Supporting information

Unusual O^{2-}/F^{-} distribution in the new pyrochlore oxyfluorides: Na₂B₂O₅F₂ (B= Nb, Ta).

Edouard Boivin^{a,*}, Frédérique Pourpoint^a, Sébastien Saitzek^a, Pardis Simon^a, Pascal Roussel^a, Houria Kabbour^{a,*}

a. Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.

Experimental and computational methods

Approximatively 1g of sample is synthetized from, Nb₂O₅ (Sigma-Aldrich, 99.9%) or Ta₂O₅ (Sigma-Aldrich, 99.9%) in 15 mL of a NaF (Sigma-Aldrich, >99%) aqueous solution (0.02 M) under hydrothermal conditions in a 23 mL vessel (approximately 2/3 filled) at 240°C during 60 h. Heating and cooling rates have been set at 1°C/min. The powders are then washed several times with water, filtered and rinsed with ethanol prior to be dried at 80°C in an oven for during 1h. Regarding the synthetic conditions (hydrothermal) and the subsequent washing using water several times, the products appear to be stable in water.

Scanning electron microscopy (SEM) analysis was performed with a FEI Technai G2 20 microscope operating at 200 kV.

X-ray powder diffraction (XRPD) analysis was performed at room temperature in a 2 θ range of 10–120° with a scan step width of 0.02° using a D8 Advance A25 Bruker AXS diffractometer in Bragg–Brentano geometry equipped with a 1D LynxEye XE-T detector. Rietveld refinements were performed using Fullprof.¹ A highly crystalline LaB₆ (NIST SRM 660c) has been used to produce the instrumental resolution function file.

The thermogravimetric analysis (TGA) where conducted on a TGA-92 thermobalance (Setaram) under argon. The evolved gases were monitored by an Omnistar quadrupole mass spectrometer (MS, Pfeiffer) by continuously scanning in the range 0 - 100 amu. In order to control the atmosphere, the whole thermobalance was evacuated and filled with the carrier gas before heating up the samples up to 800 °C at a rate of 5 K/min.

IR - Fourier transform infrared spectra of the samples were recorded with a PerkinElmer spectrometer, between 4000 and 400 cm⁻¹ with 4 cm⁻¹ spectral resolution. For each spectrum, 10 scans were averaged taking air as a reference.

X-ray photoelectron spectroscopy (XPS) experiments were performed using an AXIS Ultra DLD Kratos spectrometer equipped with a monochromatized aluminum source (Al K α = 1486.7 eV) and charge compensation gun. All binding energies were referenced to the C 1s core level at 285 eV. Simulation of the experimental photo peaks was carried out using a mixed Gaussian/Lorentzian peak fit procedure according to the software supplied by CasaXPS. Semiquantitative analysis accounted for a nonlinear Shirley background subtraction.

NMR - ¹⁹F MAS NMR experiments were carried out using a Bruker Avance III 9.4 T (400 MHz for proton) spectrometer equipped with a 2.5 mm double resonance probe spinning at a frequency of v_R =25 kHz. We used DEPTH sequence to remove the background signal² and the radio-frequency amplitude was v_1 =92 kHz. Spectra were recorded with an accumulation of 16 scans and a recovery delay of 100 s. The ¹⁹F chemical shifts were referenced to CaF₂ at δ_{iso} =-107 ppm. The estimation of the NMR shift of fluorine in the 8b Wyckoff position has been done thanks to the superposition model developed by Bureau et al.³ using the Na-F distances obtained from Rietveld refinement.

UV–vis diffuse reflectance spectra were collected at room temperature using a PerkinElmer Lambda 650 spectrophotometer in the 200–800 nm range. Before the measurement, the blank was measured using BaSO₄ (standard for 100% reflectance) in order to calibrate the device.

