Electronic Supplementary Information

Reactivities of allenic and olefinic Michael acceptors towards phosphines

Feng An,^a Harish Jangra,^a Yin Wei,^b Min Shi,^{*bc} Hendrik Zipse,^{*a} and Armin R. Ofial^{*a}

^a Department Chemie, Ludwig-Maximilians-Universtität München, Butenandtstr. 5-13, 81377 München (Germany), E-Mail: zipse@cup.uni-muenchen.de (H.Z.), ofial@lmu.de (A.R.O.)

> ^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (P. R. China) E-mail: mshi@mail.sioc.ac.cn

> ^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 MeiLong Road, Shanghai 200237 (P. R. China)

Table of Contents

1		Addit	ional Figures and Tables	S3
2		Synth	esis and Analytics	S8
	2.1	Ge	neral	S8
	2.2	Sy	nthesis and purification of alkyl allenoates	S9
	2.3	Pu	rification of phosphines	S13
	2.4	Sy	nthesis and purification of phosphonium and 2,4,6-collidinium triflates	S13
3		Studi	es on the Interactions between Electrophiles, Nucleophiles and Proton Sources in CD_2Cl_2	S15
	3.1	Ph	₃P with collidinium triflate (CT)	S15
	3.2	Etl	nyl allenoate 1f with CT	S16
	3.3	Etl	nyl allenoate 1f with TBPT	S17
	3.4	Sta	ability of the R ₃ P adducts of alkyl allenoate 1f	S18
	3.	.4.1	Analysis of mixtures of Bu₃P with 1f	S18
	3.	.4.2	Analysis of mixtures of Ph₃P with 1f	S19
	3.	.4.3	Analysis of mixtures of Bu₃P with <i>N</i> -methylmaleimide (4s)	S20
	3.	.4.4	Analysis of mixtures of Ph ₃ P with <i>N</i> -methylmaleimide (4s)	S21
	3.	.4.5	Analysis of mixtures of Bu₃P with phenyl N-tosyl imine (4t)	S22
	3.	.4.6	Analysis of mixtures of Bu₃P with benzylidenemalononitrile (4v)	S23
	3.	.4.7	Analysis of mixtures of Ph ₃ P with benzylidenemalononitrile (4v)	S24
4		Produ	uct Studies	S25
	4.1	Re	action of triphenylphosphonium triflate with phenyl buta-2,3-dienoate (1a)	S25
	4.2	Re	action of triphenylphosphonium triflate with 3-vinylidenedihydrofuran-2(3H)-one (1d)	S25
	4.3	Re	action of triphenylphosphonium triflate with ethyl buta-2,3-dienoate (1f)	S26
	4.4	Re	action of triphenylphosphonium triflate with diethyl 2-vinylidenesuccinate (1i)	S26
5		Kinet	ics	S28
	5.1	Ge	neral	S28
	5.2	Kir	netics of the reactions of R_3P with alkyl allenoates 1	S29
	5.	.2.1	Kinetics of the reactions of 1 with Bu ₃ P in dichloromethane	S29
	5.	.2.2	Kinetics of the reactions of 1 with Ph ₃ P in dichloromethane	S34
	5.3	Kir	netics of the reactions of tributylphosphine with Michael acceptors 4	S46
6		Meth	yl Anion Affinities (MAA) and Phosphine Affinities (PA)	S64
7		Copie	es of NMR Spectra	S77
	7.1	NN	/R spectra of alkyl allenoates 1	S77
	7.2	NN	ЛR spectra of phosphines	S91
	7.3	NN	/R spectra of phosphonium triflates and 2,4,6-collidinium triflate	S94
	7.4	NM	/IR and IR spectra of the product studies	S98
8		Refer	ences	S114

1 Additional Figures and Tables

Figure S1. Linear relationship between $\log k_2(Bu_3P)$ for reactions of Bu_3P with alkyl allenoates **1** and calculated **methyl anion affinities (MAA)** of **1** (correlation drawn with data from Table 1, main text).

Figure S2. Linear relationship between $\log k_2(Ph_3P)$ for reactions of Ph_3P with alkyl allenoates **1** and calculated **methyl anion affinities MAA** of **1** (correlation drawn with data from Table 1, main text).

Figure S3. Linear relationship between $\log k_2(Ph_3P)$ for reactions of Ph_3P with alkyl allenoates **1** and calculated **phosphine affinities (PA)** of **1** (correlation drawn with data from Table S42).

Table S1 (data for Figure 6). Mayr electrophilicity parameters *E* for **4a-4r** and the second-order rate constants of their reactions of Bu_3P (CH₂Cl₂, 20 °C).

Michael acceptor	Electrophilicity E ^a	$k_2(Bu_3P)^b (M^{-1} s^{-1})$	log k₂(Bu₃P)
4a	-23.10	3.03×10^{-2}	-1.519
4b	-21.47	0.137	-0.863
4c	-21.11	0.208	-0.682
4d	-20.55	0.369	-0.433
4e	-18.98	0.979	-0.009
4f	-18.06	2.61	0.417
4g	-17.67	3.21	0.507
4h	-16.11	1.86	0.270
4i	-14.70	19.9	1.299
4j	-12.09	799	2.903
4k	-12.93	3.09×10^{3}	3.490
41	-11.89	6.98×10^{3}	3.844
4m	-10.37	3.25×10^4	4.512
4n	-10.11	1.65×10^4	4.217
40	-9.15	2.71 × 10 ⁵	5.433
4p	-10.04	1.13×10^{4}	4.053
4q	-8.76	8.91×10^{4}	4.950
4r	-7.02	1.39×10^{6}	6.145

^{*a*} From ref **S1**. ^{*b*} This work.

Table S2 (data for Figure 7). Methyl anion affinities (MAAs) of Michael acceptors (with data from ref S2) and estimated Mayr *E* parameters for alkyl allenoates.

Mayr <i>E^a</i>	MAA ^b (kJ mol ⁻¹)
-18.84	80.7
-19.07	75.1
-20.22	71.6
-23.54	59.6
-18.36	96.8
-19.05	109.4
-16.76	104.2
-15.25	116.7
-22.77	51.9
-12.09	160.5
-23.59	49.8
-24.52	36.1
-24.69	51.8
-24.60	66.1
-23.01	60.4
-19.39	74.8
	Mayr <i>E^a</i> -18.84 -19.07 -20.22 -23.54 -18.36 -19.05 -16.76 -15.25 -22.77 -12.09 -23.59 -24.52 -24.69 -24.60 -23.01 -19.39

M17	-16.63	113.3
M18	-13.85	123.8
M19	-19.49	93.1
M20	-17.79	74.2
M21	-15.71	132.4
M22 (= 4s)	-14.07	113.9
M23	-11.31	149.8
M24	-7.50	174.8
M25	-20.55	104.8
M26	-19.36	75.2
M27	-17.33	86.8
M28	-13.30	141.3
M29 (= 4k)	-12.93	155.9
M30	-12.76	135.3
M31	-11.32	147.1
M32	-10.80	161.9
M33	-10.28	154.4
M34 (= 4n)	-10.11	160.7
M35 (= 4v)	-9.42	177.4
M36 (= 4o)	-9.15	169.6
M37	-17.90	120.4
M38	-17.29	123.2
M39	-16.36	130.7
M40 (= 4h)	-16.11	137.4
M41	-15.83	141.3
M42	-13.39	147.3
M43	-12.18	163.6
M44	-11.87	174.6
Alkyl allenoates	Estimated Mayr E ^c	MAA ^d (kJ mol ⁻¹)
1a	(-17.57) ^c	182.5
1b	(-18.97) ^c	163.1
1c	(-19.02) ^c	165.5
1d	(-19.15) ^c	171.2
1e	(-19.26) ^c	167.6
1f	(-19.51) ^c	163.4
1g	(-19.73) ^c	152.7
1h	(-20.37) ^c	153.9
1i	(-20.55) ^c	142.5
1j	(-22.65) ^c	133.6

