Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Diversely C8-functionalized adenine nucleosides *via* their underexplored carboxaldehydes

TABLE OF CONTENTS

Data	Page
General Experimental Considerations	S-5
Two-Step Synthesis of 8-formyl-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (8)	S-5
One-Step Synthesis of 8-formyl-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (8)	S-7
3',5'-Di- <i>O</i> -(<i>tert</i> -butyldimethylsilyl)-8-formyl-2'-deoxyadenosine (9)	S-7
8-Hydroxymethyl-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (5)	S-8
8-Hydroxymethyl-3',5'-di-O-(<i>tert</i> -butyldimethylsilyl)-2'-deoxyadenosine (10)	S-8
8-Azidomethyl-2',3',5'-tri-O-(<i>tert</i> -butyldimethylsilyl)adenosine (11)	S-9
8-Azidomethyl-3',5'-di-O-(<i>tert</i> -butyldimethylsilyl)-2'-deoxyadenosine (12)	S-10
8-[(3,4,5-Trimethoxy-1 <i>H</i> -1,2,3-triazol-4-yl)methyl]-2',3',5'-tri- <i>O</i> -(<i>tert</i> -butyldimethyl	S-10
silyl)adenosine (13)	
8-[(3,4,5-Trimethoxy-1 <i>H</i> -1,2,3-triazol-4-yl)methyl]-3',5'-di- <i>O</i> -(<i>tert</i> -butyldimethylsilyl)-	S-11
2'-deoxyadenosine (14)	
8-Azidomethyladenosine (15)	S-12
Reductive amination of 8-formyladenosine with <i>n</i> -heptylamine, yielding compound 16	S-12
3-(2',3',5'-Tri- <i>O</i> -(<i>tert</i> -butyldimethylsilyl)adenosin-8-yl)- <i>N</i> -methoxy- <i>N</i> -	S-13
methylacrylamide (17)	
2-Fluoro-3-(2',3',5'-tri-O-(<i>tert</i> -butyldimethylsilyl)adenosin-8-yl)-N-methoxy-N-	S-14
methylacrylamide (18)	
3-(3',5'-Di-O-(tert-butyldimethylsilyl)-2'-deoxyadenosin-8-yl)acrylaldehyde (19)	S-15
2-Fluoro-3-(2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)acrylaldehyde (20)	S-16
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-hydroxypropen-1-yl)-2'-deoxyadenosine (21)	S-16
8-(2-Fluoro-3-hydroxypropen-1-yl)-2',3',5'-tri-O-(<i>tert</i> -butyldimethylsilyl)adenosine	S-17
(22)	
Synthesis of Other Olefination Reagents: 5-(octylsulfonyl)-1-phenyl-1 <i>H</i> -tetrazole (C)	S-18
Synthesis of Other Olefination Reagents: 1-bromooctan-2-one	S-19
Synthesis of Other Olefination Reagents: diethyl (2-oxooctyl)phosphonate (D)	S-19
Table S1 Julia-Kocienski olefination reactions of 8-formyladenine nucleosides 8 and 9	S-21
with PT-sulfone C	
8-(Non-1-enyl)-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (23)	S-21
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(non-1-enyl)-2'-deoxyadenosine (24)	S-22
Table S2 Horner-Wadsworth-Emmons reactions of 8-formyladenine nucleosides 8 and	S-24
9 with phosphonate D	
8-(3-Oxonon-1-enyl)-2',3',5'-tri-O-(tert-butyldimethylsilyl)-adenosine (25)	S-24
3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-oxonon-1-enyl)-2'-deoxyadenosine (26)	S-25
Fig. S1 Computed HOMO and LUMO orbitals of Weinreb enamides 17 and 18 (with OH	S-27
groups)	
Table S3 Calculated parameters for compound pairs 17/18 and 19/20	S-28
References	S-29
500 MHz ¹ H NMR spectrum of compound 8 in CDCl ₃	S-30

	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 8 in CDCl ₃	S-31
	500 MHz ¹ H NMR spectrum of compound 9 in CDCl ₃	S-32
	125 MHz ${}^{13}C{}^{1}H$ NMR spectrum of compound 9 in CDCl ₃	S-33
	500 MHz ¹ H NMR spectrum of compound 5 in CDCl ₃	S-34
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 5 in CDCl ₃	S-35
	500 MHz ¹ H NMR spectrum of compound 10 in CDCl ₃	S-36
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 10 in CDCl ₃	S-37
	500 MHz ¹ H NMR spectrum of compound 11 in CDCl ₃	S-38
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 11 in CDCl ₃	S-39
	500 MHz ¹ H NMR spectrum of compound 12 in CDCl ₃	S-40
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 12 in CDCl ₃	S-41
	500 MHz ¹ H NMR spectrum of compound 13 in CDCl ₃	S-42
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 13 in CDCl ₃	S-43
	500 MHz ¹ H NMR spectrum of compound 14 in CDCl ₃	S-44
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 14 in CDCl ₃	S-45
	500 MHz ¹ H NMR spectrum of compound 15 in CD ₃ OD	S-46
	125 MHz $^{13}C{^{1}H}$ NMR spectrum of compound 15 in 5:1 CD ₃ OD/DMSO- d_6	S-47
	500 MHz ¹ H NMR spectrum of compound 16 in CDCl ₃	S-48
	125 MHz $^{13}C{^{1}H}$ NMR spectrum of compound 16 in CDCl ₃	S-49
	500 MHz ¹ H NMR spectrum of compound 17 in CDCl ₃	S-50
	125 MHz $^{13}C\{^{1}H\}$ NMR spectrum of compound $\boldsymbol{17}$ in CDCl_3	S-51
	500 MHz ¹ H NMR spectrum of compound 18 in CDCl ₃	S-52
	125 MHz $^{13}C{^{1}H}$ NMR spectrum of compound 18 in CDCl ₃	S-53
	470 MHz ¹⁹ F{ ¹ H} NMR spectrum of compound 18 in CDCl ₃	S-54
	gCOSY spectrum of compound 18 in CDCl ₃	S-55
	Expansion of gCOSY spectrum of compound 18 in CDCl ₃	S-56
	500 MHz ¹ H NMR spectrum of compound 19 in CD ₂ Cl ₂	S-57
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 19 in CD ₂ Cl ₂	S-58
	500 MHz ¹ H NMR spectrum of compound 20 in CDCl ₃	S-59
	125 MHz $^{13}C\{^{1}H\}$ NMR spectrum of compound $\textbf{20}$ in CDCl_3	S-60
	470 MHz $^{19}F{^{1}H}$ NMR spectrum of compound 20 in CDCl ₃	S-61
	500 MHz ¹ H NMR spectrum of compound 21 in CDCl ₃	S-62
	125 MHz $^{13}C{^{1}H}$ NMR spectrum of compound 21 in CDCl ₃	S-63
	500 MHz ¹ H NMR spectrum of compound 22 in CDCl ₃	S-64
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 22 in CDCl ₃	S-65
	470 MHz ¹⁹ F{ ¹ H} NMR spectrum of compound 22 in CDCl ₃	S-66
	500 MHz ¹ H NMR spectrum of compound 23 in CDCl ₃	S-67
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 23 in CD ₂ Cl ₂	S-68
	500 MHz ¹ H NMR spectrum of compound 24a in CDCl ₃	S-69
	125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 24a in CD ₂ Cl ₂	S-70
••••		

500 MHz ¹ H NMR spectrum of compound 24b in CDCl ₃	S-71
125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 24b in CD ₂ Cl ₂	S-72
500 MHz ¹ H NMR spectrum of compound 25 in CDCl ₃	S-73
125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 25 in CDCl ₃	S-74
500 MHz ¹ H NMR spectrum of compound 26 in CDCl ₃	S-75
125 MHz ¹³ C{ ¹ H} NMR spectrum of compound 26 in CDCl ₃	S-76

General Experimental Considerations

THF was distilled over LiAlH₄, stored over Na, and distilled over Na prior to use. CH₂Cl₂ and DME were distilled over CaH₂, and toluene was distilled over Na. For reactions that were performed under a nitrogen atmosphere, glassware was flame dried under vacuum. LDA (2.0 M solution in heptane/THF/EtPh), DIBAL-H (1.0 M in PhMe), LHMDS (1.0 M in THF), NaHMDS (0.6 M in PhMe), and KHMDS (0.5 M in PhMe) were obtained from commercial sources. For reactions requiring NaH, dry NaH (95%) was used. All other reagents were obtained from commercial sources and used without further purification. Thin layer chromatography was performed on 200 μ m aluminum-foil-backed silica plates and column chromatographic purifications were performed on 200–300 mesh silica gel. ¹H NMR spectra were recorded at 500 MHz in either CDCl₃, or CD₂Cl₂, or CD₃OD, and are referenced to the residual proton resonance of the solvent. ¹³C NMR spectra were recorded at 125 MHz in either CDCl₃, or CD₂Cl₂, or CD₃OD, and are referenced to the residual proton resonance of the solvent. ¹³C NMR spectra were recorded at 470 MHz with CFCl₃ as the internal standard. Chemical shifts (δ) are reported in parts per million and coupling constants (*J*) are in hertz (Hz).

Two-Step Synthesis of 8-formyl-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (8)

<u>Step 1.</u> In a clean, dry, 25 mL round-bottom flask equipped with a stir bar were placed the silylprotected 8-vinyl nucleoside 6^1 (846 mg, 1.33 mmol, 1.00 equiv.) and NMO (202.6 mg, 1.73 mmol, 1.30 equiv.) in THF (9.5 mL). A solution of K₂OsO₄•2H₂O (24.5 mg, 0.0665 mmol, 5.0 mol%) in H₂O (2.4 mL) was added to the mixture that was then stirred at room temperature for 24 h. Another aliquot of NMO (202.6 mg, 1.73 mmol, 1.30 equiv.) and K₂OsO₄•2H₂O (24.5 mg, 0.0665 mmol, 5.0 mol%) were added to the mixture and the stirring was continued for an additional 24 h. The reaction was quenched with 10% aq. Na₂SO₃ (10 mL) and the mixture was stirred for 1 h. The mixture was diluted with CH₂Cl₂ (50 mL), washed with 1% aq. NaHSO₃ (3 × 50 mL), and brine (20 mL). The organic layer dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 50% EtOAc in hexanes followed by EtOAc gave 775.4 mg (87% yield) of the diastereomeric mixture of products **7a** and **7b** as light-brown solid. R_f (SiO₂/5% MeOH in CH₂Cl₂): 0.40. ¹H NMR of the *early*-eluting diastereomer **7a** (CDCl₃, 500 MHz): δ 8.30 (s, 1H, Ar-H), 6.08 (d, *J* = 4.9 Hz, 1H, H-1'), 5.45 (t, *J* = 4.6 Hz, 1H, H-2'), 5.43 (s, 2H, NH₂), 5.01 (dt, *J* = 7.4, 3.8 Hz, 1H, CH), 4.64 (t, *J* = 4.2 Hz, 1H, H-3'), 4.20 (dt, *J* = 11.8, 3.2 Hz, 1H, CH), 4.10–4.02 (m, 2H, H-4', CH), 3.98 (dd, *J* = 11.3, 5.3 Hz, 1H, H-5'), 3.70 (dd, *J* = 11.3, 3.8 Hz, 1H, H-5'), 3.48 (s, 1H, OH), 3.43 (s, 1H, OH), 0.96, 0.79, and 0.77 (3s, 27H, *t*-Bu), 0.18, 0.15, -0.01, -0.04, -0.08, and -0.27 (6s, 18H, SiMe). ¹H NMR of the *late*-eluting diastereomer **7b** (CDCl₃, 500 MHz): δ 8.31 (s, 1H, Ar-H), 6.08 (d, *J* = 6.3 Hz, 1H, H-1'), 5.47–5.36 (m, 3H, H-2', NH₂), 5.03 (dt, *J* = 7.8, 3.9 Hz, 1H, CH), 4.44 (dd, *J* = 4.1, 2.6 Hz, 1H, H-3'), 4.17 (dt, *J* = 11.8, 4.0 Hz, 1H, CH), 4.15–4.10 (m, 1H, H-4'), 4.08–4.02 (m, 2H, CH, H-5'), 3.74 (dd, *J* = 11.0, 4.0 Hz, 1H, H-5'), 3.60 (d, *J* = 7.9 Hz, 1H, OH), 3.40 (dd, *J* = 8.7, 4.6 Hz, 1H, OH), 0.95, 0.86, and 0.75 (3s, 27H, *t*-Bu), 0.16, 0.14, 0.06, 0.04, -0.08, and -0.40 (6s, 18H, SiMe).

