and $-0.05(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 155.7,153.7,153.2,150.9,148.2,145.6,138.3,126.0,120.4,119.0,103.0$, 87.8, 84.7, 71.8, 62.5, 61.0, 56.3, 47.6, 39.2, 25.92, 25.91, 18.4, 18.1, $-4.5,-4.7,-5.41,-5.44$. HRMS (ESI/TOF): m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{NaO}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 749.3597$, found 749.3594.

8-Azidomethyladenosine (15)

To a stirred solution of silyl-protected 8-azidomethyladenosine 11 (0.100 g , $0.150 \mathrm{mmol}, 1.00$ equiv.) in dry THF (1.5 mL), in a 4 mL polypropylene vial, $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ ($123 \mu \mathrm{~L}, 0.755 \mathrm{mmol}, 5.03$ equiv.) was added. The mixture was stirred at room temperature for 16 h and then evaporated under a stream of nitrogen gas using a polyethylene pipette. The residual material was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, sonicated, and centrifuged. The supernatant liquid was carefully removed using a Pasteur pipette. The process was repeated several times and the resulting material was dried under high vacuum to give 47.1 mg (97% yield) of the desilylated product 15 , as a white solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 5 \%\right.$ MeOH in EtOAc): 0.34. ${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 500 \mathrm{MHz}$): $\delta 8.16$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.96 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1^{\prime}\right), 4.94\left(\mathrm{dd}, \mathrm{J}=7.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.75\left(\mathrm{ABq}, \Delta \delta_{\mathrm{AB}}=0.03, \mathrm{~J}_{\mathrm{AB}}=15.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.34(\mathrm{dd}, \mathrm{J}$ $\left.=5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.20\left(\mathrm{app} q, J_{\text {app }} \sim 2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.89\left(\mathrm{dd}, J=12.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 3.74 (dd, J = 12.6, $\left.2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($5: 1 \mathrm{CD}_{3} \mathrm{OD} / \mathrm{DMSO}-\mathrm{d}_{6}, 125 \mathrm{MHz}$): $\delta 157.6,153.6$, 151.2, 148.6, 119.9, 90.9, 88.9, 74.5, 72.9, 63.9, 48.0. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{8} \mathrm{O}_{4}$ [$\mathrm{M}+\mathrm{H}]^{+} 323.1211$, found 323.1216 .

Reductive amination of 8 -formyladenosine $\mathbf{8}$ with n-heptylamine, yielding compound 16

In a 25 mL round-bottom flask equipped with a stir bar, a solution of silyl-protected 8formyladenosine 8 ($0.130 \mathrm{~g}, 0.204 \mathrm{mmol}, 1.00$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was prepared. To

this mixture were added $4 \AA \mathrm{MS}(0.275 \mathrm{~g})$ followed by n-heptylamine ($38.0 \mu \mathrm{~L}, 0.256 \mathrm{mmol}, 1.26$ equiv.). The mixture was stirred at room temperature for 16 h , then evaporated under reduced pressure, and dried under high vacuum. The residue was dissolved in dry MeOH (10.0 mL) and NaBH_{4} ($19.3 \mathrm{mg}, 0.510 \mathrm{mmol}, 2.50$ equiv.) was added in a single portion. The mixture was stirred at room temperature for a total of 1 h . The reaction was quenched with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Evaporation of the filtrate under reduced pressure and drying under high vacuum gave 150.0 mg (quantitative yield) of the N-heptyl aminomethyl adenosine $\mathbf{1 6}$, as a pale-yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 30 \%\right.$ EtOAc in hexanes): 0.37. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.98\left(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{i}^{\prime}\right), 5.55(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, H-2'), 5.39 (br s, 2H, NH2), 4.60-4.55 (m, 1H, H-3'), 4.07-4.01 (m, 4H, NCH ${ }_{2}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}$), 3.70 (dd, $J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime}$), $2.69\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 1.52 (quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.37-1.21 $\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.82$ and $0.79(2 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.164$, $0.161,0.01,-0.04,-0.06$, and $-0.33(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 155.1$, 152.40, 152.35, 151.3, 119.3, 88.7, 85.3, 72.4, 72.3, 62.5, 50.1, 46.9, 32.0, 30.2, 29.4, 27.4, 26.2, 26.0, 25.9, 22.8, 18.5, 18.3, 18.1, 14.3, -4.2, -4.3, $-4.4,-4.9,-5.2,-5.4$. HRMS (ESI/TOF): m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{73} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 737.4996$, found 737.5010.

3-(2', $3^{\prime}, 5^{\prime}$-Tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)-N-methoxy-N-methylacrylamide (17)

In a 50 mL round-bottom flask containing a stir bar, a 1.0 M suspension of NaH ($96.0 \mathrm{mg}, 4.00 \mathrm{mmol}, 4.00$ equiv.) in anhydrous THF (4.0 mL) was prepared under a nitrogen atmosphere, and the suspension was cooled to $0^{\circ} \mathrm{C}$. To this was added a 0.25 M solution of BT-sulfone $\mathbf{A}(0.601 \mathrm{~g}, 2.00 \mathrm{mmol}, 2.00$ equiv.) in anhydrous THF (8.0 mL). The yellow suspension was stirred at $0^{\circ} \mathrm{C}$ for 2 min and then a solution of silyl-protected 8 -formyladenosine $8(0.638 \mathrm{~g}$, $1.00 \mathrm{mmol}, 1.00$ equiv.) in anhydrous THF (6.0 mL) was added dropwise at $0^{\circ} \mathrm{C}$, under nitrogen. The mixture was stirred at room temperature for 1 h . The reaction was quenched with deionized $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with deionized water (10 mL), brine (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with $20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by $75 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 593 mg (82% yield) of the Weinreb amide 17 (E-isomer only), as a white solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 50 \%\right.$ EtOAc in hexanes): 0.21. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.78\left(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}\right)$, 7.70 (d, J = $15.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}$), 6.17 (br s, 2H, NH 2), $5.99\left(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{I}^{\prime}\right), 5.47(\mathrm{t}, \mathrm{J}=4.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.53\left(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.12-4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.03(\mathrm{dd}, J=10.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5^{\prime}$), 3.81 (s, 3H, OMe), 3.73 (dd, J = 10.9, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.34 (s, $3 \mathrm{H}, \mathrm{NMe}$), $0.96,0.82$, and $0.75(3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}), 0.17,0.16,0.01,-0.04,-0.07$, and $-0.36(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): $\delta 165.6,155.6,152.8,151.0,148.2,128.0,124.8,120.6,88.8,85.7,72.6,72.5,62.5$, 62.4, 32.8, 26.2, 26.0, 25.9, 18.5, 18.4, 18.1, -4.2, -4.37, -4.45, -5.0, -5.2, -5.3. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{NaO}_{6} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 745.3931$, found 745.3937 .