^{*a*} Empirical Mayr electrophilicity parameter *E* (data taken from ref. S1). ^{*b*} Methyl anion affinities MAA = $-\Delta G_{\text{sol-sp}}$ (data taken from ref S2). ^{*c*} To construct Figure 7, electrophilicities *E* for the allenoates **1a-1j** were estimated by using the rearranged correlation equation from Figure 6, that is, *E* = {log $k_2(\text{Bu}_3\text{P}) - 9.208$ }/0.482. **Caveat:** These *E* parameters refer to single-point calibrations of the reactivities of **1a-1j** towards Bu₃P, which is not a member of the standard group of reference nucleophiles for the construction of Mayr reactivity scales. Furthermore, it remains to be shown that electrophilic reactivities of the allenoates **1a-1j** follow eqn (1) when calibrated with a wider range of reference nucleophiles. ^{*d*} Methyl anion affinities MAA from Table 1, main text.

2 Synthesis and Analytics

2.1 General

Analytics: ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were measured on 400 MHz, 600 MHz, or 800 MHz NMR spectrometers. Chemical shifts (δ) are given in ppm. ¹H and ¹³C NMR spectra were calibrated to residual solvent peaks.⁵³ Coupling constants are given in Hz. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet, and br = broad. ¹³C{¹H} NMR spectra were acquired with broad band proton decoupling. Numbers of C-attached hydrogen atoms were obtained from gHSQC experiments and reported as C, CH, CH₂, or CH₃. The assignments of individual NMR signals were based on additional 2D-NMR experiments (gHSQC, gHMBC, and COSY). HRMS spectra were determined on a Finnigan MAT 95 mass spectrometer. IR spectra were recorded on a FTIR Spectrometer SPECTRUM BX II (Perkin Elmer). Melting points were obtained on a BÜCHI M-560 melting point apparatus and are uncorrected.

Synthesis: Flash column chromatography was performed on Merck silica gel 60 (0.040–0.063 mm) using compressed air. Thin layer chromatography (TLC) was performed using Merck silica gel 60 F254 aluminum plates. Compounds on eluted plates were visualized using a 254 nm UV lamp and/or by treatment with a suitable stain followed by heating. Concentration under reduced pressure was performed on rotary evaporators with a water bath temperature of 40 °C. Starting materials and reagents were purchased from Sigma-Aldrich or ABCR and were used as supplied or, in the case of some liquids, distilled. Solvents were distilled or dried prior to use over appropriate drying agents: Dichloromethane (calcium hydride), diethyl ether (sodium/benzophenone), and acetonitrile (phosphorus pentoxide). Solvents for filtration, chromatography, and recrystallization were purchased from Fisher and used as received.

S8

2.2 Synthesis and purification of alkyl allenoates

2.2.1 Phenyl buta-2,3-dienoate (1a)⁵⁴

$$Ph_3P \longrightarrow OPh + Me Cl \xrightarrow{NEt_3} = CO_2Ph$$

The ylide phenyl 2-(triphenyl- λ^5 -phosphaneylidene)acetate⁵⁵ (5.09 g, 12.8 mmol) and triethylamine (1.37 g, 13.5 mmol) were dissolved in dichloromethane (50 mL). Under ice bath cooling, acetyl chloride (1.04 g, 13.2 mmol) was added dropwise via a syringe. The reaction mixture was kept stirring at ambient temperature for 60 min. Then triethylamine (0.960 mL, 6.89 mmol) and acetyl chloride (0.200 mL, 2.80 mmol) were added dropwise into the reaction mixture by using a syringe. The mixture was kept stirring for 16 h. Then sat aq NaHCO₃ solution (50 mL) was added. After separating the phases, the volatiles of the organic phase were removed under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/ethyl acetate 50:1 to 30:1 to provide **1a** (0.835 g, 41%) as a colorless oil, which was stored at -30 °C under Ar atmosphere. NMR spectroscopic data in CDCl₃ agree with those described in ref.⁵⁴

¹**H NMR** (600 MHz, CDCl₃) δ 7.40–7.36 (m, 2 H), 7.25–7.21 (m, 1 H), 7.14–7.11 (m, 2 H), 5.83 (t, *J* = 6.5 Hz, 1 H), 5.34 (d, *J* = 6.5 Hz, 2 H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 216.8, 164.3, 150.9, 129.6, 126.0, 121.7, 87.9, 80.0.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.43–7.36 (m, 2 H), 7.28–7.23 (m, 1 H), 7.13–7.09 (m, 2 H), 5.83 (t, *J* = 6.5 Hz, 1 H). 5.35 (d, *J* = 6.5 Hz, 1 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 217.0, 164.5, 151.3, 129.8, 126.3, 122.0, 87.8, 79.9.

2.2.2 Benzyl buta-2,3-dienoate (1b)⁵⁴

Benzyl 2-(triphenyl- λ^5 -phosphaneylidene)acetate (6.56 g, 16.0 mmol) and triethylamine (2.70 mL, 19.4 mmol) were dissolved in dichloromethane (45 mL). Under ice bath cooling, acetyl chloride (1.25 mL, 17.6 mmol) was added dropwise via a syringe. The reaction mixture was kept stirring at ambient temperature for 60 min. The volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/ethyl acetate 30:1 to 20:1) followed by a quick distillation (9 × 10⁻³ mbar, 90 °C, distillate condensed under liquid nitrogen cooling bath) to furnish **1b** (1.66 g, 60%) as a colorless oil, which was stored at –30 °C under Ar atmosphere. NMR spectroscopic data in CDCl₃ agree with those described in ref.⁵⁶

¹**H NMR** (600 MHz, CDCl₃) δ 7.39–7.31 (m, 5 H), 5.69 (t, *J* = 6.6 Hz, 1 H), 5.24 (d, *J* = 6.5 Hz, 2 H), 5.20 (s, 3 H). ¹³C{¹H} **NMR** (151 MHz, CDCl₃) δ 216.2, 165.7, 136.0, 128.7, 128.4, 128.3, 88.0, 79.6, 66.8. ¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.42–7.27 (m, 5 H), 5.71–5.67 (m, 1 H), 5.24 (d, *J* = 6.5 Hz, 2 H), 5.17 (s, 2 H). ¹³C{¹H} **NMR** (101 MHz, CD₂Cl₂) δ 216.3, 165.7, 136.5, 128.9, 128.6, 128.5, 88.0, 79.5, 66.9.