Photo-electrochemistry. Transient photocurrents measurements and Mott-Schottky plots were carried out using a potentiostat/galvanostat coupled with Electrochemical Impedance Spectroscopy (EIS) module (PGSTAT204 -FRA32M, Metrohm). The photoelectrochemical cell (MM-PEC 15mL single sided-Magnetic Mount, Redox.me[®]) is made up from the pyrochlore sample coated on an ITO glass (delta technologies, LTD) as the working electrode, immersed in an electrolyte of an aqueous solution of 0.1 M of Na₂SO₄ (pH = 6.6). A platinum electrode and a standard Ag/AgCl electrode were used as counter electrode and as a reference electrode, respectively. To form the working electrode, the crushed powder is added to a mixture of water and N,N-Dimethylformanmide (DMF) solvents with 1:1 ratio. The paste obtained is then deposited on the ITO/Glass substrate by the drop casting method and dried at 80°C during few minutes in order to obtain a uniform layer. All the measurements were controlled with the Nova2.0 software allowing to regulate the excitation wavelength of different LEDs with low spectral dispersions (450, 470, 505, 530, 590, 617, 627 and 655 nm) as well as the luminous flux (from 0 to 126 mW / cm²).

Density Functional Theory (DFT) calculation were carried out by employing the projector augmented wave (PAW)^{4,5} method encoded in the Vienna ab initio simulation package (VASP)⁶ and the generalized gradient approximation of Perdew, Burke and Ernzerhof⁷ (PBE) for the exchange-correlation functionals. The calculations were carried out on the Ta- and Nb-phase using a similar ordering scenario in the reduced triclinic cell to simplify the construction of the models. Owing to the partially disordered character of the O/F distribution of the experimental structures, a particular anionic configuration has been picked up among the possible configurations. The chosen model implies all Na in NaO₅F₃ and all Nb/Ta in BO₅F environments corresponding to their average coordination. Geometry optimizations at fixed unit cell parameters were carried out using a plane wave energy cutoff of 550 eV and 30 *k* points in the irreducible Brillouin zone. It converged with residual Hellman-Feynman forces on the atoms smaller than 0.03 eV/Å. The relaxed structures were used to calculate accurate electronic structure. For the later, the plane wave cutoff energies of 550 eV and the threshold of self-consistent-field energy convergence of 10⁻⁶ eV were used, with 163 *k* points in the irreducible Brillouin Zone.

Figure S1: SEM images of $Na_2Nb_2O_5F_2$ and $Na_2Ta_2O_5F_2$.

Figure S2: Fits of the XPS spectra of $Na_2Nb_2O_5F_2$ (blue, top panels) and $Na_2Ta_2O_5F_2$ (orange, bottom panels) at Na 1s, Nb 3d, Ta 4f, O 2p and F 1s core levels.

Na ₂ Nb ₂ O ₅ F ₂							
Core level	Binding Energy (eV)	FWHM	Assignement	Relative surface atomic percentage ^(e)			
Nb 3d _{5/2}	207.0	1.4	Nb ^{5+ (a)}	10.0.0/			
Nb 3d _{3/2}	209.7	1.4	Nb ^{5+ (a)}	18.0 %			
O 1s	529.6	1.3	Bulk O ^{2- (b)}	16.9.0/			
O 1s	530.5	1.5	Surface O ^{2- (b)}	40.8 %			
O 1s	532.1	2.3	Physisorbed water ^(b)	/			
Na KLL	535.2	2.9	Na⁺	/			
F 1s	682.5	1.1	F ^{- (c)}	19.0 %			
F 1s	684.0	1.9	lonic F ^{- (c)}	18.0 %			
Na 1s	1070.8	1.9	Na ^{+ (d)}	17.2 %			
Na ₂ Ta ₂ O ₅ F ₂							
Core level	level Binding FWHM Assignement		Relative surface atomic percentage ^(e)				
Ta 4f _{7/2}	25.8	1.2	Ta ^{5+ (a)}	4770/			
Ta 4f _{5/2}	27.7	1.2	Ta ^{5+ (a)}	17.7 %			
Na 2s	29.9	1.4	Na⁺	/			
0 1s	529.7	1.2	Bulk O ^{2- (b)}	47 0 0((b)			
O 1s	531.2	1.8	Surface O ^{2- (b)}	47.8 %			
0 1s	532.8	2.2	Physisorbed water ^(b)	/			
Na KLL	535.3	2.2	Na⁺	/			
F1s	682.6	1.1	F ^{- (c)}	18.6 %			
F 1s	684.2	1.7	lonic F ^{- (c)}				
Na 1s	1070.9	1.7	Na ^{+ (d)}	15.9 %			

Table S1: details of binding energies (BE), FWHM, assignment and quantification obtained by fittingthe data shown in the figure S2.