Note. The NMR data listed above were obtained from the diol diastereomers, **7a** and **7b**, that were separated by column chromatography from a small-scale reaction.

Step 2. In a clean, dry, 50 mL round-bottom flask equipped with a stir bar was placed the diastereomeric mixture of diols **7a** and **7b** (0.900 g, 1.343 mmol, 1.00 equiv.) in THF (24.7 mL). A solution of NalO₄ (574.6 mg, 2.686 mmol, 2.00 equiv.) in H₂O (12.3 mL) was added to the mixture that was then stirred for 16 h at room temperature. The mixture was diluted with water (20 mL) and washed with CH₂Cl₂ (2 × 30 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 10% acetone in hexanes gave 702.9 mg (82% yield) of silyl-protected 8-formyladenosine **8**, as a pale-yellow solid. R_f (SiO₂/30% EtOAc in hexanes): 0.50. ¹H NMR (CDCl₃, 500 MHz): δ 9.99 (s, 1H, CHO), 8.39 (s, 1H, Ar-H), 6.80 (d, *J* = 5.5 Hz, 1H, H-1'), 5.89 (br s, 2H, NH₂), 5.37 (dd, *J* = 5.5, 4.6 Hz, 1H, H-2'), 4.60 (dd, *J* = 4.4, 3.4 Hz, 1H, H-3'), 4.08 (dt, *J* = 6.8, 3.5 Hz, 1H, H-4'), 4.03 (dd, *J* = 10.8, 6.6 Hz, 1H, H-5'), 3.72 (dd, *J* = 10.8, 4.0 Hz, 1H, H-5'), 0.97, 0.82, and 0.76 (3s, 27H, *t*-Bu), 0.16 (s, 6H, SiMe), 0.01, -0.04, -0.07, and 0.38 (4s, 12H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 183.0, 157.3, 155.4, 151.4, 145.2, 121.1, 88.8, 85.7, 73.3, 72.3, 62.5, 26.1, 26.0, 25.8, 18.5, 18.3, 18.0, -4.2, -4.35, -4.36, -5.0, -5.2, -5.3. HRMS (ESI/TOF): m/z calcd for C₂₉H₅₆N₅O₅Si₃ [M + H]⁺ 638.3584, found 638.3607.

One-Step Synthesis of 8-Formyl-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (8)

In a flame-dried 250 mL round-bottom flask containing a stir bar, a 2.0 M solution of LDA in heptane/THF/EtPh (7.5 mL, 15 mmol, 5.0 equiv.) was added to dry THF (27.0 mL) at -78 °C, under a nitrogen atmosphere. A solution of silyl-protected adenosine 1^2 (1.83 g, 3.00 mmol, 1.00 equiv.) in

dry THF (33.0 mL) was added slowly so that the external bath temperature did not rise above – 70 °C, and the mixture was stirred at –78 °C for 1 h. DMF (5.81 mL, 75.0 mmol, 25.0 equiv.) was then added dropwise and the mixture was stirred at –78 °C for an additional 2.5 h. The reaction was quenched with water (40 mL) and the mixture was extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 10% EtOAc in hexanes followed by 15% EtOAc in hexanes gave 1.57 g (82% yield) of silyl-protected 8-formyladenosine **8**, as a pale-yellow solid. The NMR data were identical to that reported above.

Note. Although this material is stable for about a month in a freezer, it is best to use it soon after preparation.

3',5'-Di-O-(tert-butyldimethylsilyl)-8-formyl-2'-deoxyadenosine (9)

In a flame-dried 100 mL round-bottom flask containing a stir bar, a 2.0 M solution of LDA in heptane/THF/EtPh (7.5 mL, 15 mmol, 5.0 equiv.) was added to dry THF (27.0 mL), at -78 °C, under a nitrogen atmosphere. A solution of silyl-protected 2'-deoxyadenosine **2**³ (1.44 g, 3.00 mmol, 1.00

equiv.) in dry THF (33.0 mL) was added slowly so that the external bath temperature did not rise above –70 °C, and the mixture was stirred at –78 °C for 1 h. DMF (5.81 mL, 75.0 mmol, 25.0 equiv.) was then added dropwise and the mixture was stirred at –78 °C for an additional 2.5 h. The reaction was quenched with water (40 mL) and the mixture was extracted with EtOAc (3 × 50 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in hexanes followed by 40% EtOAc in hexanes gave 1.325 g (87% yield) of silyl-protected 8-formyl-2'-deoxyadenosine **9**, as a pale-yellow solid. R_f (SiO₂/50% EtOAc in hexanes): 0.38. ¹H NMR (CDCl₃, 500 MHz): δ 9.99 (s, 1H, CHO), 8.39 (s, 1H, Ar-H), 7.13 (t, *J* = 6.6 Hz, 1H, H-1'), 5.99 (br s, 2H, NH₂), 4.86 (dt, *J* = 6.2, 4.3 Hz, 1H, H-3'), 3.96 (app q, *J*_{app} ~ 4.8 Hz, 1H, H-4'), 3.91 (dd, *J* = 10.7, 5.7 Hz, 1H, H-5'), 3.71 (dd, *J* = 10.7, 4.6 Hz, 1H, H-5'), 3.39 (dt, *J* = 13.0, 6.4 Hz, 1H, H-2'), 2.29 (ddd, *J* = 13.0, 7.1, 4.6 Hz, 1H, H-2'), 0.94 and 0.82 (2s, 18H, *t*-Bu), 0.14 (s, 6H, SiMe), −0.01 and −0.05 (2s, 6H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 183.3, 157.5, 155.6, 151.2, 144.7, 121.0, 87.9, 84.6, 72.4, 62.9, 38.4, 26.01, 25.99, 18.5, 18.2, − 4.47, −4.57, −5.27, −5.32. HRMS (ESI/TOF): m/z calcd for C₂₃H₄₂N₅O₄Si₂ [M + H]⁺ 508.2770, found 508.2767.

<u>Note</u>. Although this material is stable for about a month in a freezer, it is best to use it soon after preparation.

8-Hydroxymethyl-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (5)²

In a 50 mL round-bottom flask equipped with a stir bar, a solution of silylprotected 8-formyladenosine **8** (0.638 g, 1.00 mmol, 1.00 equiv.) was prepared in MeOH (20.0 mL). NaBH₄ (83.3 mg, 2.20 mmol, 2.20 equiv.) was added in a single portion to the flask with stirring, and the mixture was

stirred at room temperature for a total of 1 h. The reaction was quenched with saturated aq. NH₄Cl (20 mL) and water (20 mL), and then extracted with EtOAc (3 × 30 mL). The combined organic layer was washed with saturated aq. NaHCO₃ (20 mL), deionized water (20 mL), and brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 25% EtOAc in hexanes, 35% EtOAc in hexanes, and 50% EtOAc in hexanes gave 544.2 mg (85% yield) of carbinol **5**, as a white solid. ¹H NMR (CDCl₃, 500 MHz): δ 8.28 (s, 1H, Ar-H), 5.93 (br s, 2H, NH₂), 5.92 (d, *J* = 5.8 Hz, 1H, H-1'), 5.33 (t, *J* = 5.0 Hz, 1H, H-2'), 4.95–4.88 (m, 2H, OCH₂), 4.49 (t, *J* = 5.0 Hz, 1H, H-3'), 4.09 (dt, *J* = 5.9, 3.2 Hz, 1H, H-4'), 4.01 (dd, *J* = 11.1, 5.9 Hz, 1H, H-5'), 3.72 (dd, *J* = 11.1, 3.9 Hz, 1H, H-5'), 0.95, 0.83, and 0.76 (3s, 27H, *t*-Bu), 0.16, 0.14, 0.03, -0.01, -0.07, and -0.37 (6s, 18H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.4, 153.1, 152.7, 151.1, 118.5, 88.6, 85.7, 72.8, 72.3, 62.5, 57.2, 26.1, 26.0, 25.8, 18.5, 18.3, 18.0, -4.2, -4.4, -4.5, -5.0, -5.3, -5.4. HRMS (ESI/TOF): m/z calcd for C₂₉H₅₈N₅O₅Si₃ [M + H]⁺ 640.3740, found 640.3745. **8-Hydroxymethyl-3',5'-di-***O***-(***tert***-butyldimethylsilyl)-2'-deoxyadenosine (10)**

In a 100 mL round-bottom flask equipped with a stir bar, a solution of silylprotected 8-formyl 2'-deoxyadenosine **9** (1.016 g, 2.00 mmol, 1.00 equiv.) was prepared in MeOH (40.0 mL). NaBH₄ (166.5 mg, 4.40 mmol, 2.20 equiv.) was added in a single portion to the flask with stirring, and the mixture was

stirred at room temperature for a total of 1 h. The reaction was quenched with saturated aq. NH₄Cl (20 mL) and water (20 mL), and then extracted with EtOAc (3 × 30 mL). The combined organic layer was washed with saturated aq. NaHCO₃ (20 mL), deionized water (20 mL), and brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 50% EtOAc in hexanes, 75% EtOAc in hexanes, and EtOAc gave 0.897 g (88% yield) of carbinol **10**, as a pale-yellow solid. R_f (SiO₂/50% EtOAc in hexanes): 0.12. ¹H NMR (CDCl₃, 500 MHz): δ 8.29 (s, 1H, Ar-H), 6.42 (t, *J* = 6.8 Hz, 1H, H-1'), 5.68 (br s, 2H, NH₂), 4.91 (ABq, $\Delta \delta_{AB} = 0.03$, *J*_{AB} = 14.3 Hz, 2H, OCH₂), 4.71 (dt, *J* = 6.8, 3.5 Hz, 1H, H-3'), 4.29–4.22 (br s, 1H, OH), 3.95 (app q, *J*_{app} ~ 4.0 Hz, 1H, H-4'), 3.90 (dd, *J* = 11.2, 4.4 Hz, 1H, H-5'), 3.72 (dd, *J* = 11.1, 3.8 Hz, 1H, H-5'), 3.18 (dt, *J* = 13.4, 6.8 Hz, 1H, H-2'), 2.32 (ddd, *J* = 12.2, 7.2, 4.4 Hz, 1H, H-2'), 0.92 and 0.86 (2s, 18H, t-Bu), 0.124, 0.118, 0.04, and 0.02 (4s, 12H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.2, 152.8, 152.6, 151.0, 118.3, 87.7, 84.5, 72.0, 62.7, 57.8, 39.1, 26.06, 26.01, 18.6, 18.2, -4.4, -4.6, -5.31, -5.33. HRMS (ESI/TOF): m/z calcd for C₂₃H₄₄N₅O₄Si₂ [M + H]⁺ 510.2926, found 510.2926.