2.2.3 Ethyl 4-phenylbuta-2,3-dienoate (1c)

Ethyl 4-phenylbut-3-ynoate^{S 7} (5.39 g, 26.6 mmol) and triethylamine (2.93 g, 29.0 mmol) were dissolved in dry THF (65 mL). The reaction mixture was kept stirring at ambient temperature under nitrogen atmosphere for 15 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (pentane/ethyl acetate 100:1 to 50:1) to provide **1c** (0.871 g, 16%) as a slightly yellow oil, which was kept at -30 °C under Ar atmosphere. Starting materials were converted to a degree of around 85% after 15 h, and higher yields of **1c** can be achieved by repeated column chromatographic separations. NMR spectroscopic data agree with those reported in CDCl₃ solution.⁵⁸

¹H NMR (400 MHz, CD₂Cl₂) δ 7.41–7.22 (m, 5 H), 6.64 (d, J = 6.4 Hz, 1 H), 6.02 (dq, J = 6.4, 0.5 Hz, 1 H), 4.20 (qd, J = 7.1, 2.2 Hz, 2 H), 1.27 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (201 MHz, CD₂Cl₂) δ 214.8, 165.2, 131.7, 129.3, 128.5, 127.8, 98.8, 92.3, 61.5, 14.4.

2.2.4 3-Vinylidenedihydrofuran-2(3H)-one (1d)

3-(Triphenyl- λ^5 -phosphaneylidene)dihydrofuran-2(3*H*)-one⁵⁹ (3.29 g, 9.50 mmol) and triethylamine (1.01 g, 9.98 mmol) were dissolved in dichloromethane (30 mL). Under ice bath cooling, acetyl chloride (0.798 g, 10.2 mmol) was added dropwise via a syringe. The reaction mixture was kept stirring at ambient temperature for 45 min. The volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/ethyl acetate 3:1 to 2:1) followed by a quick distillation (4 × 10⁻³ mbar, 80 °C, distillate condensed under liquid nitrogen cooling bath) to give **1d** (0.374 g, 36%) as a colorless oil, which was stored at -30 °C under Ar atmosphere. NMR spectroscopic data agree with those described in ref.⁵⁹

¹H NMR (600 MHz, CD₂Cl₂) δ. 5.28–5.27 (m, 2 H), 4.32 (t, J = 7.5 Hz, 2 H), 3.01 (tt, J = 7.5, 5.1 Hz, 2 H).
 ¹³C{¹H} NMR (151 MHz, CD₂Cl₂) δ 209.5, 170.4, 93.7, 82.1, 66.5, 26.8.

2.2.5 Methyl buta-2,3-dienoate (1e)⁵¹⁰

From methyl 2-(triphenyl- λ^5 -phosphaneylidene)acetate (16.00 g, 47.85 mmol), trimethylamine (5.33 g, 52.64 mmol), and acetyl chloride (3.76 g, 47.85 mmol): **1e** (4.25 g, 91%). NMR spectroscopic data agree with those described in ref.⁵¹¹

¹**H NMR** (400 MHz, CD₂Cl₂) δ 5.63 (t, *J* = 6.6 Hz, 1 H), 5.22 (d, *J* = 6.6 Hz, 2 H), 3.71 (s, 3 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 216.2, 166.3, 87.9, 79.3, 52.3.

2.2.6 Ethyl buta-2,3-dienoate (1f)

Method 1: Commercially available **1f** (Aldrich) was purified by column chromatography on silica gel (pentane/diethyl ether 25:1 to 15:1).

Method 2: Ethyl 2,3-butadienoate **1f** was synthesized by a modified literature procedure reported by Hansen.^{\$10}

$$Ph_{3}P \longrightarrow OEt + Me Cl DCM = CO_{2}Et$$

Ethyl 2-(triphenyl- λ^5 -phosphaneylidene)acetate (7.71 g, 22.1 mmol) and triethylamine (2.24 g, 22.1 mmol) were dissolved in dichloromethane (50 mL). Under ice bath cooling, acetyl chloride (1.74 g, 22.2 mmol) was added dropwise via a syringe. The mixture was kept stirring at ambient temperature for 60 min. Then sat aq NaHCO₃ solution (50 mL) was added. The organic phase was separated, and the aqueous phase was extracted by the dichloromethane (2 × 50 mL). After drying the unified organic phases (MgSO₄), the volatiles were removed under only slightly reduced pressure (500 mbar). After purification by column chromatography on silica gel (pentane/diethyl ether 25:1 to 15:1), the residue was kept in vacuum (5 mbar) at 0 °C for 30 min. A quick distillation (3 × 10⁻³ mbar, ambient temperature, distillate condensed under liquid nitrogen cooling bath) delivered **1f** (1.65 g, 67%) as a colorless oil. NMR spectroscopic data in CDCl₃ agree with those described in ref.⁵¹²

¹H NMR (600 MHz, CDCl₃) δ 5.64 (t, J = 6.5 Hz, 1 H), 5.22 (d, J = 6.5 Hz, 2 H), 4.21 (q, J = 7.1 Hz, 2 H), 1.29 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 215.9, 165.9, 88.2, 79.4, 61.2, 14.4.

¹**H NMR** (400 MHz, CD_2Cl_2) δ 5.62 (t, *J* = 6.6 Hz, 1 H), 5.21 (d, *J* = 6.6 Hz, 2 H), 4.16 (q, *J* = 7.1 Hz, 2 H), 1.26 (t, *J* = 7.1 Hz, 3 H). ¹³C{¹H} NMR (101 MHz, CD_2Cl_2) δ 216.0, 165.8, 88.2, 79.3, 61.3, 14.4.

2.2.7 Ethyl penta-2,3-dienoate (1g)⁵¹³

$$Ph_3P \longrightarrow OEt + OI DCM + CI DCM J CO_2Et$$

Ethyl 2-(triphenyl- λ^5 -phosphaneylidene)acetate^{S10} (4.50 g, 12.9 mmol) and triethylamine (2.00 mL, 14.4 mmol) was dissolved in dichloromethane (45 mL). Under ice bath cooling, acetyl chloride (1.25 mL, 17.6 mmol) added dropwise via a syringe. The reaction mixture was kept stirring at ambient temperature for 30 min. Then sat aq NaHCO₃ solution (50 mL) was added. The organic phase was separated, and the aqueous phase was extracted by the dichloromethane (3 × 50 mL). After drying (MgSO₄), the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/ethyl acetate 20:1) and provided **1g** (700 mg, 54%) as a colorless oil, which was stored at –30 °C under Ar atmosphere. NMR spectroscopic data in CDCl₃ agree with those described in ref.⁵¹³

¹H NMR (400 MHz, CDCl₃) δ 5.62–5.52 (m, 2 H), 4.18 (q, J = 7.1 Hz, 2 H), 1.77 (dd, J = 7.2, 3.3 Hz, 3 H), 1.27 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 213.0, 166.4, 90.4, 87.8, 60.9, 14.4, 13.0. ¹H NMR (400 MHz, CD₂Cl₂) δ 5.64–5.51 (m, 2 H), 4.15 (qd, J = 7.1, 0.9 Hz, 2 H), 1.77 (dd, J = 7.3, 3.3 Hz, 3 H), 1.25 (t, J = 7.1 Hz, 3 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 213.1, 166.3, 90.5, 87.9, 61.1, 14.4, 13.0.