2-Fluoro-3-(2', $\mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)-N-methoxy-N-methylacrylamide (18)

In a 50 mL round-bottom flask containing a stir bar, a 1.05 M suspension of NaH ($85.3 \mathrm{mg}, 3.55 \mathrm{mmol}, 3.99$ equiv.) in anhydrous THF (3.4 mL) was prepared, and the suspension and cooled to $0^{\circ} \mathrm{C}$. To this was added a 0.25 M solution of BT -sulfone $\mathbf{B}(0.566 \mathrm{~g}, 1.78 \mathrm{mmol}$, 2.0 equiv.) in anhydrous THF (7.0 mL). The yellow suspension was stirred at $0^{\circ} \mathrm{C}$ for 2 min and then a solution of silyl-protected 8 -formyl adenosine 8 ($0.567 \mathrm{~g}, 0.889 \mathrm{mmol}, 1.00$ equiv.) in anhydrous THF (5.3 mL) was added at $0^{\circ} \mathrm{C}$, under nitrogen. The mixture was stirred at room temperature for 45 min . The reaction was quenched with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with $1 \mathrm{~N} \mathrm{NaHCO} 3(15 \mathrm{~mL})$, deionized water (10 mL), brine (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 25% EtOAc in hexanes, 35% EtOAc in hexanes, and 50% EtOAc in hexanes gave 0.195 g (30% yield) of the fluoro olefin Weinreb amide 18 (Z-isomer $\geq 99 \%$), as a white solid. A fraction containing a significant amount of product and some impurities was also obtained. Chromatography of the impure fraction on a silica gel column by eluting with 20-40\% EtOAc in hexanes, with 5% increments of EtOAc, gave and additional 0.330 g (50% yield) of the pure
product 18 (Z-isomer $\geq 99 \%$), also as a white solid. The total amount of product 18 obtained was $0.525 \mathrm{~g}\left(80 \%\right.$ yield). $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 10 \%\right.$ EtOAc in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.36 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.29(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), $6.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FH}}=30.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}\right.$), $6.10\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.89\left(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{I}^{\prime}\right), 5.42(\mathrm{t}, \mathrm{J}$ $\left.=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.52\left(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.11-4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.01(\mathrm{dd}, \mathrm{J}=10.8,7.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.82 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.73 ($\mathrm{dd}, \mathrm{J}=10.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), 0.96, 0.82 , and $0.76(3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}), 0.16,0.15,0.01,-0.04,-0.06$, and $-0.35(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 161.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=26.4 \mathrm{~Hz}\right), 155.5,155.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=294.6 \mathrm{~Hz}\right), 152.9,150.2,144.0$ (d, $J_{C F}=5.8 \mathrm{~Hz}$), 120.8, $102.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=3.1 \mathrm{~Hz}\right), 89.0,85.6,72.7,72.4,62.5,62.4,34.1,26.2,26.0$, $\left.25.9,18.5,18.4,18.0,-4.1,-4.2,-4.3,-4.9,-5.0,-5.3 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(CDCl} 3,470 \mathrm{MHz}\right): \delta-100.64(\mathrm{~d}$, ${ }^{3} J_{\mathrm{FH}}=16.7 \mathrm{~Hz}, E$-isomer), -107.53 ($\mathrm{d}, \mathrm{J}^{3} \mathrm{~J}_{\mathrm{FH}}=30.9 \mathrm{~Hz}, Z$-isomer). Whereas the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra did not show discernible resonances for the minor E-isomer, a resonance corresponding to it was observed in the ${ }^{19} \mathrm{~F}$ NMR. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{FN}_{6} \mathrm{O}_{6} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 741.4017$, found 741.4033.

3-(2', $3^{\prime}, 5^{\prime}$-Tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)acrylaldehyde (19)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide $17(0.100 \mathrm{~g}, 0.138 \mathrm{mmol}$, 1.00 equiv.) was prepared in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.82 \mathrm{~mL})$, under a nitrogen atmosphere, and cooled to -60 to $-50^{\circ} \mathrm{C}$. A 1.0 M solution of DIBALH in PhMe ($304 \mu \mathrm{~L}, 0.304 \mathrm{mmol}, 2.20$ equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -60 to $-50^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. The mixture was diluted with 15% aq. $\mathrm{NaOH}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with $20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by 30% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 49.3 mg (54% yield, 67% based on recovered starting material) of enone 19 (E-isomer only), as a yellow solid. Subsequently, 20 mg (20\%) of starting material 17, was also isolated as a yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 30 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 0.63. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right): \delta 9.80(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 8.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}_{\text {trans }}$), 7.24 (dd, J = 15.5, 7.8 Hz, 1H, $=\mathrm{CH}_{\text {trans }}$), $5.99\left(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.69\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$,
$5.45\left(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.60\left(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.12\left(\mathrm{app} \mathrm{q}, \mathrm{J}_{\text {app }} \sim 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.03$ (dd, J = 11.2, 5.5 Hz, 1H, H-5'), 3.75 (dd, J = 11.2, 3.9 Hz, 1H, H-5'), 0.97, 0.80, and $0.78(3 \mathrm{~s}, 27 \mathrm{H}$, $t-\mathrm{Bu}), 0.20,0.17,0.00,-0.03,-0.05$, and $-0.32(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}\right): \delta$ 192.8, 156.6, 154.0, 151.3, 146.8, 136.3, 134.7, 121.1, 89.0, 86.0, 73.6, 72.4, 62.6, 26.2, 26.0, 25.9, 18.6, 18.5, 18.2, -4.2, $-4.38,-4.4,-5.0,-5.3,-5.4$. HRMS (ESI/TOF): m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{NaO}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 686.3560$, found 686.3580 .