8-Azidomethyl-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (11)

In an 8 mL vial equipped with a stir-bar, a solution of silyl-protected 8hydroxymethyladenosine **5** (0.300 g, 0.469 mmol, 1.00 equiv.) was prepared in dry THF (3.0 mL). DPPA (404 μ L, 1.87 mmol, 4.00 equiv.) and DBU (350 μ L, 2.34 mmol, 4.99 equiv.) were added. The vial was sealed, and the mixture

was stirred at room temperature for 6 h. The mixture was diluted with deionized H₂O (15 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 15% EtOAc in hexanes and 30% EtOAc in hexanes gave 280.6 mg (90% yield) of the azido nucleoside **11**, as a white solid. R_f (SiO₂/50% EtOAc in hexanes): 0.69. ¹H NMR (CDCl₃, 500 MHz): δ 8.30 (s,

1H, Ar-H), 5.90 (d, J = 5.7 Hz, 1H, H-1'), 5.86 (br s, 2H, NH₂), 5.38 (t, J = 5.0 Hz, 1H, H-2'), 4.64 (s, 2H, CH₂), 4.52 (dd, J = 4.2, 3.4 Hz, 1H, H-3'), 4.08 (dt, J = 6.1, 3.2 Hz, 1H, H-4'), 4.00 (dd, J = 11.1, 6.0 Hz, 1H, H-5'), 3.71 (dd, J = 11.1, 3.9 Hz, 1H, H-5'), 0.95, 0.82, and 0.78 (3s, 27H, *t*-Bu), 0.16, 0.14, 0.02, -0.02, -0.06, and -0.33 (6s, 18H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.3, 152.6, 151.2, 147.9, 119.2, 88.8, 85.8, 73.0, 72.2, 62.4, 47.5, 26.1, 26.0, 25.8, 18.5, 18.3, 18.1, -4.2, -4.36, -4.4, -5.1, -5.2, -5.4. HRMS (ESI/TOF): m/z calcd for C₂₉H₅₆N₈NaO₄Si₃ [M + Na]⁺ 687.3625, found 687.3630.

8-Azidomethyl-3',5'-di-O-(tert-butyldimethylsilyl)-2'-deoxyadenosine (12)

In a 25 mL round-bottom flask equipped with a stir bar, a solution of silylprotected 8-hydroxymethyl 2'-deoxyadenosine **10** (0.800 g, 1.57 mmol, 1.00 equiv.) was prepared in dry THF (10.5 mL). DPPA (1.35 mL, 6.26 mmol, 3.99 equiv.) and DBU (1.20 mL, 8.02 mmol, 5.11 equiv.) were added. The flask

was stoppered and the mixture was stirred at room temperature for 6 h. The mixture was diluted with deionized H₂O (25 mL) and extracted with EtOAc (3 × 50 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 30% EtOAc in CH₂Cl₂ and 50% EtOAc in CH₂Cl₂ gave 797.6 mg (95 % yield) of the azido nucleoside **12**, as a white solid. R_f (SiO₂/30% EtOAc in hexanes): 0.65. ¹H NMR (CDCl₃, 500 MHz): δ 8.29 (s, 1H, Ar-H), 6.37 (t, *J* = 6.8 Hz, 1H, H-1'), 6.09 (s, 2H, NH₂), 4.73 (dt, *J* = 6.4, 3.7 Hz, 1H, H-3'), 4.71–4.65 (m, 2H, CH₂), 3.93 (app q, *J*_{app} ~ 4.3 Hz, 1H, H-4'), 3.87 (dd, *J* = 11.1, 4.9 Hz, 1H, H-5'), 3.69 (dd, *J* = 11.1, 4.0 Hz, 1H, H-5'), 3.28 (dt, *J* = 13.3, 6.7 Hz, 1H, H-2'), 2.29 (ddd, *J* = 13.2, 6.6, 3.9 Hz, 1H, H-2'), 0.92 and 0.83 (2s, 18H, *t*-Bu), 0.123, 0.118, 0.01, and -0.02 (4s, 12H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.6, 152.9, 151.1, 147.3, 119.1, 87.7, 84.5, 72.0, 62.6, 47.8, 39.0, 26.04, 26.02, 18.5, 18.2, -4.5, -4.6, -5.28, -5.33. HRMS (ESI/TOF): m/z calcd for C₂₃H₄₃N₈O₃Si₂ [M + H]⁺ 535.2991, found 535.2982.

8-[(3,4,5-Trimethoxy-1*H*-1,2,3-triazol-4-yl)methyl]-2',3',5'-tri-*O*-(*tert*-butyldimethylsilyl)adenosine (13)

In an 8 mL vial equipped with a stir bar, a solution of silyl-protected 8-azidomethyladenosine **11** (0.200 g, 0.301 mmol, 1.00 equiv.) and 3,4,5-trimethoxyethynylbenzene⁴ (115.6 mg, 0.601 mmol,

2.00 equiv.) in CH_2Cl_2 (1.5 mL) was prepared. To this stirred solution at room temperature, sodium ascorbate (11.9 mg, 0.060 mmol, 20 mol%), $CuSO_4 \bullet 5H_2O$ (7.5 mg, 0.030 mmol, 10 mol%), and H_2O (1.3 mL) were added, and the stirring was

continued at room temperature for 3 h. The mixture was diluted with deionized H₂O (15 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄ and filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 30% EtOAc in hexanes and 50% EtOAc in hexanes gave 242.4 mg (94% yield) of triazole **13**, as a white solid. R_f (SiO₂/EtOAc): 0.74. ¹H NMR (CDCl₃, 500 MHz): δ 8.31 (s, 1H, Ar-H), 7.86 (s, 1H, Ar-H), 7.05 (s, 2H, Ar-H), 6.12 (br s, 2H, NH₂), 6.07–6.02 (m, 2H, H-1', NCH), 5.88 (d, *J* = 15.9 Hz, 1H, NCH), 5.23 (dd, *J* = 5.5, 4.6 Hz, 1H, H-2'), 4.48 (t, *J* = 3.9 Hz, 1H, H-3'), 4.12 (app q, *J*_{app} ~ 3.9 Hz, 1H, H-4'), 3.98 (dd, *J* = 11.4, 4.6 Hz, 1H, H-5'), 3.91 (s, 6H, OMe), 3.87 (s, 3H, OMe), 3.74 (dd, *J* = 11.4, 3.4 Hz, 1H, H-5'), 0.96, 0.79, and 0.74 (3s, 18H, t-Bu), 0.17, 0.14, 0.02, -0.05, -0.06, and -0.38 (6s, 18H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.6, 153.8, 153.1, 151.1, 148.4, 146.0, 138.4, 126.2, 120.1, 119.3, 103.3, 88.6, 85.8, 73.5, 71.9, 62.2, 61.1, 56.4, 47.4, 26.1, 25.9, 25.8, 18.4, 18.3, 18.0, -4.2, -4.4, -4.5, -5.1, -5.3, -5.5. HRMS (ESI/TOF): m/z calcd for C₄₀H₆₉N₈O₇Si₃ [M + H]⁺ 857.4592, found 857.4604.

8-[(3,4,5-Trimethoxy-1*H*-1,2,3-triazol-4-yl)methyl]-3',5'-di-*O*-(*tert*-butyldimethylsilyl)-2'deoxyadenosine (14)

In an 8 mL vial equipped with a stir bar, a solution of silylprotected 8-azidomethyl-2'-deoxyadenosine **12** (0.100 g, 0.187 mmol, 1.00 equiv.) and 3,4,5-trimethoxyethynylbenzene⁴ (71.9 mg, 0.374 mmol, 2.00 equiv.) in CH_2Cl_2 (0.9

mL) was prepared. To this stirred solution at room temperature, sodium ascorbate (7.4 mg, 0.037 mmol, 20 mol%), CuSO₄•5H₂O (4.7 mg, 0.019 mmol, 10 mol%), and H₂O (0.8 mL) were added, and the stirring was continued at room temperature for 3 h. The mixture was diluted with deionized H₂O (15 mL) and extracted with CH₂Cl₂ (3 \times 20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄ and filtered, and evaporated under

reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 30% EtOAc in hexanes and 50% EtOAc in hexanes gave 128.5 mg (95% yield) of the triazole **14**, as a white solid. R_f (SiO₂/EtOAc): 0.35. ¹H NMR (CDCl₃, 500 MHz): δ 8.32 (s, 1H, Ar-H), 7.88 (s, 1H, Ar-H), 7.05 (s, 2H, Ar-H), 6.49 (t, J = 6.6 Hz, 1H, H-1'), 6.04 (d, J = 15.7 Hz, 1H, NCH), 5.89 (d, J = 15.7 Hz, 1H, NCH), 5.54 (br s, 2H, NH₂), 4.77 (dt, J = 6.3, 4.2 Hz, 1H, H-3'), 3.96 (app q, $J_{app} \sim 4.0$ Hz, 1H, H-4'), 3.91 (s, 6H, OMe), 3.91–3.87 (m, 1H, H-5'), 3.87 (s, 3H, OMe), 3.73 (dd, J = 11.3, 3.9 Hz, 1H, H-5'), 3.20 (dt, J = 13.2, 6.6 Hz, 1H, H-2'), 2.29 (ddd, J = 13.1, 6.5, 4.3 Hz, 1H, H-2'), 0.92 and 0.80 (2s, 18H, *t*-Bu), 0.12 (s, 6H, SiMe), –0.01 and –0.05 (2s, 6H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.7, 153.7, 153.2, 150.9, 148.2, 145.6, 138.3, 126.0, 120.4, 119.0, 103.0, 87.8, 84.7, 71.8, 62.5, 61.0, 56.3, 47.6, 39.2, 25.92, 25.91, 18.4, 18.1, –4.5, –4.7, –5.41, –5.44. HRMS (ESI/TOF): m/z calcd for C₃₄H₅₄N₈NaO₆Si₂ [M + Na]⁺ 749.3597, found 749.3594.