2.2.8 *tert*-Butyl buta-2,3-dienoate (1h)

$$Ph_3P \longrightarrow OtBu + Me Cl DCM - CO_2tBu + Me Cl DCM - Me Cl DCM - Me Cl DCM - Th$$

1h was prepared in a yield of 33% following the procedure reported by Hansen.⁵¹⁰ NMR spectroscopic data agree with those reported in CDCl₃ solution.⁵⁹

¹H NMR (600 MHz, CD₂Cl₂) δ 5.53 (t, *J* = 6.6 Hz, 1 H), 5.16 (d, *J* = 6.6 Hz, 2 H), 1.45 (s, 9 H). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂) δ 215.6, 165.1, 89.7, 81.2, 78.9, 28.2.

2.2.9 Diethyl 2-vinylidenesuccinate (1i)

Commercially available **1i** (Aldrich) was purified by column chromatography on silica gel (pentane/diethyl ether 8:1 to 5:1). NMR spectroscopic data agree with those reported in CDCl₃ solution.⁵¹⁴

$$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \end{array} \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \\ & \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\$$

2.2.10 Ethyl 2-methylbuta-2,3-dienoate (1j)

Commercially available **1j** (Aldrich) was purified by column chromatography on silica gel (pentane/ diethyl ether 25:1 to 15:1). NMR spectroscopic data agree with those reported in CDCl₃ solution.^{S13}

$$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \mbox{I} \mbox{H} \mbox{I} \mbox{M} \mbox{I} \mbox{I}$$

2.3 Purification of phosphines

2.3.1 Tributylphosphine

Bu₃P was purified by vacuum distillation (83.5 °C, 0.75 mbar).

¹H NMR (400 MHz, CD₂Cl₂) δ 1.41–1.33 (m, 18 H), 0.93–0.87 (m, 9 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 28.6 (d, $J_{C,P}$ = 12.8 Hz), 27.4 (d, $J_{C,P}$ = 12.6 Hz), 25.0 (d, $J_{C,P}$ = 10.9 Hz), 14.1. ³¹P NMR (162 MHz, CD₂Cl₂) δ -31.3.

2.3.2 Triphenylphosphine

Ph₃P was purified by a quick distillation (3×10^{-3} mbar, 140−165 °C, distillate condensed under liquid nitrogen cooling bath).

¹H NMR (400 MHz, CD₂Cl₂) δ 7.39–7.32 (m, 15 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 137.8 (d, $J_{C,P}$ = 11.4 Hz), 134.1 (d, $J_{C,P}$ = 19.6 Hz), 129.1, 128.91 (d, $J_{C,P}$ = 6.9 Hz). ³¹P NMR (162 MHz, CD₂Cl₂) δ –5.5.

2.4 Synthesis and Purification of Phosphonium and 2,4,6-Collidinium Triflates

2.4.1 Tributylphosphonium Triflate (TBPT)

Under ice bath cooling and nitrogen atmosphere protection Bu_3P (1.30 g, 6.43 mmol) was added dropwise into a solution of triflic acid (964 mg, 6.42 mmol) in anhydrous diethyl ether (10 mL). The suspension was filtered, and the collected solid was washed with anhydrous diethyl ether under an inert gas atmosphere. Drying the solid under high vacuum provided Bu_3PH^+ TfO⁻ (TBPT, 2.13 g, 94%) as a colorless solid. NMR spectroscopic data agree with those reported in CDCl₃ solution.^{S15}

¹H NMR (400 MHz, CD₂Cl₂) δ 6.13 (dhept, ¹J_{H,P} = 480.4 Hz, J_{H,H} = 5.6 Hz, 1 H), 2.30–2.21 (m, 6 H), 1.67–1.55 (m, 6 H), 1.55–1.44 (m, 6 H), 0.96 (t, J = 7.3 Hz, 9 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 121.2 (q, J_{C,F} = 320.8 Hz), 25.0 (d, J_{C,P} = 4.8 Hz), 24.0 (d, J_{C,P} = 15.4 Hz), 16.8 (d, J_{C,P} = 46.8 Hz), 13.4.

³¹P NMR (162 MHz, CD₂Cl₂) δ 13.2 (dtt, ${}^{1}J_{P,H}$ = 480.9 Hz, ${}^{2}J_{P,H}$ = 25.2 Hz, ${}^{3}J_{P,H}$ =12.0 Hz).

2.4.2 Triphenylphosphonium Triflate (TPPT)

Under ice bath cooling and nitrogen atmosphere protection a solution of Ph_3P (3.49 g, 13.3 mmol) in anhydrous diethyl ether (15 mL) was added dropwise into a solution of triflic acid (2.03 g, 13.5 mmol) in anhydrous diethyl ether (5 mL). The suspension was filtered, and the collected solid was washed with anhydrous diethyl ether under inert gas atmosphere. Drying the solid under high vacuum furnished Ph_3PH^+ TfO⁻ (TPPT, 4.55 g, 83%) as a colorless solid. NMR spectroscopic data agree with those reported in CDCl₃ solution.^{S16}

¹H NMR (400 MHz, CD₂Cl₂) δ 9.47 (d, ¹J_{H,P} = 533.2 Hz, 1 H), 7.88–7.65 (m, 15 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 135.9 (d, $J_{C,P}$ = 3.0 Hz), 134.5 (d, $J_{C,P}$ = 11.4 Hz), 130.9 (d, $J_{C,P}$ = 13.5 Hz), 121.2 (q, $J_{C,F}$ = 320.7 Hz), 116.0 (d, $J_{C,P}$ = 87.1 Hz). ³¹P NMR (162 MHz, CD₂Cl₂) δ 2.9 (d, ¹J_{P,H} = 533.4 Hz). ¹⁹F NMR (377 MHz, CD₂Cl₂)

δ-79.0.

2.4.3 2,4,6-Collidinium Triflate (CT)

Under ice bath cooling and nitrogen atmosphere protection 2,4,6-trimethylpyridine (= 2,4,6-collidine, 1.12 g, 9.24 mmol) was added dropwise into an ethereal solution of triflic acid (1.38 g, 9.20 mmol in 15 mL). The suspension was filtered, and the collected solid was washed with anhydrous diethyl ether under inert gas atmosphere. Drying the solid under high vacuum furnished 2,4,6-collidinium triflate CT (2.32 g, 93%) as a colorless solid. NMR spectroscopic data agree with those reported in CDCl₃ solution.⁵¹⁷

¹H NMR (400 MHz, CD₂Cl₂) δ 14.38 (br t, $J_{H,N}$ = 53.3 Hz, 1 H), 7.28 (s, 2 H), 2.77 (s, 6 Θ OTf H), 2.53 (s, 3 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 160.0, 153.3, 125.7, 120.8 (q, $J_{C,F}$ = 319.5 Hz), 22.3, 19.6.

3 Studies on the Interactions between Electrophiles, Nucleophiles and Proton Sources in CD₂Cl₂

3.1 Ph₃P with collidinium triflate (CT)

Figures S4 and S5 show that 2,4,6-collidine is a stronger Brønsted base than Ph₃P (in CD₂Cl₂).

Figure S4. Comparison of the ¹H NMR spectra of CT (59.5 mM, top) and Ph₃P (58.3 mM, bottom) with that of the mixture of Ph₃P and CT in CD₂Cl₂ (central).