2-Fluoro-3-(2', $\mathbf{3}^{\prime}, 5^{\prime}$ '-tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)acrylaldehyde (20)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide $18(0.100 \mathrm{~g}, 0.135 \mathrm{mmol}$, 1.00 equiv.) was prepared in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$, under a nitrogen atmosphere, and cooled to -70 to $-60^{\circ} \mathrm{C}$. A 1.0 M solution of DIBALH in PhMe ($340 \mu \mathrm{~L}, 0.340 \mathrm{mmol}, 2.52$ equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -70 to $-60^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. The mixture was diluted with 15% aq. $\mathrm{NaOH}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with $20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 66.9 mg (73% yield) of fluoroenone 20 (E / Z ratio 1:17), as a yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 30 \% \mathrm{EtOAc}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 0.63. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.49(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FH}}=28.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}\right), 6.18\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.92\left(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.42(\mathrm{t}, \mathrm{J}=$ $\left.4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.55\left(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.12\left(\mathrm{dt}, \mathrm{J}=5.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.00(\mathrm{dd}, \mathrm{J}=11.3$, $\left.5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.74\left(\mathrm{dd}, J=11.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 0.96,0.80$, and $0.77(3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}), 0.18$, $0.15,0.00,-0.03,-0.05$, and $-0.32(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 183.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}\right.$ $=27.7 \mathrm{~Hz}$), $156.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=285.9 \mathrm{~Hz}\right), 156.1,154.0,150.3,142.6\left(\mathrm{~d}, J_{\mathrm{CF}}=7.4 \mathrm{~Hz}\right), 121.4,110.6(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 89.0,85.7,73.2,72.0,62.3,26.2,26.0,25.9,18.5,18.4,18.1,-4.1,-4.3,-4.4,-5.0$, $-5.2,-5.4 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta-116.29\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{FH}}=17.2 \mathrm{~Hz}, E\right.$-isomer), $-117.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{FH}}=\right.$ 28.2, $13.9 \mathrm{~Hz}, Z$-isomer). Whereas the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra did not show discernible resonances for the minor E-isomer, a resonance corresponding to it was observed in the ${ }^{19}$ F NMR. HRMS data
could not be obtained on this compound. However, HRMS data could be obtained for its reduction product (22).

2',3',5’-Tri-O-(tert-butyldimethylsilyl)-8-(3-hydroxypropen-1-yl)adenosine (21)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide 17 ($0.120 \mathrm{~g}, 0.166 \mathrm{mmol}$, 1.00 equiv.) was prepared in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.98 \mathrm{~mL})$, under a nitrogen atmosphere, and cooled to -60 to $-50^{\circ} \mathrm{C}$. A 1.0 M solution of DIBALH in PhMe ($415 \mu \mathrm{~L}, 0.415 \mathrm{mmol}, 2.50$ equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -60 to $-50^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. The mixture was diluted with 15% aq. $\mathrm{NaOH}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated under reduced pressure, and dried under high vacuum. The crude material was dissolved in $\mathrm{EtOH}(3.3 \mathrm{~mL})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(136 \mathrm{mg}, 0.365$ mmol, 2.20 equiv.) followed by $\mathrm{NaBH}_{4}(13.8 \mathrm{mg}, 0.365 \mathrm{mmol}, 2.20$ equiv.) were added. The mixture was stirred at room temperature for 1 h and then quenched with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with $20 \% \mathrm{EtOAc}$ in hexanes followed by 50\% EtOAc in hexanes gave 88.9 mg (80% yield) of the allylic alcohol 21 (E isomer only), as a yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 20 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 0.41$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ 8.25 (s, 1H, Ar-H), 7.07 (dt, J = 15.6, $4.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}$), $6.80\left(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}\right.$), 5.89 (d, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $5.74\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.50\left(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.55(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3^{\prime}), $4.44\left(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.09-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}\right)$, 3.71 (app q, Japp $\sim 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.5^{\prime}\right), 0.95,0.83$, and $0.76(3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}), 0.16(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 0.01,-0.04,-0.08$, and $-0.37(4 \mathrm{~s}, 12 \mathrm{H}$, SiMe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 155.0,152.3,150.8,149.8,140.9,119.8,115.8,88.7$, 85.6, 72.53, 72.46, 62.8, 62.6, 26.2, 26.1, 25.9, 18.5, 18.4, 18.1, -4.2, -4.4 (2C), -5.0, -5.2, -5.3. HRMS (ESI/TOF): m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 666.3897$, found 666.3898 .

8-(2-Fluoro-3-hydroxypropen-1-yl)-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (22)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide 18 ($0.100 \mathrm{~g}, 0.135 \mathrm{mmol}$, 1.00 equiv.) was prepared in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$, under a nitrogen atmosphere, and cooled to -70 to $-60^{\circ} \mathrm{C}$. A 1.0 M solution of DIBALH in PhMe ($340 \mu \mathrm{~L}, 0.340 \mathrm{mmol}, 2.52$ equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -70 to $-60^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. The mixture was diluted with 15% aq. $\mathrm{NaOH}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated under reduced pressure, and dried under high vacuum. The crude material was dissolved in $\mathrm{EtOH}(2.7 \mathrm{~mL})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(125.6 \mathrm{mg}, 0.337$ $\mathrm{mmol}, 2.50$ equiv.) followed by $\mathrm{NaBH}_{4}(12.7 \mathrm{mg}, 0.336 \mathrm{mmol}, 2.49$ equiv.) were added. The mixture was stirred at room temperature for 1 h and quenched with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in hexanes gave 74.9 mg (81% yield) of the fluorinated allylic alcohols 22 (E / Z ratio 1:22), as a yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 50 \%\right.$ EtOAc in hexanes): 0.55. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.14$ (br s, 2H, NH2), 6.13 (d, ${ }^{3} \mathrm{~J}_{\mathrm{HF}}=33.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}$), 5.79 (d, J = $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $5.49(\mathrm{t}, \mathrm{J}=4.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.56-4.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.37(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH} 2), 4.08-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}\right)$, 3.70 (app q, Japp $\sim 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), $0.95,0.82$, and 0.76 ($3 \mathrm{~s}, 27 \mathrm{H}, t-\mathrm{Bu}$), $0.154,0.147,0.00,-0.04$, -0.08 , and $-0.36(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 166.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=281.1 \mathrm{~Hz}\right)$, $155.0,152.5,150.1,145.3,119.6,94.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=5.1 \mathrm{~Hz}\right), 89.1,85.6,72.5,72.4,62.6,60.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ 32.1 Hz), 26.2, 26.0, 25.9, 18.5, 18.4, 18.0, $-4.2,-4.38,-4.42,-5.0,-5.2,-5.4 .{ }^{19}$ F NMR (CDCl ${ }_{3}$, 470 MHz): $\delta-99.47$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{FH}}=31.7 \mathrm{~Hz}, Z$-isomer). HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{FN}_{5} \mathrm{NaO}_{5} \mathrm{Si}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 706.3622$, found 706.3628.