8-Azidomethyladenosine (15)

To a stirred solution of silyl-protected 8-azidomethyladenosine **11** (0.100 g, 0.150 mmol, 1.00 equiv.) in dry THF (1.5 mL), in a 4 mL polypropylene vial, $Et_3N\bullet 3HF$ (123 μ L, 0.755 mmol, 5.03 equiv.) was added. The mixture was stirred at room temperature for 16 h and then evaporated under a stream of

nitrogen gas using a polyethylene pipette. The residual material was suspended in CH₂Cl₂ (2 mL), sonicated, and centrifuged. The supernatant liquid was carefully removed using a Pasteur pipette. The process was repeated several times and the resulting material was dried under high vacuum to give 47.1 mg (97% yield) of the desilylated product **15**, as a white solid. R_f (SiO₂/5% MeOH in EtOAc): 0.34. ¹H NMR (CD₃OD, 500 MHz): δ 8.16 (s, 1H, Ar-H), 5.96 (d, *J* = 7.3 Hz, 1H, H-1'), 4.94 (dd, *J* = 7.2, 5.3 Hz, 1H, H-2'), 4.75 (ABq, $\Delta \delta_{AB}$ = 0.03, *J*_{AB} = 15.0 Hz, 2H, NCH₂), 4.34 (dd, *J* = 5.2, 1.5 Hz, 1H, H-3'), 4.20 (app q, *J*_{app} ~ 2.0 Hz, 1H, H-4'), 3.89 (dd, *J* = 12.6, 2.3 Hz, 1H, H-5'), 3.74 (dd, *J* = 12.6, 2.5 Hz, 1H, H-5'). ¹³C{¹H} NMR (5:1 CD₃OD/DMSO-*d*₆, 125 MHz): δ 157.6, 153.6, 151.2, 148.6, 119.9, 90.9, 88.9, 74.5, 72.9, 63.9, 48.0. HRMS (ESI/TOF): m/z calcd for C₁₁H₁₅N₈O₄ [M + H]⁺ 323.1211, found 323.1216.

Reductive amination of 8-formyladenosine 8 with *n***-heptylamine, yielding compound 16** In a 25 mL round-bottom flask equipped with a stir bar, a solution of silyl-protected 8formyladenosine 8 (0.130 g, 0.204 mmol, 1.00 equiv.) in dry CH₂Cl₂ (10.0 mL) was prepared. To

this mixture were added 4 Å MS (0.275 g) followed by *n*-heptylamine (38.0 μ L, 0.256 mmol, 1.26 equiv.). The mixture was stirred at room temperature for 16 h, then evaporated under reduced pressure, and dried under high vacuum. The residue was dissolved in dry MeOH

(10.0 mL) and NaBH₄ (19.3 mg, 0.510 mmol, 2.50 equiv.) was added in a single portion. The mixture was stirred at room temperature for a total of 1 h. The reaction was quenched with deionized H₂O (15 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, and filtered. Evaporation of the filtrate under reduced pressure and drying under high vacuum gave 150.0 mg (quantitative yield) of the *N*-heptyl aminomethyl adenosine **16**, as a pale-yellow solid. R_{*f*} (SiO₂/30% EtOAc in hexanes): 0.37. ¹H NMR (CDCl₃, 500 MHz): δ 8.26 (s, 1H, Ar-H), 5.98 (d, *J* = 5.4 Hz, 1H, H-1'), 5.55 (t, *J* = 4.7 Hz, 1H, H-2'), 5.39 (br s, 2H, NH₂), 4.60–4.55 (m, 1H, H-3'), 4.07–4.01 (m, 4H, NCH₂, H-4', H-5'), 3.70 (dd, *J* = 15.5, 8.0 Hz, 1H, H-5'), 2.69 (t, *J* = 7.2 Hz, 2H, CH₂), 1.52 (quint, *J* = 7.1 Hz, 2H, CH₂), 1.37–1.21 (m, 8H, CH₂), 0.96 (s, 9H, *t*-Bu), 0.88 (t, *J* = 6.8 Hz, 3H, CH₃), 0.82 and 0.79 (2s, 18H, *t*-Bu), 0.164, 0.161, 0.01, -0.04, -0.06, and -0.33 (6s, 18H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.1, 152.40, 152.35, 151.3, 119.3, 88.7, 85.3, 72.4, 72.3, 62.5, 50.1, 46.9, 32.0, 30.2, 29.4, 27.4, 26.2, 26.0, 25.9, 22.8, 18.5, 18.3, 18.1, 14.3, -4.2, -4.3, -4.4, -4.9, -5.2, -5.4. HRMS (ESI/TOF): m/z calcd for C₃₆H₇₃N₆O₄Si₃ [M + H]⁺ 737.4996, found 737.5010.

3-(2',3',5'-Tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)-N-methoxy-N-methylacrylamide (17)

In a 50 mL round-bottom flask containing a stir bar, a 1.0 M suspension of NaH (96.0 mg, 4.00 mmol, 4.00 equiv.) in anhydrous THF (4.0 mL) was prepared under a nitrogen atmosphere, and the suspension was cooled to 0 °C. To this was added a 0.25 M solution of

BT-sulfone **A** (0.601 g, 2.00 mmol, 2.00 equiv.) in anhydrous THF (8.0 mL). The yellow suspension was stirred at 0 °C for 2 min and then a solution of silyl-protected 8-formyladenosine **8** (0.638 g, 1.00 mmol, 1.00 equiv.) in anhydrous THF (6.0 mL) was added dropwise at 0 °C, under nitrogen. The mixture was stirred at room temperature for 1 h. The reaction was quenched with deionized H₂O (10 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with deionized water (10 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and

evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in CH₂Cl₂, 50% EtOAc in CH₂Cl₂, followed by 75% EtOAc in CH₂Cl₂ gave 593 mg (82% yield) of the Weinreb amide **17** (*E*-isomer only), as a white solid. R_f (SiO₂/50% EtOAc in hexanes): 0.21. ¹H NMR (CDCl₃, 500 MHz): δ 8.28 (s, 1H, Ar-H), 7.78 (d, *J* = 15.2 Hz, 1H, =CH_{trans}), 7.70 (d, *J* = 15.3 Hz, 1H, =CH_{trans}), 6.17 (br s, 2H, NH₂), 5.99 (d, *J* = 5.6 Hz, 1H, H-1'), 5.47 (t, *J* = 4.8 Hz, 1H, H-2'), 4.53 (t, *J* = 3.6 Hz, 1H, H-3'), 4.12–4.07 (m, 1H, H-4'), 4.03 (dd, *J* = 10.7, 7.3 Hz, 1H, H-5'), 3.81 (s, 3H, OMe), 3.73 (dd, *J* = 10.9, 4.1 Hz, 1H, H-5'), 3.34 (s, 3H, NMe), 0.96, 0.82, and 0.75 (3s, 27H, *t*-Bu), 0.17, 0.16, 0.01, -0.04, -0.07, and -0.36 (6s, 18H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 165.6, 155.6, 152.8, 151.0, 148.2, 128.0, 124.8, 120.6, 88.8, 85.7, 72.6, 72.5, 62.5, 62.4, 32.8, 26.2, 26.0, 25.9, 18.5, 18.4, 18.1, -4.2, -4.37, -4.45, -5.0, -5.2, -5.3. HRMS (ESI/TOF): m/z calcd for C₃₃H₆₂N₆NaO₆Si₃ [M + Na]⁺ 745.3931, found 745.3937.

2-Fluoro-3-(2',3',5'-tri-*O*-(*tert*-butyldimethylsilyl)adenosin-8-yl)-*N*-methoxy-*N*-methylacrylamide (18)

In a 50 mL round-bottom flask containing a stir bar, a 1.05 M suspension of NaH (85.3 mg, 3.55 mmol, 3.99 equiv.) in anhydrous THF (3.4 mL) was prepared, and the suspension and cooled to 0 °C. To this was added a 0.25 M solution of BT-sulfone **B** (0.566 g, 1.78 mmol,

2.0 equiv.) in anhydrous THF (7.0 mL). The yellow suspension was stirred at 0 °C for 2 min and then a solution of silyl-protected 8-formyl adenosine **8** (0.567 g, 0.889 mmol, 1.00 equiv.) in anhydrous THF (5.3 mL) was added at 0 °C, under nitrogen. The mixture was stirred at room temperature for 45 min. The reaction was quenched with deionized H₂O (15 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with 1 N NaHCO₃ (15 mL), deionized water (10 mL), brine (15 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 25% EtOAc in hexanes, 35% EtOAc in hexanes, and 50% EtOAc in hexanes gave 0.195 g (30% yield) of the fluoro olefin Weinreb amide **18** (*Z*-isomer \ge 99%), as a white solid. A fraction containing a significant amount of product and some impurities was also obtained. Chromatography of the impure fraction on a silica gel column by eluting with 20–40% EtOAc in hexanes, with 5% increments of EtOAc, gave and additional 0.330 g (50% yield) of the pure

product **18** (*Z*-isomer ≥ 99%), also as a white solid. The total amount of product **18** obtained was 0.525 g (80% yield). R_f (SiO₂/10% EtOAc in CH₂Cl₂): 0.36. ¹H NMR (CDCl₃, 500 MHz): δ8.29 (s, 1H, Ar-H), 6.94 (d, ³*J*_{FH} = 30.8 Hz, 1H, =CH), 6.10 (br s, 2H, NH₂), 5.89 (d, *J* = 5.5 Hz, 1H, H-1'), 5.42 (t, *J* = 4.8 Hz, 1H, H-2'), 4.52 (t, *J* = 3.7 Hz, 1H, H-3'), 4.11–4.06 (m, 1H, H-4'), 4.01 (dd, *J* = 10.8, 7.1 Hz, 1H, H-5'), 3.82 (s, 3H, OMe), 3.73 (dd, *J* = 10.9, 4.1 Hz, 1H, H-5'), 3.32 (s, 3H, NMe), 0.96, 0.82, and 0.76 (3s, 27H, *t*-Bu), 0.16, 0.15, 0.01, –0.04, –0.06, and –0.35 (6s, 18H, SiMe). ¹³Cl¹H} NMR (CDCl₃, 125 MHz): δ161.7 (d, ²*J*_{CF} = 26.4 Hz), 155.5, 155.0 (d, ¹*J*_{CF} = 294.6 Hz), 152.9, 150.2, 144.0 (d, *J*_{CF} = 5.8 Hz), 120.8, 102.7 (d, ²*J*_{CF} = 3.1 Hz), 89.0, 85.6, 72.7, 72.4, 62.5, 62.4, 34.1, 26.2, 26.0, 25.9, 18.5, 18.4, 18.0, –4.1, –4.2, –4.3, –4.9, –5.0, –5.3. ¹⁹F NMR (CDCl₃, 470 MHz): δ–100.64 (d, ³*J*_{FH} = 16.7 Hz, *E*-isomer), –107.53 (d, ³*J*_{FH} = 30.9 Hz, *Z*-isomer). Whereas the ¹H and ¹³C spectra did not show discernible resonances for the minor *E*-isomer, a resonance corresponding to it was observed in the ¹⁹F NMR. HRMS (ESI/TOF): m/z calcd for C₃₃H₆₂FN₆O₆Si₃ [M + H]⁺ 741.4017, found 741.4033.