Figure S5. Comparison of the ³¹P NMR spectra of Ph_3P (top), Ph_3PH^+ TfO⁻ (bottom) with that of the mixture of Ph_3P (58.3 mM) and CT (59.5 mM) in CD_2Cl_2 (central).

3.2 Ethyl allenoate 1f with CT

Figure S6 indicates that CT does not change the ¹H NMR spectrum of alkyl allenoate **1f** (in CD₂Cl₂).

Figure S6. Comparison of the ¹H NMR spectra of CT (top) and **1f** (bottom) with that of the mixture of CT (60 mM) and **1f** (180 mM) in CD_2Cl_2 (central).

3.3 Ethyl allenoate 1f with TBPT

Figure S7 shows that TBPT does not change the ¹H NMR spectrum of alkyl allenoate **1f** (in CD₂Cl₂).

Figure S7. Comparison of the ¹H NMR spectra of **1f** (top) and TBPT (bottom) with that of the mixture of **1f** (28.5 mM) and TBPT (28.9 mM, central) in CD_2Cl_2 (central).

3.4 Stability of the R₃P adducts of alkyl allenoate 1f

3.4.1 Analysis of mixtures of Bu₃P with 1f

Figures S8 and S9 shows that Bu_3P reacts with alkyl allenoate **1f** (in CD_2Cl_2).

Figure S8. Comparison of the ¹H NMR spectra of **1f** (bottom) with that of a mixture of **1f** (69.0 mM) and Bu_3P (59.3 mM) in CD_2Cl_2 (top).

Figure S9. Comparison of the ³¹P NMR spectra of Bu_3P (bottom) with that of a mixture of **1f** (69.0 mM) and Bu_3P (59.3 mM) in CD_2Cl_2 (top).

3.4.2 Analysis of mixtures of Ph₃P with 1f

Figure S10 shows that Ph_3P , without a proton source, forms only a minor equilibrium concentration of adduct with alkyl allenoate **1f** (in CD_2Cl_2).

Figure S10. Comparison of the ³¹P NMR spectra of Ph_3P (bottom) with that of a mixture of **1f** (74.9 mM) and Ph_3P (88.8 mM) in CD_2Cl_2 at 20 °C (top).

3.4.3 Analysis of mixtures of Bu₃P with *N*-methylmaleimide (4s)

Figure S11. Comparison of the ¹H NMR spectra of **4s** (top) with that of the mixture of **4s** (54.3 mM) and Bu_3P (48.9 mM) in CD_2Cl_2 (bottom).

Figure S12. Comparison of the ³¹P NMR spectra of Bu_3P (bottom) with that of a mixture of Bu_3P (48.9 mM) and **4s** (54.3 mM) in CD_2Cl_2 (top).

3.4.4 Analysis of mixtures of Ph₃P with *N*-methylmaleimide (4s)

Figures S13 and S14 indicate that Ph_3P does not form a detectable amount of adduct with **4s** (in CD_2Cl_2).

Figure S13. Comparison of the ¹H NMR spectra of Ph_3P (top) and **4s** (bottom) with that of a mixture of **4s** (79.9 mM) and Ph_3P (85.0 mM) in CD_2Cl_2 at 20 °C (central).

Figure S14. Comparison of the ³¹P NMR spectra of Ph_3P (bottom) with that of a mixture of **4s** (79.9 mM) and Ph_3P (85.0 mM) in CD_2Cl_2 at 20 °C (top).

3.4.5 Analysis of mixtures of Bu₃P with phenyl N-tosyl imine (4t)

Figure S15 shows that Bu_3P slowly reacts with **4t** (in CD_2Cl_2). However, a major part of free Bu_3P remains in a 1:1 mixture of Bu_3P with **4t**.

Figure S15. Comparison of the ³¹P NMR spectra of Bu₃P (bottom) with those of the mixture of **4t** (21.2 mM) and Bu₃P (16.8 mM) in CD₂Cl₂ at different times (central: after 3 min, top: after 20 min).

3.4.6 Analysis of mixtures of Bu₃P with benzylidenemalononitrile (4v)

Figure S16 shows that Bu_3P reacts with 4v (in CD_2Cl_2). However, a part of free Bu_3P remains in an equilibrated 1:1 mixture of Bu_3P with 4v.

Figure S16. ³¹P NMR spectrum of the mixture of 4v ($c_0 = 40.8 \text{ mM}$) and Bu_3P ($c_0 = 37.6 \text{ mM}$) in CD_2Cl_2 , which shows an equilibrium with the adduct zwitterion.

3.4.7 Analysis of mixtures of Ph₃P with benzylidenemalononitrile (4v)

Figures S17 and S18 indicate that Ph_3P does not form a detectable amount of adduct with 4v (in CD_2Cl_2).

Figure S17. Comparison of the ¹H NMR spectra of Ph_3P (top) and 4v (bottom) with that of the mixture of 4v (69.4 mM) and Ph_3P (88.5 mM) in CD_2Cl_2 at 20 °C (central).

Figure S18. Comparison of the ³¹P NMR spectra of Ph_3P (bottom) with that of the mixture of 4v (69.4 mM) and Ph_3P (88.5 mM) in CD_2Cl_2 at 20 °C (top).

4 Product Studies

4.1 Reaction of triphenylphosphonium triflate with phenyl buta-2,3-dienoate (1a)

TPPT (48.9 mg, 119 mmol) and **1a** (30.7 mg, 192 mmol) were mixed in acetonitrile (1 mL). The mixture was kept under inert gas atmosphere at ambient temperature for 18 h. The volatiles were removed under reduced pressure. The residue was washed with diethyl ether and dried under high vacuum to provide **3a** (57.3 mg, 84%) as a white solid; mp 184.3–186.9 °C.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.99–7.86 (m, 3 H), 7.80–7.69 (m, 12 H), 7.35–7.32 (m, 2 H), 7.25–7.21 (m, 1 H), 7.09 (d, $J_{H,P}$ = 45.4 Hz, 1 H), 6.74 (d, $J_{H,P}$ = 7.9 Hz, 2 H), 6.37 (d, $J_{H,P}$ = 20.9 Hz, 1 H), 3.91 (d, $J_{H,P}$ = 15.3 Hz, 2 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 168.6 (d, ³ $J_{C,P}$ = 2.9 Hz, C_q), 150.4 (C_q), 146.5 (d, ² $J_{C,P}$ = 7.5 Hz, =CH₂), 136.2 (d, $J_{C,P}$ = 3.0 Hz, CH), 135.0 (d, $J_{C,P}$ = 10.4 Hz, CH), 131.0 (d, $J_{C,P}$ = 12.9 Hz, CH), 129.9 (CH), 126.8 (CH), 124.8 (d, ¹ $J_{C,P}$ = 78.7 Hz, C_q), 121.4 (CH), 117.1 (d, ¹ $J_{C,P}$ = 88.7 Hz, C_q), 39.2 (d ² $J_{C,P}$ = 11.4 Hz, CH₂); resonances of the CF₃ group superimpose with other signals and could not be assigned unequivocally. ³¹P NMR (162 MHz, CD₂Cl₂) δ 25.1. ¹⁹F NMR (377 MHz, CD₂Cl₂) δ -78.9. IR (neat, ATR): \tilde{v} = 3065, 2925, 1752, 1589, 1485, 1439, 1340, 1261, 1224, 1192, 1147, 1108, 1030, 998, 754, 726, 712, 690 cm⁻¹. HRMS (ESI): *m/z* calcd for C₂₈H₂₄O₂P⁺ (M – TfO⁻): 423.15084, found: 423.15067.