Synthesis of Other Olefination Reagents

5-(Octylsulfonyl)-1-phenyl-1H-tetrazole (C) ${ }^{5}$

PT-sulfone \mathbf{C} was synthesized by a modification of a previously reported procedure. ${ }^{6}$ In a 25 mL round-bottom flask equipped with a stir bar, a
stirred solution of 1-phenyl-1H-tetrazol-5-thiol ($712.8 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.00$ equiv.) in dry DMF $(8.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$, under a nitrogen atmosphere. $\mathrm{NaH}(124.8 \mathrm{mg}, 5.20 \mathrm{mmol}, 1.30$ equiv.) was added and the mixture was stirred for 45 min at $0^{\circ} \mathrm{C}$. 1-Bromooctane ($0.830 \mathrm{~mL}, 4.80$ $\mathrm{mmol}, 1.20$ equiv.) was added to the mixture and the stirring was continued for 1 h at room temperature, under a nitrogen atmosphere. The mixture was diluted with EtOAc (30 mL), washed with deionized $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and brine (20 mL). The aqueous layer was separated and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic layer was washed with brine ($20 \mathrm{~mL} \times 2$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated under reduced pressure and dried under high vacuum. Without further purification the crude material was dissolved in EtOH $(8.0 \mathrm{~mL})$ and $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}(494.4 \mathrm{mg}, 0.40 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added. To this stirred solution at $0^{\circ} \mathrm{C}$, a $30 \%(\mathrm{w} / \mathrm{w})$ solution of $\mathrm{H}_{2} \mathrm{O}_{2}(4.10 \mathrm{~mL}, 40.1 \mathrm{mmol}, 10.0$ equiv.) was added dropwise, and the reaction was allowed to proceed at room temperature for 4 h . The reaction mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with $5 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 1.195 g (93% yield) of the olefination reagent \mathbf{C}, as a white solid.

1-Bromooctan-2-one ${ }^{7}$

This compound was synthesized by a modification of a previously reported procedure. ${ }^{8}$ In a 50 mL round-bottom flask equipped with a stir bar, bromine ($0.860 \mathrm{~mL}, 16.8 \mathrm{mmol}$, 1.05 equiv.) was added dropwise to a stirred solution of 2-octanone ($2.50 \mathrm{~mL}, 16.0 \mathrm{mmol}, 1.00$ equiv.) in MeOH (25.0 mL), while maintaining the bath temperature at $-10^{\circ} \mathrm{C}$. The stirring was continued at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 1 h . The reaction mixture was recooled to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}(5.00 \mathrm{~mL})$ followed by $\mathrm{H}_{2} \mathrm{SO}_{4}(8.75 \mathrm{~mL})$ were added, and the resulting solution was stirred at room temperature for 16 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with saturated aq. $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$, water (10 mL), brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated under reduced pressure and dried under high vacuum for 30 min . Vacuum
distillation of the crude material at $120^{\circ} \mathrm{C}$ gave 2.783 g (84% yield) of 1-bromooctan-2-one as a colorless liquid.

Diethyl (2-oxooctyl)phosphonate (D) ${ }^{9}$

This compound was synthesized by modification of a previously reported procedure. ${ }^{10} \mathrm{In}$ a 100 mL round-bottom flask equipped with a stir bar, $\mathrm{P}(\mathrm{OEt})_{3}(10.56 \mathrm{~mL}, 61.58 \mathrm{mmol}, 5.00$ equiv.) was added to a stirred solution of 1-bromooctan-2one ($2.55 \mathrm{~g}, 12.3 \mathrm{mmol}, 1.00$ equiv.) in PhMe (50.0 mL), and the mixture was heated at reflux for 24 h . The mixture was cooled and concentrated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with $20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 50% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 1.848 g (57% yield) of product \mathbf{D} as a colorless oil.

Optimizations of the olefination conditions were necessary in order to prepare the following compounds.

8-(Non-1-enyl)-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (23)
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(non-1-enyl)-2'-deoxyadenosine (24)
8-(3-Oxonon-1-enyl)-2', $3^{\prime}, 5^{\prime}$-tri-O-(tert-butyldimethylsilyl)adenosine (25)
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-oxonon-1-enyl)-2'-deoxyadenosine (26)
The two tables on the following two pages show these optimizations, following which the desired products were prepared.