(a) The Nb 3*d* doublet peak in Na₂Nb₂O₅F₂ and the Ta 4*f* doublet peak in Na₂Ta₂O₅F₂ have intensity ratios of 3:2 and 4:3 respectively with peak splitting of 2.74 and 1.91 eV, and are characteristics for Nb⁵⁺ and Ta ⁵⁺ compounds.⁸ Nb 3d_{5/2} binding energy (BE) is in between that of NaNbO₃ and K₂NbF₇ (BE (Nb 3d_{5/2}, NaNbO₃) = 206.6 eV,⁸ (BE (Nb 3d_{5/2}, K₂NbF₇) = 209.4 eV⁹) and the Ta 4f_{7/2} BE is in between that of NaTaO₃ and K₂NbF₇ (BE (Ta 4f_{7/2}, NaTaO₃) = 25.6 eV,⁸ (BE (Ta 4f_{7/2}, K₂TaF₇) = 29.4 eV⁹). This indicates intermediate iono-covalent characters - between oxide and fluoride - of the Ta/Nb-X bond of our pyrochlore compounds, in good agreement with the X site (48f Wyckoff position) being occupied by both O and F.

(b) For both materials, the BE of the bulk O^{2-} is similar to that observed for NaNbO₃ (BE (O 1s) = 529.7 eV)⁸ and NaTaO₃ (BE (O 1s) = 530.0 eV)⁸.

(c) The F 1s core level is composed of two contributions which could be assigned to fluorine in more or less ionic environment, in good agreement with F being located in both anionic sites of the structure.

(d) The Na 1s binding energy is very close to that observed in NaF.¹⁰

(e) The estimated surface compositions are $Na_{1.9}Nb_{2.0}O_{5.2}F_{2.0}$ and $Na_{1.8}Ta_{2.0}O_{5.4}F_{2.1}$

Figure S3: TGA-MS of Na₂Nb₂O₅F₂ and Na₂Ta₂O₅F₂ under Ar flow upon heating at 5K/min.

The TGA-MS trace of both materials can be divided into 6 regions:

Region (1) (*i.e.* 25-150 °C): adsorbed H_2O (m/z=18) is released alone.

Region (2) (*i.e.* 150-210 °C): intercalated H₂O (m/z=18) is released alone.

Region (3) (i.e. 210-400 °C): intercalated H₂O (m/z=18) and CO₂ (m/z=44) are released.

Region (4) (*i.e.* 400-560 °C): CO₂ (m/z=44) is released alone.

Region (5) (*i.e.* 560-640 °C): CO_2 (m/z=44) is released and F (m/z=19) are released.

Region (6) (*i.e.* 640-800 °C): F (m/z=19) is released alone.

As CO₂ is released together with H₂O in the region 3, it's required to deconvolute the corresponding mass losses in order to estimate the correct amount of intercalated H₃O⁺ in the pyrochlore channel. In the region (4), CO₂ is released alone leading to a weight loss of 0.1% and 0.08% for Na₂Nb₂O₅F₂ and Na₂Ta₂O₅F₂. The integration of the CO₂ trace on the mass spectroscopy reveals that 30% (for Na₂Nb₂O₅F₂) and 45% (for Na₂Ta₂O₅F₂) of the total CO₂ signal is released in the region (4) and hence the weight losses associated with CO₂ during the region (3) is 0.3% and 0.1%. Consequently, it's possible to estimate that 0.75% and 0.86% of mass loss are associated with H₂O released over the whole temperature range and hence the compositions of our samples are estimated to be Na_{1.9}(H₃O)_{0.1}Nb₂O₅F₂ and Na_{1.8}(H₃O)_{0.2}Ta₂O₅F₂.

Figure S4: IR spectrum of Na₂Nb₂O₅F₂ (blue line) and Na₂Ta₂O₅F₂ (orange line)

Figure S5: Lebail refinement of the profile of Na₂Nb₂O₅F₂ (a and b) and Na₂Ta₂O₅F₂ (c and d) using either a selective size broadening of the odd (h+k+l = 2n+1) reflection (a and c) or an isotropic size broadening model (b and d). For both materials, the agreement factors are better using the selective size broadening model. Indeed, the odd reflections appear to be broadened compared to the even Bragg peaks. This could be the signature of anti-phase boundary defects which could explain the shift of some odd reflections such as the (511) of Na₂Nb₂O₅F₂ which is badly fitted.¹¹

Table S2: structural parameters obtained from Rietveld refinement of the structure of $Na_2Nb_2O_5F_2$ and $Na_2Ta_2O_5F_2$ based on XRPD data. The composition has been fixed to that estimated based on XPSand TGA.