4.2 Reaction of triphenylphosphonium triflate with 3-vinylidenedihydrofuran-2(3H)-one (1d)

TPPT (50.8 mg, 123 mmol) and **1d** (22.8 mg, 207 mmol) were mixed in acetonitrile (1 mL). The mixture was kept under inert gas atmosphere at ambient temperature for 22 h. The volatiles were removed under reduced pressure. The residue was washed with diethyl ether and dried under high vacuum to provide **3d** (62.5 mg, 97%) as a white solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.92–7.77 (m, 15 H), 6.90 (d, $J_{H,P}$ = 46.1 Hz, 1 H), 6.35 (d, $J_{H,P}$ = 21.9 Hz, 1 H), 4.43–4.38 (m, 1 H), 4.21 (q, J = 8.7 Hz, 1 H), 3.63 (q, J = 10.7 Hz, 1 H), 2.44–2.38 (m, 2 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 175.2 (d, ³ $J_{C,P}$ = 6.9 Hz, C_q), 144.1 (d, ² $J_{C,P}$ = 7.8 Hz, =CH₂), 136.1 (d, $J_{C,P}$ = 3.1 Hz, CH), 135.0 (d, $J_{C,P}$ = 10.3 Hz, CH), 131.0 (d, $J_{C,P}$ = 12.9 Hz, CH), 129.3 (d, ¹ $J_{C,P}$ = 79.4 Hz, C_q), 121.4 (q, ¹ $J_{C,F}$ = 320.9 Hz, CF₃), 116.9 (d, ¹ $J_{C,P}$ = 88.8 Hz, C_q), 67.4 (CH₂), 43.7 (d, ² $J_{C,P}$ = 11.9 Hz, CH), 31.3 (d, $J_{C,P}$ = 3.8 Hz, CH₂). ³¹P NMR (162 MHz, CD₂Cl₂) δ 26.1. ¹⁹F NMR (377 MHz, CD₂Cl₂) δ -78.9. IR (neat, ATR): \tilde{v}

= 3065, 1762, 1588, 1485, 1439, 1379, 1263, 1224, 1153, 1108, 1030, 998, 754, 726, 692 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₄H₂₂O₂P⁺ (M – TfO⁻): 373.13519, found: 373.13511.

4.3 Reaction of triphenylphosphonium triflate with ethyl buta-2,3-dienoate (1f)

$$\begin{array}{cccc} Ph_{3}PH & TfO^{\ominus} + & & & \\ \hline Ph_{3}PH & TfO^{\ominus} + & & \\ \hline TPPT & \mathbf{1f} & & \mathbf{3f} \end{array} \begin{array}{c} Ph_{3}P^{\oplus} & TfO^{\ominus} \\ \hline CO_{2}Et & \\ & & \mathbf{3f} \end{array}$$

TPPT (186 mg, 451 mmol) and **1f** (54.5 mg, 486 mmol) were mixed in CD_2Cl_2 (1.5 mL). The mixture was kept under inert gas atmosphere at ambient temperature for 40 h. The volatiles were removed under reduced pressure. The residue was washed with pentane and dried under high vacuum to provide **3f** (230 mg, 97%) as a white solid; mp 97.3–98.3 °C.

¹**H NMR** (600 MHz, CD₂Cl₂) δ 7.92–7.89 (m, 3 H), 7.76–7.68 (m, 12 H), 6.94 (dd, $J_{H,P}$ = 45.6 Hz, $J_{H,H}$ = 1.2 Hz, 1 H), 6.29 (dd, $J_{H,P}$ = 21.0 Hz, $J_{H,H}$ = 1.2 Hz, 1 H), 3.86 (q, $J_{H,H}$ = 7.1 Hz, 2 H), 3.56 (dd, $J_{H,P}$ = 15.4 Hz, $J_{H,H}$ = 1.1 Hz, 2 H), 1.06 (t, $J_{H,H}$ = 7.1 Hz, 3 H). ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂) δ 169.2 (d, ³ $J_{C,P}$ = 3.1 Hz, Cq), 145.6–145.5 (m, =CH₂), 136.1 (d, $J_{C,P}$ = 3.1 Hz, CH), 134.9 (d, $J_{C,P}$ = 10.3 Hz, CH), 130.9 (d, $J_{C,P}$ = 12.9 Hz, CH), 125.3 (d, ¹ $J_{C,P}$ = 78.1 Hz, Cq), 121.4 (q, ¹ $J_{C,F}$ = 321.5 Hz, CF₃), 117.1 (d, ¹ $J_{C,P}$ = 88.6 Hz, Cq), 62.3 (CH₂), 39.2 (d, ² $J_{C,P}$ = 11.6 Hz, CH₂), 14.1 (CH₃). ³¹P **NMR** (162 MHz, CD₂Cl₂) δ 25.3. ⁵¹⁸ ¹⁹F **NMR** (377 MHz, CD₂Cl₂) δ –78.9. **IR** (neat, ATR): \tilde{v} = 2983, 1732, 1586, 1484, 1441, 1334, 1258, 1223, 1204, 1154, 1107, 1027, 996, 970, 948, 861, 755, 724, 712, 690, 658 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₄H₂₄O₂P⁺ (M – TfO⁻): 375.15084, found: 375.15072.

4.4 Reaction of triphenylphosphonium triflate with diethyl 2-vinylidenesuccinate (1i)

TPPT (50.0 mg, 121 mmol) and **1i** (30.5 mg, 154 mmol) were mixed in acetonitrile (1.0 mL). The mixture was kept under inert gas atmosphere at ambient temperature for one week. The volatiles were removed under reduced pressure. The residue was washed with pentane and dried under high vacuum to provide **3i** (55.5 mg, 75%) as a colorless liquid.

¹**H NMR** (400 MHz, CD_2CI_2) δ 7.93–7.89 (m, 3 H), 7.77–7.68 (m, 12 H), 6.90 (ddd, $J_{H,P}$ = 46.3 Hz, $J_{H,H}$ = 2.4, 0.8 Hz, 1 H), 6.34 (dd, $J_{H,P}$ = 21.6 Hz, $J_{H,H}$ = 2.3 Hz, 1 H), 4.12–3.99 (m, 3 H), 3.89 (dq, J = 10.8, 7.1 Hz, 1 H), 3.77 (ddd, ${}^{3}J_{H,P}$ = 12.9 Hz, ${}^{3}J_{H,H}$ = 9.4 Hz, 5.8 Hz, 1 H), 3.06 (ddd, ${}^{2}J_{H,H}$ = 17.6 Hz, ${}^{3}J_{H,H}$ = 5.8 Hz, ${}^{4}J_{H,P}$ = 1.5 Hz, 1 H), 2.90 (dd, ${}^{2}J_{H,H}$ = 17.6 Hz, ${}^{3}J_{H,H}$ = 9.4 Hz, 1 H), 1.21 (t, $J_{H,H}$ = 7.1 Hz, 3 H), 1.03 (t, $J_{H,H}$ = 7.2 Hz, 3 H). ${}^{13}C{}^{1}H$ **NMR** (101 MHz, CD_2CI_2) δ 170.7 (C_q), 170.1 (d, ${}^{3}J_{C,P}$ = 3.9 Hz, C_q), 142.0 (d, ${}^{2}J_{C,P}$ = 7.4