Table S1 Julia-Kocienski olefination reactions of 8-formyladenine nucleosides $\mathbf{8}$ and 9 with PTsulfone \mathbf{C}

Entry	Aldehyde	Conditions ${ }^{\text {a }}$	Conversion ${ }^{\text {b }}$	Yield, ${ }^{c} E / Z$ ratio $^{\text {d }}$
1	8	LiHMDS, 2:1 THF-PhMe, $-78^{\circ} \mathrm{C}$, 5 h	21\%	23: -, -
2	8	NaHMDS, 2:1 THF-PhMe, $-78^{\circ} \mathrm{C}$, 5 h	33\%	23: -, -
3	8	KHMDS, 2:1 THF-PhMe, $-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	42\%	23: -, -
4^{e}	8	KHMDS, 2:1 THF-PhMe, $-78^{\circ} \mathrm{C}$, 5 h	38\%	23: -, -
5^{f}	8	KHMDS, 2:1 THF-PhMe, $-78^{\circ} \mathrm{C}$, 5 h	45\%	23: -, -
6^{e}	8	KHMDS, DME, $-78^{\circ} \mathrm{C}, 5 \mathrm{~h}$	83\%	23: -, -
$7{ }^{\text {e }}$	8	KHMDS, DME, $-78^{\circ} \mathrm{C}, 5 \mathrm{~h}$ then -30 to $-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$	93\%	23: -, -
8^{e}	8	KHMDS, DME, $-78^{\circ} \mathrm{C}, 5 \mathrm{~h}$ then -30 to $-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$ and then 16 h at rt	97\%	23: -, -
$9^{e, g}$	8	KHMDS, DME, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $-60^{\circ} \mathrm{C}, 1 \mathrm{~h}$ and then 16 h at rt	100\%	23: 68\%, Eisomer only
10^{e}	9	KHMDS, DME, -60 to $-50^{\circ} \mathrm{C}, 4 \mathrm{~h}$	98\%	$\begin{aligned} & \text { 24: 47\%, } \\ & \text { 16.6:1 } \end{aligned}$
$11^{e, g}$	9	KHMDS, DME, -60 to $-50^{\circ} \mathrm{C}, 4 \mathrm{~h}$	93\%	24: 52\%, 6.4:1

${ }^{a}$ Reactions were conducted with 0.0784 mmol of aldehyde 8 or 9 at a concentration of 8.80 mM in the solvent, with 2.0 equiv. of sulfone \mathbf{C}, and 3.0 equiv. of base. ${ }^{b}$ Conversions were calculated from the ${ }^{1} \mathrm{H}$ NMR data of the crude products. ${ }^{\text {c }}$ Yields reported are of isolated and purified products. ${ }^{d} E / Z$ ratios were determined from the ${ }^{1} \mathrm{H}$ NMR data of purified products. ${ }^{e}$ KHMDS (5.0 equiv.) was used. ${ }^{f}$ KHMDS (7.0 equiv.) was used. ${ }^{g}$ Reaction was conducted with 0.313 mmol of the aldehyde.

8-(Non-1-enyl)-2', 3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (23)

To a stirring solution of the silyl-protected adenosine-8-carbaldehyde ($0.200 \mathrm{~g}, 0.313 \mathrm{mmol}, 1.00$ equiv.) in anhydrous DME (35.6 mL), prepared in a flame-dried 100 mL round-bottom flask, was

added the PT-sulfone C ($202.2 \mathrm{mg}, 0.627 \mathrm{mmol}, 2.00$ equiv.), and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, under a nitrogen atmosphere. A 0.5 M solution of KHMDS in PhMe ($3.1 \mathrm{~mL}, 1.6 \mathrm{mmol}, 5.1$ equiv.) was added to the mixture, at which time the mixture changed to a brown color. The mixture was then stirred at $-78^{\circ} \mathrm{C}$ for 2 h , followed by $-60^{\circ} \mathrm{C}$ for 1 h , and finally at room temperature for 16 h (by which time the color had changed to a yellow). The reaction was quenched with ice-cold deionized $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, at which time the color of the mixture turned to a pale-yellow, and the mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 25\% EtOAc in hexanes and 35\% EtOAc in hexanes gave 156.9 mg (68% yield) of the C8 nonenyl adenosine derivative $\mathbf{2 3}$ (E-isomer $>99 \%$), as a pale-yellow solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 30 \%\right.$ EtOAc in hexanes): 0.30. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96\left(\mathrm{dt}, \mathrm{J}=15.5,7.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}\right), 6.50$ ($\mathrm{dt}, \mathrm{J}=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}$), $5.88\left(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{i}^{\prime}\right), 5.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.49(\mathrm{dd}, \mathrm{J}=5.4$, $\left.4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.57\left(\mathrm{dd}, \mathrm{J}=4.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.10-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}\right), 3.73(\mathrm{dd}, \mathrm{J}=$ $14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 2.31 (qd, $J=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.51 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.39$1.22\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.83$ and $0.76(2 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.16$ (s, 6H, SiMe), 0.02, $-0.03,-0.08$, and -0.38 ($4 \mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}$): δ $155.3,152.2,151.1,150.5,143.2,120.2,116.6,88.8,85.7,72.83,72.78,63.0,33.7,32.2,29.63$, 29.58, 29.1, 26.2, 26.1, 26.0, 23.1, 18.6, 18.5, 18.2, 14.3, -4.2, -4.38, -4.42, -5.0, -5.3, -5.4 . HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{72} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 734.4887$, found 734.4890.

3',5'-Di-O-(tert-butyldimethylsilyl)-8-(non-1-enyl)-2'-deoxyadenosine (24)