3-(2',3',5'-Tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)acrylaldehyde (19)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide **17** (0.100 g, 0.138 mmol, 1.00 equiv.) was prepared in dry CH_2Cl_2 (0.82 mL), under a nitrogen atmosphere, and cooled to -60 to -50 °C. A 1.0 M solution of DIBALH in

PhMe (304 µL, 0.304 mmol, 2.20 equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -60 to -50 °C for 1 h. The reaction was quenched by the addition of deionized H₂O (15 mL) at 5 °C. The mixture was diluted with 15% aq. NaOH (10 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in CH₂Cl₂ followed by 30% EtOAc in CH₂Cl₂ gave 49.3 mg (54% yield, 67% based on recovered starting material) of enone **19** (*E*-isomer only), as a yellow solid. Subsequently, 20 mg (20%) of starting material **17**, was also isolated as a yellow solid. R_f (SiO₂/30% EtOAc in CH₂Cl₂): 0.63. ¹H NMR (CD₂Cl₂, 500 MHz): δ 9.80 (d, *J* = 7.8 Hz, 1H, CHO), 8.29 (s, 1H, Ar-H), 7.64 (d, *J* = 15.5 Hz, 1H, =CH_{trans}), 7.24 (dd, *J* = 15.5, 7.8 Hz, 1H, =CH_{trans}), 5.99 (d, *J* = 5.0 Hz, 1H, H-1'), 5.69 (br s, 2H, NH₂),

5.45 (t, J = 4.6 Hz, 1H, H-2'), 4.60 (t, J = 3.8 Hz, 1H, H-3'), 4.12 (app q, $J_{app} \sim 4.2$ Hz, 1H, H-4'), 4.03 (dd, J = 11.2, 5.5 Hz, 1H, H-5'), 3.75 (dd, J = 11.2, 3.9 Hz, 1H, H-5'), 0.97, 0.80, and 0.78 (3s, 27H, *t*-Bu), 0.20, 0.17, 0.00, -0.03, -0.05, and -0.32 (6s, 18H, SiMe). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz): δ 192.8, 156.6, 154.0, 151.3, 146.8, 136.3, 134.7, 121.1, 89.0, 86.0, 73.6, 72.4, 62.6, 26.2, 26.0, 25.9, 18.6, 18.5, 18.2, -4.2, -4.38, -4.4, -5.0, -5.3, -5.4. HRMS (ESI/TOF): m/z calcd for C₃₁H₅₇N₅NaO₅Si₃ [M + Na]⁺ 686.3560, found 686.3580.

2-Fluoro-3-(2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosin-8-yl)acrylaldehyde (20)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide **18** (0.100 g, 0.135 mmol, 1.00 equiv.) was prepared in dry CH_2Cl_2 (0.8 mL), under a nitrogen atmosphere, and cooled to -70 to -60 °C. A 1.0 M solution of DIBALH in

PhMe (340 μ L, 0.340 mmol, 2.52 equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -70 to -60 °C for 1 h. The reaction was guenched by the addition of deionized H₂O (15 mL) at 5 °C. The mixture was diluted with 15% aq. NaOH (10 mL) and extracted with EtOAc (3 \times 20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in CH₂Cl₂ gave 66.9 mg (73% yield) of fluoroenone **20** (*E*/*Z* ratio 1:17), as a yellow solid. R_f (SiO₂/30% EtOAc in CH₂Cl₂): 0.63. ¹H NMR (CDCl₃, 500 MHz): δ 9.49 (d, J = 14.2 Hz, 1H, CHO), 8.32 (s, 1H, Ar-H), 6.97 (d, ³J_{FH} = 28.6 Hz, 1H, =CH_{trans}), 6.18 (br s, 2H, NH₂), 5.92 (d, J = 5.1 Hz, 1H, H-1'), 5.42 (t, J = 4.7 Hz, 1H, H-2'), 4.55 (t, J = 4.0 Hz, 1H, H-3'), 4.12 (dt, J = 5.4, 3.8 Hz, 1H, H-4'), 4.00 (dd, J = 11.3, 5.6 Hz, 1H, H-5'), 3.74 (dd, J = 11.3, 3.9 Hz, 1H, H-5'), 0.96, 0.80, and 0.77 (3s, 27H, t-Bu), 0.18, 0.15, 0.00, -0.03, -0.05, and -0.32 (6s, 18H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ183.7 (d, ²J_{CF} = 27.7 Hz), 156.9 (d, ¹J_{CF} = 285.9 Hz), 156.1, 154.0, 150.3, 142.6 (d, J_{CF} = 7.4 Hz), 121.4, 110.6 (d, ²*J*_{CF} = 3.0 Hz), 89.0, 85.7, 73.2, 72.0, 62.3, 26.2, 26.0, 25.9, 18.5, 18.4, 18.1, -4.1, -4.3, -4.4, -5.0, -5.2, -5.4. ¹⁹F NMR (CDCl₃, 470 MHz): δ -116.29 (t, ³J_{FH} = 17.2 Hz, *E*-isomer), -117.50 (dd, ³J_{FH} = 28.2, 13.9 Hz, Z-isomer). Whereas the ¹H and ¹³C spectra did not show discernible resonances for the minor *E*-isomer, a resonance corresponding to it was observed in the ¹⁹F NMR. HRMS data

could not be obtained on this compound. However, HRMS data could be obtained for its reduction product (**22**).

2',3',5'-Tri-O-(tert-butyldimethylsilyl)-8-(3-hydroxypropen-1-yl)adenosine (21)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide **17** (0.120 g, 0.166 mmol, 1.00 equiv.) was prepared in dry CH_2Cl_2 (0.98 mL), under a nitrogen atmosphere, and cooled to -60 to -50 °C. A 1.0 M solution of DIBALH in

PhMe (415 μL, 0.415 mmol, 2.50 equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -60 to -50 °C for 1 h. The reaction was guenched by the addition of deionized H₂O (15 mL) at 5 °C. The mixture was diluted with 15% aq. NaOH (10 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, evaporated under reduced pressure, and dried under high vacuum. The crude material was dissolved in EtOH (3.3 mL) and CeCl₃•7H₂O (136 mg, 0.365 mmol, 2.20 equiv.) followed by NaBH₄ (13.8 mg, 0.365 mmol, 2.20 equiv.) were added. The mixture was stirred at room temperature for 1 h and then quenched with deionized H_2O (15 mL). The mixture was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in hexanes followed by 50% EtOAc in hexanes gave 88.9 mg (80% yield) of the allylic alcohol 21 (Eisomer only), as a yellow solid. R_f (SiO₂/20% EtOAc in CH₂Cl₂): 0.41. ¹H NMR (CDCl₃, 500 MHz): δ 8.25 (s, 1H, Ar-H), 7.07 (dt, J = 15.6, 4.0 Hz, 1H, =CH_{trans}), 6.80 (d, J = 15.6 Hz, 1H, =CH_{trans}), 5.89 (d, J = 5.5 Hz, 1H, H-1'), 5.74 (br s, 2H, NH₂), 5.50 (t, J = 4.8 Hz, 1H, H-2'), 4.55 (t, J = 3.1 Hz, 1H, H-3'), 4.44 (d, J = 3.7 Hz, 2H, OCH₂), 4.09–4.03 (m, 2H, H-4', H-5'), 3.71 (app q, J_{app}~ 7.2 Hz, 1H, H-5'), 0.95, 0.83, and 0.76 (3s, 27H, t-Bu), 0.16 (s, 6H, SiMe), 0.01, -0.04, -0.08, and -0.37 (4s, 12H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 155.0, 152.3, 150.8, 149.8, 140.9, 119.8, 115.8, 88.7, 85.6, 72.53, 72.46, 62.8, 62.6, 26.2, 26.1, 25.9, 18.5, 18.4, 18.1, -4.2, -4.4 (2C), -5.0, -5.2, -5.3. HRMS (ESI/TOF): m/z calcd for $C_{31}H_{60}N_5O_5Si_3$ [M + H]⁺ 666.3897, found 666.3898.

8-(2-Fluoro-3-hydroxypropen-1-yl)-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (22)

In a flame-dried 5 mL round-bottom flask equipped with a stir bar, a solution of the silyl-protected Weinreb amide **18** (0.100 g, 0.135 mmol, 1.00 equiv.) was prepared in dry CH_2Cl_2 (0.8 mL), under a nitrogen atmosphere, and cooled to -70 to -60 °C. A 1.0 M solution of DIBALH in

PhMe (340 µL, 0.340 mmol, 2.52 equiv.) was added dropwise to the stirred, cooled mixture. The reaction was allowed to proceed at -70 to -60 °C for 1 h. The reaction was quenched by the addition of deionized H₂O (15 mL) at 5 °C. The mixture was diluted with 15% aq. NaOH (10 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, evaporated under reduced pressure, and dried under high vacuum. The crude material was dissolved in EtOH (2.7 mL) and CeCl₃•7H₂O (125.6 mg, 0.337 mmol, 2.50 equiv.) followed by NaBH₄ (12.7 mg, 0.336 mmol, 2.49 equiv.) were added. The mixture was stirred at room temperature for 1 h and quenched with deionized H₂O (15 mL). The mixture was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in hexanes gave 74.9 mg (81% yield) of the fluorinated allylic alcohols 22 (E/Z ratio 1:22), as a yellow solid. R_f (SiO₂/50% EtOAc in hexanes): 0.55. ¹H NMR (CDCl₃, 500 MHz): δ8.26 (s, 1H, Ar-H), 6.14 (br s, 2H, NH₂), 6.13 (d, ${}^{3}J_{HF}$ = 33.3 Hz, 1H, =CH_{trans}), 5.79 (d, J = 5.4 Hz, 1H, H-1'), 5.49 (t, J = 4.8 Hz, 1H, H-2'), 4.56–4.52 (m, 1H, H-3'), 4.37 (d, J = 8.7 Hz, 2H, OCH₂), 4.08–4.00 (m, 2H, H-4', H-5'), 3.70 (app q, J_{app} ~ 8.2 Hz, 1H, H-5'), 0.95, 0.82, and 0.76 (3s, 27H, t-Bu), 0.154, 0.147, 0.00, -0.04, -0.08, and -0.36 (6s, 18H, SiMe). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 166.2 (d, ¹J_{CF} = 281.1 Hz), 155.0, 152.5, 150.1, 145.3, 119.6, 94.0 (d, ²J_{CF} = 5.1 Hz), 89.1, 85.6, 72.5, 72.4, 62.6, 60.5 (d, ²J_{CF} = 32.1 Hz), 26.2, 26.0, 25.9, 18.5, 18.4, 18.0, -4.2, -4.38, -4.42, -5.0, -5.2, -5.4. ¹⁹F NMR (CDCl₃, 470 MHz): δ -99.47 (d, ${}^{3}J_{FH}$ = 31.7 Hz, Z-isomer). HRMS (ESI/TOF): m/z calcd for C₃₁H₅₈FN₅NaO₅Si₃ [M + Na]⁺ 706.3622, found 706.3628.