Hz, =CH₂), 136.2 (d, $J_{C,P}$ = 3.1 Hz, CH), 135.1 (d, $J_{C,P}$ = 10.3 Hz, CH), 130.8 (d, $J_{C,P}$ = 12.9 Hz, CH), 130.2 (d, ¹ $J_{C,P}$ = 77.8 Hz, C_q), 121.5 (q, ¹ $J_{C,F}$ = 321.3 Hz, CF₃), 117.2 (d, ¹ $J_{C,P}$ = 88.8 Hz, C^q), 62.9 (CH₂), 62.0 (CH₂), 42.9 (d, ² $J_{C,P}$ = 11.3 Hz, CH), 36.3 (d, $J_{C,P}$ = 5.4 Hz, CH₂), 14.3 (CH₃), 13.9 (CH₃). ³¹P NMR (162 MHz, CD₂Cl₂) δ 27.5. ¹⁹F NMR (377 MHz, CD₂Cl₂) δ -78.9. IR (neat, ATR): $\tilde{\nu}$ = 3066, 2985, 1730, 1587, 1485, 1440, 1263, 1224, 1150, 1107, 1030, 998, 857, 754, 725, 692 cm⁻¹. HRMS (ESI): m/z calcd for C₂₈H₃₀O₄P⁺ (M – TfO⁻): 461.18762, found: 461.18744.

5 Kinetics

5.1 General

Kinetic Measurements with the stopped-flow UV-Vis spectrometer

The kinetics of the faster reactions ($t_{1/2} < 20$ s) were followed by UV/vis spectroscopy by using a stopped-flow spectrophotometer system (Applied Photophysics SX20 Stopped Flow Spectrometers; 5 or 10 mm light path). The kinetic runs were initiated by mixing equal volumes of dichloromethane solutions of the nucleophiles and the electrophiles. The temperature of the solutions during the kinetic studies was maintained to 20 ± 0.2 °C by using circulating bath cryostats. Stock solutions were prepared in anhydrous dichloromethane, which was freshly distilled from calcium hydride. The R₃P solutions were freshly prepared under argon atmosphere before each measurement.

Kinetic measurements with conventional UV-Vis spectroscopy

The rates of slow reactions ($t_{1/2} > 20$ s) were determined by using a J&M TIDAS diode array spectrophotometers controlled by Labcontrol Spectacle or TIDAS DAQ 3.8.1 software and connected to Hellma 661.502-QX quartz Suprasil immersion probe (5 mm light path) via fiber optic cables and standard SMA connectors. The temperature of the solutions during the kinetic studies was maintained to 20 ± 0.1 °C by using circulating bath cryostats. Anhydrous dichloromethane was freshly distilled from calcium hydride under an atmosphere of dry nitrogen. The R₃P solutions were freshly prepared under argon atmosphere before each measurement.

Kinetic measurements with NMR spectroscopy

The kinetics for reactions with $k_2 < 2.0 \times 10^{-1} \text{ M}^{-1} \text{ s}^{-1}$ were followed by using a Bruker Avance III HD 400 MHz NMR spectrophotometer, which is equipped with a N₂ cooling temperature unit (20 ± 0.1 °C). ¹H NMR kinetics used mesitylene (internal integration standard) or CD₂Cl₂ residual peak as internal reference standard. Stock solutions were prepared in CD₂Cl₂, which was stored under Ar atmosphere protection. The exact 1.0 mL solutions in NMR tube were prepared freshly under Ar atmosphere protection and monitored immediately after complete mixing of the reactants.

5.2 Kinetics of the reactions of R_3P with alkyl allenoates 1

5.2.1 Kinetics of the reactions of 1 with Bu₃P in dichloromethane

5.2.1.1 Kinetics of the reaction of Bu₃P with phenyl buta-2,3-dienoate (1a)

$$Bu_{3}P + \underbrace{TBPT}_{CO_{2}Ph} \underbrace{Bu_{3}P}_{CH_{2}Cl_{2}} \xrightarrow{Bu_{3}P}_{CO_{2}Ph} TfO^{\bigcirc}_{CO_{2}Ph}$$
1a

Table S3. Kinetics of the reactions of Bu₃P and **1a** (proton source: TBPT, conventional UV-Vis method, detection at 242 nm, in CH₂Cl₂)

[Bu ₃ P] (M)	[1 a] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.025
1.10 × 10 ⁻³	1.13×10^{-4}	2.39 × 10 ⁻⁴	5.86 × 10 ⁻³	$\begin{array}{c} - & 0.020 \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$
1.95 × 10 ⁻³	1.90×10^{-4}	3.95×10^{-4}	1.07 × 10 ⁻²	₹ 0.010
3.18 × 10 ⁻³	2.94×10^{-4}	6.52×10^{-4}	1.75 × 10 ⁻²	0.005
3.99×10^{-3}	3.91×10^{-4}	8.53 × 10 ⁻⁴	2.18 × 10 ⁻²	0.000
	k ₂ = 5.52	2 M ⁻¹ s ⁻¹	00.0020.004 [Bu ₃ P] (M)	

5.2.1.2 Kinetics of the reaction of Bu₃P with benzyl buta-2,3-dienoate (1b)

$$Bu_{3}P + \underbrace{\longrightarrow}_{CO_{2}Bn} \underbrace{\xrightarrow{TBPT}_{CH_{2}Cl_{2}}}_{CH_{2}Cl_{2}} \xrightarrow{Bu_{3}P^{\oplus}}_{CO_{2}Bn} TfO^{\ominus}$$
1b

Table S4. Kinetics of the reactions of Bu_3P and **1b** (proton source: TBPT, conventional UV-Vis method, detection at 250 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[1b] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.05 r
2.94 × 10 ⁻³	3.01×10^{-4}	7.72 × 10 ⁻⁴	3.53 × 10 ⁻³	y = 1.1622x + 0.0001 0.04 - R ² = 1
4.85×10^{-3}	4.97×10^{-4}	1.28×10^{-3}	5.75 × 10 ⁻³	(T) 0.03
9.47 × 10 ^{−3}	6.06×10^{-4}	1.56 × 10 ⁻³	1.11 × 10 ⁻²	
1.89×10^{-2}	6.07×10^{-4}	1.56 × 10 ⁻³	2.23 × 10 ⁻²	
3.78×10^{-2}	6.04×10^{-4}	1.55 × 10 ⁻³	4.40×10^{-2}	0 0.01 0.02 0.03 0.04
	k ₂ = 1.16	5 M ⁻¹ s ⁻¹		[Bu ₃ P] (M)

5.2.1.3 Kinetics of the reaction of Bu₃P with ethyl 4-phenylbuta-2,3-dienoate (1c)

Table S5. Kinetics of the reactions of Bu₃P and **1c** (proton source: TBPT, conventional UV-Vis method, detection at 248 nm, in CH₂Cl₂)