To a stirring solution of the silyl-protected 2'-deoxyadenosine-8carbaldehyde 9 ($159.1 \mathrm{mg}, 0.313 \mathrm{mmol}, 1.00$ equiv.) in anhydrous DME $(35.6 \mathrm{~mL})$, prepared in a flame-dried 100 mL round-bottom flask, was added the PT-sulfone C ($202.2 \mathrm{mg}, 0.627 \mathrm{mmol}, 2.00$ equiv.), and the mixture was maintained at -60 to $-50^{\circ} \mathrm{C}$, under a nitrogen atmosphere. A 0.5 M solution of KHMDS in PhMe ($3.1 \mathrm{~mL}, 1.6 \mathrm{mmol}, 5.1$ equiv.) was added to the mixture at which time the mixture changed to a brown color. The mixture was stirred at -60 to $-50^{\circ} \mathrm{C}$ over 4 h (by which
time the color had changed to a yellow). The reaction was quenched with ice-cold deionized $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$, at which time the color of the mixture turned to a pale-yellow, and the mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with $20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 13.3 mg (7% yield) of the faster-eluting Z-isomer 24a, as a pale-yellow, viscous oil. Subsequently, 85.5 mg (45% yield) of the later-eluting E isomer 24b was obtained, also as a pale-yellow, viscous oil. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 50 \%\right.$ EtOAc in hexanes): Z isomer $=0.42$ and E isomer $=0.42 .{ }^{1} \mathrm{H}$ NMR of $(Z)-\mathbf{2 4 a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.53\left(\mathrm{dt}, J=11.8,1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {cis }}\right), 6.35\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.18(\mathrm{dt}, J=$ $11.8,7.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {cis }}$), $5.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.81-4.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.93-3.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}\right)$, 3.70 (app q, Japp $\sim 6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), $3.39\left(\mathrm{dt}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$), 2.70-2.61 (m, 2H, CH2), 2.17 (ddd, $J=13.1,6.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 1.47 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.33-1.22 (m, 8H, CH2), $0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88-0.83(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Me}), 0.85(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.125,0.121,0.02,-0.01(4 \mathrm{~s}, 12 \mathrm{H}$, SiMe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of (Z)-24a ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}$): δ 155.2, 152.2, 150.6, 149.2, 144.0, 120.0, $115.9,87.7,84.1,72.5,63.1,38.3,32.2,30.0,29.7,29.60,29.57,26.1,26.0,23.1,18.6,18.3,14.3$, -4.5, -4.6, $-5.3,-5.4$. HRMS (ESI/TOF) of (Z)-24a: m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{NaO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 626.3892, found 626.3892. ${ }^{1} \mathrm{H}$ NMR of (E)-24b $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.97(\mathrm{dt}, J=$ $15.4,7.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}$), $6.57\left(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}\right), 6.32\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{i}^{\prime}\right), 5.69$ (br, 2H, NH2), $4.80\left(\mathrm{dt}, \mathrm{J}=6.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.94\left(\mathrm{dt}, \mathrm{J}=5.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.88(\mathrm{dd}, \mathrm{J}=$ $10.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.69 ($\mathrm{dd}, \mathrm{J}=10.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.58 ($\mathrm{dt}, \mathrm{J}=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.33-2.29 (m, 2H, CH2), 2.19 (ddd, J = 13.2, 6.8, 4.1 Hz, 1H, H-2'), 1.53 (quint, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.38-1.25 (m, 8H, CH2), $0.93(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.83(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.14(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{SiMe}), 0.00$ and $-0.04(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $(E)-\mathbf{2 4 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}\right): \delta 155.5$, 152.1, 151.0, 150.2, 142.8, 120.0, 117.0, 87.8, 84.3, 72.8, 63.3, 37.9, 33.7, 32.3, 29.7, 29.6, 29.2, 26.10, 26.07, 23.1, 18.7, 18.4, 14.3, -4.46, -4.56, $-5.27,-5.32$. HRMS (ESI/TOF) of (Z)-24b: m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{NaO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 626.3892$, found 626.3892.

Table S2 Horner-Wadsworth-Emmons reactions of 8 -formyladenine nucleosides $\mathbf{8}$ and $\mathbf{9}$ with phosphonate D

Entry	Aldehyde	Conditions ${ }^{\text {a }}$	Conversion ${ }^{\text {b }}$	Yield, ${ }^{c} E / Z$ ratio $^{\text {d }}$
1	8	$\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 16 \mathrm{~h}$	100\%	25: 85\%, 10:1
2	8	$\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1 \mathrm{~h}$	100\%	25: 86\%, 10:1
3^{e}	8	$1^{\text {st }}$ run: $\mathrm{Ba}(\mathrm{OH})_{2}$, THF- $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1 \mathrm{~h}$	90\%	-
		$2^{\text {nd }}$ run: $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1 \mathrm{~h}$	100\%	25: $83 \%, 25: 1^{f}$
4	9	$\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 2 \mathrm{~h}$	95\%	26: 77\% (81\%), ${ }^{\text {g }}$
				E-isomer only
5^{h}	9	$\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 4 \mathrm{~h}$	100\%	26: 82\%, 19.3:1
6^{i}	9	$1^{\text {st }}$ run: $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 4 \mathrm{~h}$	90\%	-
		$2^{\text {nd }}$ run: $\mathrm{Ba}(\mathrm{OH})_{2}$, THF- $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 2 \mathrm{~h}$	100\%	26: 89\%, 8.5:1 1^{f}

${ }^{a}$ Reactions were conducted with 0.0780 mmol of aldehyde in 0.66 mL of THF and $10 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$, with 1.0 equiv. of phosphonate \mathbf{D}, and 0.80 equiv. of base. ${ }^{b}$ \%Conversions were calculated from the ${ }^{1} \mathrm{H}$ NMR data of the crude products. ${ }^{C}$ Yields reported are of isolated and purified products. ${ }^{d} E / Z$ ratios were determined from the ${ }^{1} \mathrm{H}$ NMR data of purified products. ${ }^{e}$ Reaction was conducted with 0.3135 mmol of aldehyde in 3.4 mL of THF and $40 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O} .{ }^{f}$ After isolation in the first run, the crude product was subjected to reaction with 0.20 equiv. each of phosphonate \mathbf{D} and $\mathrm{Ba}(\mathrm{OH})_{2}$ in 3.4 mL of THF and $10 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O} .{ }^{g}$ Yield based on recovered starting material. ${ }^{h}$ Reaction was conducted with 1.2 equiv. of phosphonate \mathbf{D} and 1.0 equiv. of $\mathrm{Ba}(\mathrm{OH})_{2}$. 'Reaction was conducted with 1.2 equiv. of phosphonate \mathbf{D} and 1.0 equiv. of $\mathrm{Ba}(\mathrm{OH})_{2}$ in 3.6 mL of THF and $40 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O} .{ }^{j}$ Reaction was conducted with 0.20 equiv. each of phosphonate \mathbf{D} and $\mathrm{Ba}(\mathrm{OH})_{2}$ in 3.6 mL of THF and $40 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$.