Synthesis of Other Olefination Reagents

5-(Octylsulfonyl)-1-phenyl-1H-tetrazole (C)⁵

PT-sulfone **C** was synthesized by a modification of a previously reported procedure.⁶ In a 25 mL round-bottom flask equipped with a stir bar, a

stirred solution of 1-phenyl-1H-tetrazol-5-thiol (712.8 mg, 4.00 mmol, 1.00 equiv.) in dry DMF (8.0 mL) was cooled to 0 °C, under a nitrogen atmosphere. NaH (124.8 mg, 5.20 mmol, 1.30 equiv.) was added and the mixture was stirred for 45 min at 0 °C. 1-Bromooctane (0.830 mL, 4.80 mmol, 1.20 equiv.) was added to the mixture and the stirring was continued for 1 h at room temperature, under a nitrogen atmosphere. The mixture was diluted with EtOAc (30 mL), washed with deionized H₂O (15 mL), and brine (20 mL). The aqueous layer was separated and extracted with EtOAc (3×40 mL). The combined organic layer was washed with brine (20 mL \times 2), dried over anhydrous Na₂SO₄, and filtered. The filtrate was evaporated under reduced pressure and dried under high vacuum. Without further purification the crude material was dissolved in EtOH (8.0 mL) and (NH₄)₆Mo₇O₂₄•4H₂O (494.4 mg, 0.40 mmol, 10 mol%) was added. To this stirred solution at 0 °C, a 30% (w/w) solution of H₂O₂ (4.10 mL, 40.1 mmol, 10.0 equiv.) was added dropwise, and the reaction was allowed to proceed at room temperature for 4 h. The reaction mixture was diluted with deionized H₂O (20 mL) and extracted with EtOAc (3 \times 20 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 5% EtOAc in CH_2Cl_2 gave 1.195 g (93% yield) of the olefination reagent C, as a white solid.

1-Bromooctan-2-one⁷

This compound was synthesized by a modification of a previously reported procedure.⁸ In a 50 mL round-bottom flask equipped with a stir bar, bromine (0.860 mL, 16.8 mmol, 1.05 equiv.) was added dropwise to a stirred solution of 2-octanone (2.50 mL, 16.0 mmol, 1.00 equiv.) in MeOH (25.0 mL), while maintaining the bath temperature at -10 °C. The stirring was continued at 0 °C for 1 h and then at room temperature for 1 h. The reaction mixture was recooled to 0 °C and H₂O (5.00 mL) followed by H₂SO₄ (8.75 mL) were added, and the resulting solution was stirred at room temperature for 16 h. The mixture was diluted with H₂O (30 mL) and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layer was washed with saturated aq. NaHCO₃ (3 × 30 mL), water (10 mL), brine (15 mL), dried over Na₂SO₄, and filtered. The filtrate was evaporated under reduced pressure and dried under high vacuum for 30 min. Vacuum distillation of the crude material at 120 °C gave 2.783 g (84% yield) of 1-bromooctan-2-one as a colorless liquid.

Diethyl (2-oxooctyl)phosphonate (D)⁹

This compound was synthesized by modification of a previously reported procedure.¹⁰ In a 100 mL round-bottom flask equipped with a stir bar, $P(OEt)_3$ (10.56 mL, 61.58 mmol, 5.00 equiv.) was added to a stirred solution of 1-bromooctan-2one (2.55 g, 12.3 mmol, 1.00 equiv.) in PhMe (50.0 mL), and the mixture was heated at reflux for 24 h. The mixture was cooled and concentrated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 20% EtOAc in CH₂Cl₂ and 50% EtOAc in CH₂Cl₂ gave 1.848 g (57% yield) of product **D** as a colorless oil.

Optimizations of the olefination conditions were necessary in order to prepare the following compounds.

8-(Non-1-enyl)-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (23)

3',5'-Di-O-(tert-butyldimethylsilyl)-8-(non-1-enyl)-2'-deoxyadenosine (24)

8-(3-Oxonon-1-enyl)-2',3',5'-tri-O-(*tert*-butyldimethylsilyl)adenosine (25)

3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-oxonon-1-enyl)-2'-deoxyadenosine (26)

The two tables on the following two pages show these optimizations, following which the desired products were prepared.

Entry	Aldehyde	Conditions ^a	Conversion ^b	Yield, ^c E/Z ratio ^d
1	8	LiHMDS, 2:1 THF-PhMe, –78 °C,	21%	23: –, –
		5 h		
2	8	NaHMDS, 2:1 THF-PhMe, –78 °C,	33%	23: –, –
		5 h		
3	8	KHMDS, 2:1 THF-PhMe, –78 °C, 5 h	42%	23: –, –
4 ^{<i>e</i>}	8	KHMDS, 2:1 THF-PhMe, –78 °C, 5 h	38%	23: –, –
5 ^{<i>f</i>}	8	KHMDS, 2:1 THF-PhMe, –78 °C, 5 h	45%	23: –, –
6 ^e	8	KHMDS, DME, –78 °C, 5 h	83%	23: –, –
7 ^e	8	KHMDS, DME, –78 °C, 5 h then –30 to –20 °C, 2 h	93%	23: –, –
8 ^e	8	KHMDS, DME, –78 °C, 5 h then –30 to –20 °C, 2 h and then 16 h	97%	23: –, –
	-	at rt		
9 ^{e,g}	8	KHMDS, DME, –78 °C, 2 h then	100%	23: 68%, <i>E</i> -
100		-60 °C, 1 h and then 16 h at rt	0.001	isomer only
10^e	9	KHMDS, DME, –60 to –50 °C, 4 h	98%	24: 47%,
	-		•••	16.6:1
$11^{e,g}$	9	KHMDS, DME, –60 to –50 °C, 4 h	93%	24: 52%, 6.4:1

^{*a*} Reactions were conducted with 0.0784 mmol of aldehyde **8** or **9** at a concentration of 8.80 mM in the solvent, with 2.0 equiv. of sulfone **C**, and 3.0 equiv. of base. ^{*b*} Conversions were calculated from the ¹H NMR data of the crude products. ^{*c*} Yields reported are of isolated and purified products. ^{*d*} *E/Z* ratios were determined from the ¹H NMR data of purified products. ^{*e*} KHMDS (5.0 equiv.) was used. ^{*f*} KHMDS (7.0 equiv.) was used. ^{*g*} Reaction was conducted with 0.313 mmol of the aldehyde.

8-(Non-1-enyl)-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (23)

To a stirring solution of the silyl-protected adenosine-8-carbaldehyde (0.200 g, 0.313 mmol, 1.00 equiv.) in anhydrous DME (35.6 mL), prepared in a flame-dried 100 mL round-bottom flask, was

added the PT-sulfone **C** (202.2 mg, 0.627 mmol, 2.00 equiv.), and the mixture was cooled to -78 °C, under a nitrogen atmosphere. A 0.5 M solution of KHMDS in PhMe (3.1 mL, 1.6 mmol, 5.1 equiv.) was added to the mixture, at which time the mixture changed to a brown color. The

mixture was then stirred at -78 °C for 2 h, followed by -60 °C for 1 h, and finally at room temperature for 16 h (by which time the color had changed to a yellow). The reaction was quenched with ice-cold deionized H₂O (30 mL), at which time the color of the mixture turned to a pale-yellow, and the mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by sequential elution with 25% EtOAc in hexanes and 35% EtOAc in hexanes gave 156.9 mg (68% yield) of the C8 nonenyl adenosine derivative **23** (*E*-isomer >99%), as a pale-yellow solid. R_f (SiO₂/30% EtOAc in hexanes): 0.30. ¹H NMR (CDCl₃, 500 MHz): δ 8.23 (s, 1H, Ar-H), 6.96 (dt, J = 15.5, 7.1 Hz, 1H, =CH_{trans}), 6.50 $(dt, J = 15.6, 1.5 Hz, 1H, = CH_{trans}), 5.88 (d, J = 5.6 Hz, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (dd, J = 5.4, 1H, H-1'), 5.72 (s, 2H, NH₂), 5.49 (s, 2H, N$ 4.5 Hz, 1H, H-2'), 4.57 (dd, J = 4.2, 2.6 Hz, 1H, H-3'), 4.10–4.05 (m, 2H, H-4', H-5'), 3.73 (dd, J = 14.2, 7.3 Hz, 1H, H-5'), 2.31 (qd, J = 7.4, 1.4 Hz, 2H, CH₂), 1.51 (quint, J = 7.3 Hz, 2H, CH₂), 1.39– 1.22 (m, 8H, CH₂), 0.96 (s, 9H, t-Bu), 0.88 (t, J = 7.0 Hz, 3H, Me), 0.83 and 0.76 (2s, 18H, t-Bu), 0.16 (s, 6H, SiMe), 0.02, -0.03, -0.08, and -0.38 (4s, 12H, SiMe). $^{13}C{^{1}H}$ NMR (CD₂Cl₂, 125 MHz): δ 155.3, 152.2, 151.1, 150.5, 143.2, 120.2, 116.6, 88.8, 85.7, 72.83, 72.78, 63.0, 33.7, 32.2, 29.63, 29.58, 29.1, 26.2, 26.1, 26.0, 23.1, 18.6, 18.5, 18.2, 14.3, -4.2, -4.38, -4.42, -5.0, -5.3, -5.4. HRMS (ESI/TOF): m/z calcd for C₃₇H₇₂N₅O₄Si₃ [M + H]⁺ 734.4887, found 734.4890.

3',5'-Di-O-(tert-butyldimethylsilyl)-8-(non-1-enyl)-2'-deoxyadenosine (24)

To a stirring solution of the silyl-protected 2'-deoxyadenosine-8carbaldehyde **9** (159.1 mg, 0.313 mmol, 1.00 equiv.) in anhydrous DME (35.6 mL), prepared in a flame-dried 100 mL round-bottom flask, was added the PT-sulfone **C** (202.2 mg, 0.627 mmol, 2.00 equiv.), and the

mixture was maintained at -60 to -50 °C, under a nitrogen atmosphere. A 0.5 M solution of KHMDS in PhMe (3.1 mL, 1.6 mmol, 5.1 equiv.) was added to the mixture at which time the mixture changed to a brown color. The mixture was stirred at -60 to -50 °C over 4 h (by which