$Na_2Nb_2O_5F_2$								
S.G.: Fd-3m		<i>a</i> = 10.5181(3) Å				R _p = 4.99 %		
Z = 8						R _{wp} = 6.78 %		
atoms	Wyckoff position	x	у	Z	Occupancy	U iso	BVS	
Na	16d	1/2	1/2	1/2	0.95	0.045(3)	0.96(1)	
OH_3	16d	1/2	1/2	1/2	0.05	0.045(3)	/	
Nb	16c	0	0	0	1	0.028(1)	4.57(2)	
0	48f	0.321(1)	1⁄8	1/8	0.833	0.042(3)	1.84(1)	
F	48f	0.321(1)	1⁄8	1⁄8	0.167	0.042(3)	1.46(1)	
F'	8b	3⁄8	3/8	3/8	1	0.032(3)	0.90(1)	

Na ₂ Ta ₂ O ₂ F ₂								
S.G.: <i>Fd-3m</i> Z = 8		<i>a</i> = 10.5231(1) Å				R _p = 2.44 % R _{wp} = 3.39 %		
Atoms	Wyckoff position	X	У	Ζ	Occupancy	U iso	BVS	
Na	16d	1/2	1/2	1/2	0.9	0.0154(4)	1.03(1)	
OH_3	16d	1/2	1/2	1/2	0.1	0.0154(4)	/	
Та	16c	0	0	0	1	0.0113(3)	4.35(2)	
0	48f	0.328(1)	1⁄8	1⁄8	0.833	0.0214(7)	1.80(1)	
F	48f	0.328(1)	1⁄8	1⁄8	0.167	0.0214(7)	1.39(1)	
F'	8b	3⁄8	3⁄8	3⁄8	1	0.0153(5)	0.90(1)	

Figure S6: Projected Density of States (PDOS) of Na₂Ta₂O₅F₂. The Fermi level is set to zero.

Figure S7. Photocurrent density stability *versus* time upon several successive cycles with light *on* and *off*. The measurements were carried out with a 450 nm wavelength source, with a light intensity of 42 mW/cm² and an applied potential V= 0.8 V.

References

- (1) Rodriguez-carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. *Phys. B* **1993**, *192*, 55–69.
- (2) Cory, D. G.; Ritchey, W. M. Suppression of Signals from the Probe in Nmr T1Measurements. *Spectrosc. Lett.* **1988**, *21* (7), 551–558.
- (3) Bureau, B.; Silly, G.; Buzaré, J. Y.; Emery, J. Superposition Model for 19F Isotropic Chemical Shift in Ionic Fluorides: From Basic Metal Fluorides to Transition Metal Fluoride Glasses. *Chem. Phys.* **1999**, *249*, 89–104.
- (4) Bloch, P. E. Projector Augmented-Wave Method. *Phys. Rev. B* **1994**, *50* (24), 17954–17979.
- (5) Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B Condens. Matter Mater. Phys.* **1999**, *59* (3), 1758–1775.
- (6) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6* (1), 15–50.
- (7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77* (18), 3865–3868.
- Ho, S. F.; Contarini, S.; Rabalais, J. W. Ion-Beam-Induced Chemical Changes in the Oxyanions (MO,,"-) and Oxides (MO,) Where M = Cr, Mo, W, V, Nb, and Ta. J. Phys. Chem. 1987, 91 (18), 4779–4788.
- (9) Mcguire, G. E.; Schweitzer, G. K.; Carlson, T. A. Study of Core Electron Binding Energies in Some Group Ilia, Vb, and VIb Compounds. *Inorg. Chem.* **1973**, *12* (10), 2450–2453.
- (10) Morgan, W. E.; Van Wazer, J. R.; Stec, W. J. Inner-Orbital Photoelectron Spectroscopy of the Alkali Metal Halides, Perchlorates, Phosphates, and Pyrophosphates. J. Am. Chem. Soc. 1973, 95 (3), 751–755.
- (11) Lutterotti, L.; Gialanella, S. X-Ray Diffraction Characterization of Heavily Deformed Metallic Specimens. *Acta Mater.* **1998**, *46* (1), 101–110.