8-(3-Oxonon-1-enyl)-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (25)

In an 8 mL vial, $\mathrm{Ba}(\mathrm{OH})_{2}(43.0 \mathrm{mg}, 0.251 \mathrm{mmol}, 0.801$ equiv.) was added to a stirred solution of phosphonate $\mathbf{D}(82.8 \mathrm{mg}, 0.313 \mathrm{mmol}, 1.00$ equiv.) in THF (1.0 mL), at room temperature. The suspension was stirred at room temperature for 30 min and a solution of silyl-protected 8 formyladenosine $8(0.200 \mathrm{~g}, 0.313 \mathrm{mmol}, 1.00$ equiv.) in $40: 1$ THF-water (1.64 mL) was added, at which point the mixture became a sludge. Therefore, additional THF (0.80 mL) was added, and the mixture was vigorously stirred at room temperature for 1 h . The mixture was diluted with
deionized $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product mixture showed 10% of unreacted 8 formyladenosine 8 and the desired product in an E / Z ratio of $10: 2$. Because of the presence of the starting material, the mixture was subjected to reaction again with HWE reagent D. This was done by initially preparing a solution of phosphonate $\mathbf{D}(16.6 \mathrm{mg}, 62.8 \mu \mathrm{~mol}, 0.200$ equiv. $)$ in THF $(0.40 \mathrm{~mL})$. Then, $\mathrm{Ba}(\mathrm{OH})_{2}(10.8 \mathrm{mg}, 63.0 \mu \mathrm{~mol}, 0.201$ equiv.) was added to the mixture that was stirred at room temperature for 30 min . To the ensuing suspension, a solution of the crude product mixture obtained above in THF (3.0 mL) and water ($10.0 \mu \mathrm{~L}$) was added slowly, and the mixture was stirred for 1 h at room temperature. The reaction mixture was worked up exactly as described above. Chromatography of the crude material on a silica gel column by sequential elution with 5\% EtOAc in hexanes, 10\% EtOAc in hexanes, and 20\% EtOAc in hexanes gave 195 mg (83% yield) of nucleoside enone 25 (E / Z ratio 32:1), as an off-white solid. $\mathrm{R}_{f}\left(\mathrm{SiO}_{2} / 50 \% \mathrm{EtOAc}\right.$ in hexanes): 0.52. ${ }^{1} \mathrm{H}$ NMR of $(E)-25 a\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}_{\text {trans }}$), $7.34\left(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}\right), 6.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.94\left(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{i}^{\prime}\right), 5.49$ ($\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), $4.54\left(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.09-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}\right), 3.72(\mathrm{dd}, \mathrm{J}=$ 10.4, 3.4 Hz, 1H, H-5'), 2.63 (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.66 (quint, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.35-1.25 (m, $8 \mathrm{H}, \mathrm{CH}_{2}$), $0.94(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.80$ and $0.74(2 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.15,0.14$, $-0.01,-0.06,-0.09$, and $-0.38(6 \mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $(E)-25 \mathrm{a}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.4$, 156.0, 153.2, 151.0, 147.5, 132.8, 126.3, 120.6, 88.7, 85.7, 72.6, 72.4, 62.5, 42.4, 31.7, 29.1, 26.1, $26.0,25.8,22.6,18.4,18.3,18.0,14.2,-4.2,-4.4$ (2C), $-5.0,-5.3,-5.4$. HRMS (ESI/TOF): m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{69} \mathrm{~N}_{5} \mathrm{NaO}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 770.4499$, found 770.4515 . ${ }^{1} \mathrm{H}$ NMR of $(Z)-\mathbf{2 5 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $6.87\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {cis }}\right), 6.40\left(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {cis }}\right), 6.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.89(\mathrm{~d}, \mathrm{~J}=5.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{i}^{\prime}\right), 5.33\left(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.53-4.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.56\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 0.94 and $0.82(2 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.13,0.01,-0.03$, and $-0.36(4 \mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of (Z)-25b ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): δ 205.0, 155.7, 152.9, 150.6, 146.8, 137.6, 120.6, 88.6, 73.0, 72.2, 62.5, 42.7, 31.8, 29.0, 26.1, 26.0, 24.2, -5.2, -5.4. Only discernible NMR resonances of the minor isomer (Z)25b are listed.

3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-oxonon-1-enyl)-2'-deoxyadenosine (26)

In an 8 mL vial, $\mathrm{Ba}(\mathrm{OH})_{2}(53.7 \mathrm{mg}, 0.313 \mathrm{mmol}, 1.00$ equiv.) was added to a solution of phosphonate $\mathbf{D}(99.4 \mathrm{mg}, \mathbf{0 . 3 7 6} \mathbf{~ m m o l}, 1.20$ equiv.) in THF $(1.00 \mathrm{~mL})$, at room temperature. The suspension was stirred at room temperature for 30 min and a solution of silyl-protected 8 -formyl-2'deoxyadenosine 9 ($0.159 \mathrm{~g}, 0.313 \mathrm{mmol}, 1.00$ equiv.) in $40: 1$ THF-water (1.64 mL) was added, at which point the mixture became a sludge. Therefore, additional THF (1.0 mL) was added and the mixture was vigorously stirred at room temperature for 4 h . The mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product mixture showed ca. 10% of unreacted 8 -formyl- 2^{\prime} deoxyadenosine 9. Because of the presence of the starting material, the mixture was subjected to reaction again with HWE reagent \mathbf{D}. This was done by initially preparing a solution of phosphonate $\mathbf{D}(16.6 \mathrm{mg}, 62.8 \mu \mathrm{~mol}, 0.200$ equiv. $)$ in THF (0.50 mL). Then, $\mathrm{Ba}(\mathrm{OH})_{2}(10.8 \mathrm{mg}, 63.0$ $\mu \mathrm{mol}, 0.201$ equiv.) was added to the mixture that was stirred at room temperature for 30 min . To the ensuing suspension, a solution of the crude product mixture obtained above in THF (3.1 mL) was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was worked up exactly as described above. Chromatography of the crude material on a silica gel column by sequential elution with 20\% EtOAc in hexanes and 40\% EtOAc in hexanes gave 173.1 mg (89% yield) of nucleoside enone 26 (E / Z ratio 8.5:1) as a yellow solid. R_{f} ($\mathrm{SiO}_{2} / 50 \% \mathrm{EtOAc}$ in hexanes): 0.37. ${ }^{1} \mathrm{H}$ NMR of $(E)-26 a\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66$ (d, J = $15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $=C_{\text {trans }}$), 7.37 ($\left.\mathrm{d}, \mathrm{J}=15.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {trans }}\right), 6.40\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.94\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.79$ (dt, J = 5.9, 4.0 Hz, 1H, H-3'), $3.96\left(\mathrm{app} \mathrm{q}, J_{\text {app }} \sim 4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.85(\mathrm{dd}, J=10.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5^{\prime}), 3.68 (dd, J = 11.0, $\left.4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.55\left(\mathrm{dt}, \mathrm{J}=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.65(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 2.27 (ddd, $J=13.1,6.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 1.67 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.36-1.28 (m, 8 H , CH_{2}), $0.93(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 0.79(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.14(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}),-0.03$ and $-0.07(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $(E)-26 \mathrm{a}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 199.5,155.9,153.2,151.0,147.2$, 132.2, 126.9, 120.5, 87.9, 84.4, 72.5, 63.0, 42.8, 38.1, 31.8, 29.1, 26.03, 26.00, 24.1, 22.7, 18.5, 18.2, 14.2, $-4.5,-4.6,-5.27,-5.31$. HRMS (ESI/TOF): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 618.3865 , found 618.3875. ${ }^{1} \mathrm{H}$ NMR of (Z)-26b ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.96\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {cis }}\right)$,
$6.44\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{\text {cis }}\right), 6.34\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{H}^{\prime}\right), 5.79\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.73(\mathrm{dt}, \mathrm{J}=6.4$, $\left.3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.11\left(\mathrm{app} q, J_{\text {app }} \sim 7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.90\left(\mathrm{dd}, \mathrm{J}=14.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.27(\mathrm{dt}$, $J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), $2.57\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 1.61 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.30-1.20 $\left(\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91$ and $0.85(2 \mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.11(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 0.02$ and $0.00(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of (Z)-26b ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 204.4,155.5,153.0,150.6,146.6,137.0,122.6,119.9,87.6$, 84.2, 72.0, 62.7, 43.0, 38.8, 31.8, 29.0, 26.1, 24.1, 22.6, -5.2. Only the clearly discernible NMR resonances of the minor isomer (Z) - $\mathbf{2 6 b}$ are listed.