time the color had changed to a yellow). The reaction was guenched with ice-cold deionized H_2O (30 mL), at which time the color of the mixture turned to a pale-yellow, and the mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a silica gel column by elution with 20% EtOAc in CH₂Cl₂ gave 13.3 mg (7% yield) of the faster-eluting Z-isomer 24a, as a pale-yellow, viscous oil. Subsequently, 85.5 mg (45% yield) of the later-eluting E isomer **24b** was obtained, also as a pale-yellow, viscous oil. R_f (SiO₂/50% EtOAc in hexanes): Z isomer = 0.42 and E isomer = 0.42. ¹H NMR of (Z)-24a (CDCl₃, 500 MHz): δ 8.27 (s, 1H, Ar-H), 6.53 (dt, J = 11.8, 1.5 Hz, 1H, =CH_{cis}), 6.35 (t, J = 7.0 Hz, 1H, H-1'), 6.18 (dt, J = 11.8, 7.4 Hz, 1H, =CH_{cis}), 5.56 (s, 2H, NH₂), 4.81–4.74 (m, 1H, H-3'), 3.93–3.88 (m, 2H, H-4', H-5'), 3.70 (app q, $J_{app} \sim 6.3$ Hz, 1H, H-5'), 3.39 (dt, J = 13.3, 6.7 Hz, 1H, H-2'), 2.70–2.61 (m, 2H, CH₂), 2.17 (ddd, J = 13.1, 6.8, 3.9 Hz, 1H, H-2'), 1.47 (quint, J = 7.2 Hz, 2H, CH₂), 1.33–1.22 (m, 8H, CH₂), 0.92 (s, 9H, t-Bu), 0.88–0.83 (m, 3H, Me), 0.85 (s, 9H, t-Bu), 0.125, 0.121, 0.02, -0.01 (4s, 12H, SiMe). ¹³C{¹H} NMR of (Z)-24a (CD₂Cl₂, 125 MHz): δ 155.2, 152.2, 150.6, 149.2, 144.0, 120.0, 115.9, 87.7, 84.1, 72.5, 63.1, 38.3, 32.2, 30.0, 29.7, 29.60, 29.57, 26.1, 26.0, 23.1, 18.6, 18.3, 14.3, -4.5, -4.6, -5.3, -5.4. HRMS (ESI/TOF) of (Z)-24a: m/z calcd for C₃₁H₅₇N₅NaO₃Si₂ [M + Na]⁺ 626.3892, found 626.3892. ¹H NMR of (*E*)-**24b** (CDCl₃, 500 MHz): δ 8.23 (s, 1H, Ar-H), 6.97 (dt, *J* = 15.4, 7.1 Hz, 1H, =CH_{trans}), 6.57 (dt, J = 15.5, 1.5 Hz, 1H, =CH_{trans}), 6.32 (t, J = 6.7 Hz, 1H, H-1'), 5.69 (br, 2H, NH₂), 4.80 (dt, J = 6.2, 3.8 Hz, 1H, H-3'), 3.94 (dt, J = 5.7, 4.3 Hz, 1H, H-4'), 3.88 (dd, J = 10.8, 6.1 Hz, 1H, H-5'), 3.69 (dd, J = 10.8, 4.7 Hz, 1H, H-5'), 3.58 (dt, J = 13.1, 6.5 Hz, 1H, H-2'), 2.33–2.29 (m, 2H, CH₂), 2.19 (ddd, J = 13.2, 6.8, 4.1 Hz, 1H, H-2'), 1.53 (quint, J = 7.3 Hz, 2H, CH₂), 1.38–1.25 (m, 8H, CH₂), 0.93 (s, 9H, *t*-Bu), 0.88 (t, *J* = 7.0 Hz, 3H, Me), 0.83 (s, 9H, *t*-Bu), 0.14 (s, 6H, SiMe), 0.00 and -0.04 (2s, 6H, SiMe). ${}^{13}C{}^{1}H$ NMR of (*E*)-**24b** (CD₂Cl₂, 125 MHz): δ 155.5, 152.1, 151.0, 150.2, 142.8, 120.0, 117.0, 87.8, 84.3, 72.8, 63.3, 37.9, 33.7, 32.3, 29.7, 29.6, 29.2, 26.10, 26.07, 23.1, 18.7, 18.4, 14.3, -4.46, -4.56, -5.27, -5.32. HRMS (ESI/TOF) of (Z)-24b: m/z calcd for C₃₁H₅₇N₅NaO₃Si₂ [M + Na]⁺ 626.3892, found 626.3892.

Entry	Aldehyde	Conditions ^a	Conversion ^b	Yield, ^c E/Z ratio ^d
1	8	Ba(OH)2, THF-H2O, rt, 16 h	100%	25: 85%, <i>10:1</i>
2	8	Ba(OH) ₂ , THF-H ₂ O, rt, 1 h	100%	25: 86%, <i>10:1</i>
3 ^e	8	1 st run: Ba(OH) ₂ , THF-H ₂ O, rt, 1 h	90%	_
		2 nd run: Ba(OH) ₂ , THF-H ₂ O, rt, 1 h	100%	25: 83%, <i>25:1^f</i>
4	9	Ba(OH) ₂ , THF-H ₂ O, rt, 2 h	95%	26: 77% (81%), ^g
				E-isomer only
5 ^{<i>h</i>}	9	Ba(OH) ₂ , THF-H ₂ O, rt, 4 h	100%	26: 82%, <i>19.3:1</i>
6 ^{<i>i</i>}	9	1 st run: Ba(OH) ₂ , THF-H ₂ O, rt, 4 h	90%	_
		2 nd run: Ba(OH) ₂ , THF-H ₂ O, rt, 2 h	100%	26: 89%, <i>8.5:1^f</i>

^{*a*} Reactions were conducted with 0.0780 mmol of aldehyde in 0.66 mL of THF and 10 μ L of H₂O, with 1.0 equiv. of phosphonate **D**, and 0.80 equiv. of base. ^{*b*} %Conversions were calculated from the ¹H NMR data of the crude products. ^{*c*} Yields reported are of isolated and purified products. ^{*d*} *E/Z* ratios were determined from the ¹H NMR data of purified products. ^{*e*} Reaction was conducted with 0.3135 mmol of aldehyde in 3.4 mL of THF and 40 μ L of H₂O. ^{*f*} After isolation in the first run, the crude product was subjected to reaction with 0.20 equiv. each of phosphonate **D** and Ba(OH)₂ in 3.4 mL of THF and 10 μ L of H₂O. ^{*g*} Yield based on recovered starting material. ^{*h*} Reaction was conducted with 1.2 equiv. of phosphonate **D** and 1.0 equiv. of Ba(OH)₂. ^{*i*} Reaction was conducted with 0.20 equiv. of Ba(OH)₂ in 3.6 mL of THF and 40 μ L of H₂O. ^{*j*} Reaction was conducted with 0.20 equiv. of Ba(OH)₂ in 3.6 mL of THF and 40 μ L of H₂O. ^{*j*} Reaction was conducted with 0.20 equiv. of Ba(OH)₂ in 3.6 mL of THF and 40 μ L of H₂O. ^{*j*} Reaction was conducted with 0.20 equiv. each of phosphonate **D** and 1.0 equiv. of Ba(OH)₂ in 3.6 mL of THF and 40 μ L of H₂O. ^{*j*} Reaction was conducted with 0.20 equiv. each of phosphonate **D** and Ba(OH)₂ in 3.6 mL of THF and 40 μ L of H₂O.

8-(3-Oxonon-1-enyl)-2',3',5'-tri-O-(tert-butyldimethylsilyl)adenosine (25)

In an 8 mL vial, Ba(OH)₂ (43.0 mg, 0.251 mmol, 0.801 equiv.) was added to a stirred solution of phosphonate **D** (82.8 mg, 0.313 mmol, 1.00 equiv.) in THF (1.0 mL), at room temperature. The suspension was stirred at room

temperature for 30 min and a solution of silyl-protected 8-

formyladenosine **8** (0.200 g, 0.313 mmol, 1.00 equiv.) in 40:1 THF-water (1.64 mL) was added, at which point the mixture became a sludge. Therefore, additional THF (0.80 mL) was added, and the mixture was vigorously stirred at room temperature for 1 h. The mixture was diluted with

deionized H_2O (10 mL) and extracted with EtOAc (3 \times 30 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The ¹H NMR spectrum of the crude product mixture showed 10% of unreacted 8formyladenosine **8** and the desired product in an E/Z ratio of 10:2. Because of the presence of the starting material, the mixture was subjected to reaction again with HWE reagent D. This was done by initially preparing a solution of phosphonate **D** (16.6 mg, 62.8 µmol, 0.200 equiv.) in THF (0.40 mL). Then, Ba $(OH)_2$ (10.8 mg, 63.0 μ mol, 0.201 equiv.) was added to the mixture that was stirred at room temperature for 30 min. To the ensuing suspension, a solution of the crude product mixture obtained above in THF (3.0 mL) and water (10.0 µL) was added slowly, and the mixture was stirred for 1 h at room temperature. The reaction mixture was worked up exactly as described above. Chromatography of the crude material on a silica gel column by sequential elution with 5% EtOAc in hexanes, 10% EtOAc in hexanes, and 20% EtOAc in hexanes gave 195 mg (83% yield) of nucleoside enone **25** (E/Z ratio 32:1), as an off-white solid. R_f (SiO₂/50% EtOAc in hexanes): 0.52. ¹H NMR of (*E*)-**25a** (CDCl₃, 500 MHz): δ 8.26 (s, 1H, Ar-H), 7.58 (d, *J* = 15.5 Hz, 1H, =CH_{trans}), 7.34 (d, J = 15.5 Hz, 1H, =CH_{trans}), 6.31 (s, 2H, NH₂), 5.94 (d, J = 5.4 Hz, 1H, H-1'), 5.49 (t, J = 4.7 Hz, 1H, H-2'), 4.54 (t, J = 3.3 Hz, 1H, H-3'), 4.09–4.00 (m, 2H, H-4', H-5'), 3.72 (dd, J = 10.4, 3.4 Hz, 1H, H-5'), 2.63 (t, J = 7.3 Hz, 2H, CH₂), 1.66 (quint, J = 7.2 Hz, 2H, CH₂), 1.35–1.25 (m, 8H, CH₂), 0.94 (s, 9H, t-Bu), 0.86 (t, J = 6.5 Hz, 3H, Me), 0.80 and 0.74 (2s, 18H, t-Bu), 0.15, 0.14, -0.01, -0.06, -0.09, and -0.38 (6s, 18H, SiMe). ¹³C{¹H} NMR of (*E*)-**25a** (CDCl₃, 125 MHz): δ 199.4, 156.0, 153.2, 151.0, 147.5, 132.8, 126.3, 120.6, 88.7, 85.7, 72.6, 72.4, 62.5, 42.4, 31.7, 29.1, 26.1, 26.0, 25.8, 22.6, 18.4, 18.3, 18.0, 14.2, -4.2, -4.4 (2C), -5.0, -5.3, -5.4. HRMS (ESI/TOF): m/z calcd for C₃₇H₆₉N₅NaO₅Si₃ [M + Na]⁺ 770.4499, found 770.4515. ¹H NMR of (Z)-**25b** (CDCl₃, 500 MHz): δ 6.87 (d, J = 12.3 Hz, 1H, =CH_{cis}), 6.40 (d, J = 12.4 Hz, 1H, =CH_{cis}), 6.11 (s, 2H, NH₂), 5.89 (d, J = 5.6 Hz, 1H, H-1'), 5.33 (t, J = 4.8 Hz, 1H, H-2'), 4.53-4.50 (m, 1H, H-3'), 2.56 (t, J = 7.4 Hz, 2H, CH₂), 0.94 and 0.82 (2s, 18H, t-Bu), 0.13, 0.01, -0.03, and -0.36 (4s, 12H, SiMe). ¹³C{¹H} NMR of (Z)-25b (CDCl₃, 125 MHz): *δ* 205.0, 155.7, 152.9, 150.6, 146.8, 137.6, 120.6, 88.6, 73.0, 72.2, 62.5, 42.7, 31.8, 29.0, 26.1, 26.0, 24.2, -5.2, -5.4. Only discernible NMR resonances of the minor isomer (Z)-25b are listed.