Fig. S1 Computed HOMO and LUMO orbitals of Weinreb enamides 17 and 18 (with OH groups).

Table S3 Calculated parameters for compound pairs 17/18 and 19/20

$E_{\text {LUM }}=-2.480 \mathrm{eV}$	$E_{\text {LUмо }}=-2.443 \mathrm{eV}$
$E_{\text {номо }}=-6.328 \mathrm{eV}$	$E_{\text {номо }}=-6.296 \mathrm{eV}$
Global hardness $\eta=1.924$	Global hardness $\eta=1.927$
Chemical potential $\mu=4.404$	Chemical potential $\mu=4.369$
Softness $\sigma=0.520 \mathrm{eV}^{-1}$	Softness $\sigma=1 / \eta=0.519 \mathrm{eV}^{-1}$
Electrophilicity index $\omega=5.04 \mathrm{eV}$	Electrophilicity index $\omega=4.95 \mathrm{eV}$
$E_{\text {LUM }}=-2.951 \mathrm{eV}$	$E_{\text {LUM }}=-3.060 \mathrm{eV}$
$E_{\text {номо }}=-6.606 \mathrm{eV}$	$E_{\text {номо }}=-6.611 \mathrm{eV}$
Global hardness $\eta=1.828$	Global hardness $\eta=1.776$
Chemical potential $\mu=4.779$	Chemical potential $\mu=4.836$
Softness $\sigma=0.547 \mathrm{eV}^{-1}$	Softness $\sigma=0.563 \mathrm{eV}^{-1}$
Electrophilicity index $\omega=6.25 \mathrm{eV}$	Electrophilicity index $\omega=6.59 \mathrm{eV}$

References

1 (a) R. M. Moriarty, W. R. Epa and A. K. Awasthi, Tetrahedron Lett., 1990, 31, 5877-5880; (b) P. Lagisetty, L. Zhang and M. K. Lakshman, Adv. Synth. Catal., 2008, 350, 602-608.
H. Hayakawa, K. Haraguchi, H. Tanaka and T. Miyasaka, Chem. Pharm. Bull., 1987, 35, 72-79.

3 D. B. Gophane and S. T. Sigurdsson, Beilstein J. Org. Chem., 2015, 11, 219-227.
4 T. A. Khandaker, J. D. Hess, R. Aguilera, G. Andrei, R. Snoeck, D. Schols, P. Pradan and M. K. Lakshman, Eur. J. Org. Chem., 2019, 5610-5623.

5 C. R. Reddy and B. Latha, Tetrahedron: Asymmetry, 2011, 22, 1849-1854.
6 N. Dussart, H. V. Trinh and D. Gueyrard, Org. Lett., 2016, 18, 4790-4793.
7 H. Bronstein, M. Hurhangee, E. C. Fregoso, D. Beatrup, Y. W. Soon, Z. Huang, A. Hadipour, P. S. Tuladhar, S. Rossbauer, E.-H. Sohn, S. Shoaee, S. D. Dimitrov, J. M. Frost, R. S. Ashraf, T. Kirchartz, S. E. Watkins, K. Song, T. Anthopoulos, J. Nelson, B. P. Rand, J. R. Durrant and I. McCulloch, Chem. Mater., 2013, 25, 4239-4249.

8 W.-Y. Wong, X.-Z. Wang, Z. He, K.-K. Chan, A. B. Djurišić, K.-Y. Cheung, C.-T. Yip, A. M.-C. Ng, Y. Y. Xi, C. S. K. Mak and W.-K. Chan, J. Am. Chem. Soc., 2007, 129, 14372-14380.

9 P. Zhou, B. Hu, L. Li, K. Rao, J. Yang and F. Yu, J. Org. Chem., 2017, 82, 13268-13276.
10 L. G. Meimetis, D. E. Williams, N. R. Mawji, C. A. Banuelos, A. A. Lal, J. J. Park, A. H. Tien, J. G. Fernandez, N. J. de Voogd, M. D. Sadar and R. J. Andersen, J. Med. Chem., 2012, 55, 503514.

gCOSY spectrum of compound 18 in CDCl_{3}

Expansion of gCOSY spectrum of compound 18 in CDCl_{3}

$470 \mathrm{MHz}^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 0}$ in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 2}$ in CDCl_{3}

sع.66T —
し6. ${ }^{\circ} 0$ ~