3',5'-Di-O-(tert-butyldimethylsilyl)-8-(3-oxonon-1-enyl)-2'-deoxyadenosine (26)

In an 8 mL vial, $Ba(OH)_2$ (53.7 mg, 0.313 mmol, 1.00 equiv.) was added to a solution of phosphonate **D** (99.4 mg, 0.376 mmol, 1.20 equiv.) in THF (1.00 mL), at room temperature. The suspension was stirred at room temperature for 30 min and a solution of silyl-protected 8-formyl-2'-

deoxyadenosine 9 (0.159 g, 0.313 mmol, 1.00 equiv.) in 40:1 THF-water (1.64 mL) was added, at which point the mixture became a sludge. Therefore, additional THF (1.0 mL) was added and the mixture was vigorously stirred at room temperature for 4 h. The mixture was diluted with deionized H_2O (10 mL) and extracted with EtOAc (3 \times 30 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The ¹H NMR spectrum of the crude product mixture showed ca. 10% of unreacted 8-formyl-2'deoxyadenosine 9. Because of the presence of the starting material, the mixture was subjected to reaction again with HWE reagent **D**. This was done by initially preparing a solution of phosphonate **D** (16.6 mg, 62.8 µmol, 0.200 equiv.) in THF (0.50 mL). Then, Ba(OH)₂ (10.8 mg, 63.0 µmol, 0.201 equiv.) was added to the mixture that was stirred at room temperature for 30 min. To the ensuing suspension, a solution of the crude product mixture obtained above in THF (3.1 mL) was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was worked up exactly as described above. Chromatography of the crude material on a silica gel column by sequential elution with 20% EtOAc in hexanes and 40% EtOAc in hexanes gave 173.1 mg (89% yield) of nucleoside enone 26 (E/Z ratio 8.5:1) as a yellow solid. Rf (SiO₂/50% EtOAc in hexanes): 0.37. ¹H NMR of (*E*)-**26a** (CDCl₃, 500 MHz): δ 8.28 (s, 1H, Ar-H), 7.66 (d, *J* = 15.5 Hz, 1H, =CH_{trans}), 7.37 (d, J = 15.5 Hz, 1H, =CH_{trans}), 6.40 (t, J = 6.6 Hz, 1H, H-1'), 5.94 (br, 2H, NH₂), 4.79 (dt, J = 5.9, 4.0 Hz, 1H, H-3'), 3.96 $(app q, J_{app} \sim 4.8 Hz, 1H, H-4')$, 3.85 (dd, J = 10.9, 6.1 Hz, 1H, H-4')5'), 3.68 (dd, J = 11.0, 4.8 Hz, 1H, H-5'), 3.55 (dt, J = 13.1, 6.5 Hz, 1H, H-2'), 2.65 (t, J = 7.4 Hz, 2H, CH₂), 2.27 (ddd, J = 13.1, 6.6, 4.2 Hz, 1H, H-2'), 1.67 (quint, J = 7.3 Hz, 2H, CH₂), 1.36–1.28 (m, 8H, CH₂), 0.93 (s, 9H, *t*-Bu), 0.88 (t, *J* = 6.8 Hz, 3H, Me), 0.79 (s, 9H, *t*-Bu), 0.14 (s, 6H, SiMe), -0.03 and -0.07 (2s, 6H, SiMe). ¹³C{¹H} NMR of (*E*)-**26a** (CDCl₃, 125 MHz): δ 199.5, 155.9, 153.2, 151.0, 147.2, 132.2, 126.9, 120.5, 87.9, 84.4, 72.5, 63.0, 42.8, 38.1, 31.8, 29.1, 26.03, 26.00, 24.1, 22.7, 18.5, 18.2, 14.2, -4.5, -4.6, -5.27, -5.31. HRMS (ESI/TOF): m/z calcd for C₃₁H₅₆N₅O₄Si₂ [M + H]⁺ 618.3865, found 618.3875. ¹H NMR of (Z)-**26b** (CDCl₃, 500 MHz): δ 6.96 (d, J = 12.3 Hz, 1H, =CH_{cis}),

6.44 (d, J = 12.3 Hz, 1H, =CH_{cis}), 6.34 (t, J = 6.9 Hz, 1H, H-1'), 5.79 (br, 2H, NH₂), 4.73 (dt, J = 6.4, 3.3 Hz, 1H, H-3'), 4.11 (app q, $J_{app} \sim 7.1$ Hz, 1H, H-4'), 3.90 (dd, J = 14.4, 4.1 Hz, 1H, H-5'), 3.27 (dt, J = 14.0, 7.2 Hz, 1H, H-2'), 2.57 (t, J = 7.4 Hz, 2H, CH₂), 1.61 (quint, J = 7.4 Hz, 2H, CH₂), 1.30–1.20 (m, 8H, CH₂), 0.91 and 0.85 (2s, 18H, *t*-Bu), 0.11 (s, 6H, SiMe), 0.02 and 0.00 (2s, 6H, SiMe). ¹³C{¹H} NMR of (Z)-**26b** (CDCl₃, 125 MHz): δ 204.4, 155.5, 153.0, 150.6, 146.6, 137.0, 122.6, 119.9, 87.6, 84.2, 72.0, 62.7, 43.0, 38.8, 31.8, 29.0, 26.1, 24.1, 22.6, -5.2. Only the clearly discernible NMR resonances of the minor isomer (Z)-**26b** are listed.

HOMO -6.328

HOMO -6.296

Fig. S1 Computed HOMO and LUMO orbitals of Weinreb enamides **17** and **18** (with OH groups).

 Table S3
 Calculated parameters for compound pairs 17/18 and 19/20

References

- (*a*) R. M. Moriarty, W. R. Epa and A. K. Awasthi, *Tetrahedron Lett.*, 1990, **31**, 5877–5880; (*b*)
 P. Lagisetty, L. Zhang and M. K. Lakshman, *Adv. Synth. Catal.*, 2008, **350**, 602–608.
- 2 H. Hayakawa, K. Haraguchi, H. Tanaka and T. Miyasaka, *Chem. Pharm. Bull.*, 1987, **35**, 72–79.
- 3 D. B. Gophane and S. T. Sigurdsson, *Beilstein J. Org. Chem.*, 2015, **11**, 219–227.
- 4 T. A. Khandaker, J. D. Hess, R. Aguilera, G. Andrei, R. Snoeck, D. Schols, P. Pradan and M. K. Lakshman, *Eur. J. Org. Chem.*, 2019, 5610–5623.
- 5 C. R. Reddy and B. Latha, *Tetrahedron: Asymmetry*, 2011, **22**, 1849–1854.
- 6 N. Dussart, H. V. Trinh and D. Gueyrard, *Org. Lett.*, 2016, **18**, 4790–4793.
- H. Bronstein, M. Hurhangee, E. C. Fregoso, D. Beatrup, Y. W. Soon, Z. Huang, A. Hadipour, P.
 S. Tuladhar, S. Rossbauer, E.-H. Sohn, S. Shoaee, S. D. Dimitrov, J. M. Frost, R. S. Ashraf, T.
 Kirchartz, S. E. Watkins, K. Song, T. Anthopoulos, J. Nelson, B. P. Rand, J. R. Durrant and I.
 McCulloch, *Chem. Mater.*, 2013, 25, 4239–4249.
- W.-Y. Wong, X.-Z. Wang, Z. He, K.-K. Chan, A. B. Djurišić, K.-Y. Cheung, C.-T. Yip, A. M.-C. Ng,
 Y. Y. Xi, C. S. K. Mak and W.-K. Chan, J. Am. Chem. Soc., 2007, 129, 14372–14380.
- 9 P. Zhou, B. Hu, L. Li, K. Rao, J. Yang and F. Yu, J. Org. Chem., 2017, 82, 13268–13276.
- L. G. Meimetis, D. E. Williams, N. R. Mawji, C. A. Banuelos, A. A. Lal, J. J. Park, A. H. Tien, J. G. Fernandez, N. J. de Voogd, M. D. Sadar and R. J. Andersen, *J. Med. Chem.*, 2012, 55, 503–514.

500 MHz $^{1}\mathrm{H}$ NMR spectrum of compound **8** in CDCl₃

S-30

500 MHz ¹H NMR spectrum of compound 9 in CDCl₃

125 MHz $^{13}\mathrm{C}^{11}\mathrm{H}\mathrm{J}$ NMR spectrum of compound 9 in CDCl3

S-33

S-35

125 MHz $^{13}\mathrm{C}^{14}\mathrm{H}$ NMR spectrum of compound 10 in CDCl3

S-37

125 MHz $^{13}\mathrm{C}^{\{1\mathrm{H}\}}$ NMR spectrum of compound $\mathbf{11}$ in CDCl3

500 MHz $^{1}\mathrm{H}$ NMR spectrum of compound $\mathbf{12}$ in CDCl3

125 MHz $^{13}\mathrm{C}^{14}\mathrm{J}$ NMR spectrum of compound 12 in CDCl3

125 MHz $^{13}\mathrm{C}^{14}\mathrm{J}$ NMR spectrum of compound 13 in CDCl3

500 MHz $^{1}\mathrm{H}$ NMR spectrum of compound $\mathbf{14}$ in CDCl3

125 MHz $^{13}\mathrm{C}^{\mathrm{1}4\mathrm{J}}$ NMR spectrum of compound $\mathbf{14}$ in CDCl3

S-46

125 MHz $^{13}\mathrm{C}^{14}\mathrm{H}$ NMR spectrum of compound 15 in 5:1 CD $_{3}\mathrm{OD}/\mathrm{DMSO}\text{-}d\epsilon$

500 MHz 1 H NMR spectrum of compound $\mathbf{16}$ in CDCl3

500 MHz $^{1}\mathrm{H}$ NMR spectrum of compound $\mathbf{17}$ in CDCl3

125 MHz $^{13}\mathrm{C}^{\mathrm{1}}\mathrm{H}\mathrm{S}$ NMR spectrum of compound 18 in CDCl3

gCOSY spectrum of compound ${\bf 18}$ in CDCl_3

Expansion of gCOSY spectrum of compound ${\bf 18}$ in CDCl_3

125 MHz $^{13}\mathrm{C}^{1}\mathrm{H}\mathrm{J}$ NMR spectrum of compound 19 in CD2Cl2

S-58

S-59

125 MHz $^{13}\mathrm{C}^{1}\mathrm{H}\mathrm{B}$ NMR spectrum of compound **20** in CDCl3

125 MHz $^{13}\mathrm{C}^{1}\mathrm{H}\mathrm{B}$ NMR spectrum of compound **21** in CDCl3

500 MHz $^{1}\mathrm{H}$ NMR spectrum of compound **22** in CDCl₃

125 MHz $^{13}\mathrm{C}^{1}\mathrm{H}\mathrm{B}$ NMR spectrum of compound **22** in CDCl3

500 MHz $^{1}\mathrm{H}$ NMR spectrum of compound **23** in CDCl₃

125 MHz $^{13}\mathrm{C}^{14}\mathrm{H}$ NMR spectrum of compound **23** in CD2Cl2

500 MHz ¹H NMR spectrum of compound **24a** in CDCl3

125 MHz $^{13}\mathrm{C}^{14}\mathrm{J}$ NMR spectrum of compound $\mathbf{24a}$ in CD2Cl2

500 MHz ¹H NMR spectrum of compound **24b** in CDCl3

125 MHz $^{13}\mathrm{C}^{1}\mathrm{H}\mathrm{B}$ NMR spectrum of compound 24b in CD2Cl2

500 MHz ¹H NMR spectrum of compound **25** in CDCl₃

125 MHz $^{13}\mathrm{C}^{\{1\mathrm{H}\}}$ NMR spectrum of compound **25** in CDCl₃

125 MHz $^{13}\mathrm{C}^{1}\mathrm{H}\mathrm{B}$ NMR spectrum of compound 26 in CDCl3