[Bu₃P] (M)	[1c] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.012 [$y = 1.1004x + 0.0002$
3.06 × 10 ⁻³	7.70 × 10 ⁻⁵	2.41 × 10 ⁻⁴	3.48 × 10 ⁻³	$-$ 0.01 $R^2 = 0.9990$
5.26 × 10 ⁻³	7.56 × 10⁻⁵	2.37 × 10 ⁻⁴	6.10 × 10 ⁻³	0.006 -
7.70 × 10 ⁻³	7.73 × 10 ⁻⁵	2.79 × 10 ⁻⁴	8.55 × 10 ⁻³	√ [°] 0.004 - 0.002 -
1.00×10^{-2}	7.65 × 10 ⁻⁵	2.76×10^{-4}	1.12 × 10 ⁻²	
	<i>k</i> ₂ = 1.10) M ⁻¹ s ⁻¹	- 0 0.004 0.008 0.012 [Bu ₃ P] (M)	

5.2.1.4 Kinetics of the reaction of Bu₃P with 3-vinylidenedihydrofuran-2(3*H*)-one (1d)

Table S6 Kinetics of the reactions of Bu_3P and **1d** (proton source: TBPT, conventional UV-Vis method, detection at 259 nm, in CH_2CI_2)

[Bu₃P] (M)	[1d] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.008 r
3.48 × 10 ⁻³	2.04×10^{-4}	6.55×10^{-4}	3.09 × 10 ⁻³	y = 0.955x - 0.0002 0.006 $R^2 = 0.9983$
4.09×10^{-3}	4.07×10^{-4}	1.07×10^{-3}	3.77 × 10 ⁻³	0.004
5.09 × 10 ⁻³	5.10×10^{-4}	1.34×10^{-3}	4.76 × 10 ⁻³	° 0.002
6.16×10^{-3}	6.13×10^{-4}	1.62×10^{-3}	5.76 × 10 ⁻³	
7.29×10^{-3}	7.30×10^{-4}	1.92×10^{-3}	6.74 × 10 ⁻³	0 0.002 0.004 0.006 0.008
	$k_2 = 9.55 \times$	10 ⁻¹ M ⁻¹ s ⁻¹		[Bu ₃ P] (W)

5.2.1.5 Kinetics of the reaction of Bu₃P with methyl buta-2,3-dienoate (1e)

Table S7. Kinetics of the reactions of Bu₃P and **1e** (proton source: TBPT, conventional UV-Vis method, detection at 250 nm, in CH₂Cl₂)

[Bu ₃ P] (M)	[1e] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.012 $v = 0.8400x - 0.0003$
3.20 × 10 ⁻³	3.17×10^{-4}	6.43×10^{-4}	2.49 × 10 ⁻³	0.01 = 7 = 0.008 $R^2 = 0.9974$
6.16×10^{-3}	6.43×10^{-4}	1.26 × 10 ⁻³	4.68 × 10 ⁻³	
9.05×10^{-3}	9.04×10^{-4}	1.82×10^{-3}	7.48 × 10 ⁻³	0.002
1.20×10^{-2}	1.21×10^{-3}	2.42×10^{-3}	9.76 × 10 ⁻³	
	$k_2 = 8.40 \times$	10 ⁻¹ M ⁻¹ s ⁻¹		0 0.005 0.01 0.015 [Bu ₃ P] (M)

5.2.1.6 Kinetics of the reaction of Bu₃P with ethyl buta-2,3-dienoate (1f)

Table S8. Kinetics of the reactions of Bu_3P and **1f** (proton source: TBPT, conventional UV-Vis method, detection at 250 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[1f] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.008
1.23 × 10 ⁻²	1.21 × 10 ⁻³	2.73 × 10 ⁻³	7.49 × 10 ⁻³	y = 0.6347x - 0.0003 0.006 $P^2 = 0.0006$
1.09×10^{-2}	8.83×10^{-4}	2.72×10^{-3}	6.59 × 10 ⁻³	<u>1</u> <u>5</u> <u>0.004</u>
8.59×10^{-3}	8.98×10^{-4}	2.77×10^{-3}	5.03 × 10 ⁻³	× 0.002
5.74×10^{-3}	5.95×10^{-4}	1.84×10^{-3}	3.34×10^{-3}	
3.26 × 10 ⁻³	3.38×10^{-4}	9.94×10^{-4}	1.73 × 10 ⁻³	0 0.0065 0.013
	$k_2 = 6.35 \times$	10 ⁻¹ M ⁻¹ s ⁻¹		[BU ₃ F] (W)

5.2.1.7 Kinetics of the reaction of Bu₃P with ethyl penta-2,3-dienoate (1g)

$$Bu_{3}P + \underbrace{5}_{CO_{2}Et} \xrightarrow{TBPT} Bu_{3}R \oplus TfO^{G} \\ CO_{2}Et \xrightarrow{CH_{2}Cl_{2}} CO_{2}Et$$

Table S9. Kinetics of the reactions of Bu₃P and **1g** (proton source: TBPT, conventional UV-Vis method, detection at 258 nm, in CH₂Cl₂)

[Bu ₃ P] (M)	[1g] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.008 $v = 0.5003x + 0.0003$
4.39 × 10 ⁻³	4.37×10^{-4}	1.10×10^{-3}	2.50 × 10 ⁻³	$0.006 - R^2 = 0.9997$
7.07 × 10 ⁻³	7.13×10^{-4}	1.80×10^{-3}	3.80 × 10 ⁻³	<u>م</u> <u>م</u> <u>م</u> <u>م</u>
9.37×10^{-3}	9.24×10^{-4}	2.25×10^{-3}	4.94 × 10 ⁻³	0.002
1.21×10^{-2}	1.20×10^{-3}	2.90×10^{-3}	6.36×10^{-3}	0
	<i>k</i> ₂ = 5.00 ×	10 ⁻¹ M ⁻¹ s ⁻¹	0 0.005 0.01 0.015 [Bu ₃ P] (M)	

5.2.1.8 Kinetics of the reaction of Bu₃P with *tert*-butyl buta-2,3-dienoate (1h)

Table S10. Kinetics of the reactions of Bu_3P and **1h** (proton source: TBPT, conventional UV-Vis method, detection at 256 nm, in CH_2CI_2)

[Bu ₃ P] (M)	[1h] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.005 y = 0.2472x - 0.0001
7.08 × 10 ⁻³	6.98×10^{-4}	1.71 × 10 ⁻³	1.68 × 10 ⁻³	0.004 - R ² = 0.9991
9.06 × 10 ⁻³	8.90×10^{-4}	2.19 × 10 ⁻³	2.09 × 10 ⁻³	<u>ල</u> 0.003 - පී 0.002 -
1.31×10^{-2}	1.03×10^{-3}	2.34×10^{-3}	3.13 × 10 ⁻³	0.001
1.73×10^{-2}	1.36×10^{-3}	3.09×10^{-3}	4.18×10^{-3}	0
	<i>k</i> ₂ = 2.47 ×	10 ⁻¹ M ⁻¹ s ⁻¹		0 0.005 0.01 0.015 0.02 [Bu ₃ P] (M)

5.2.1.9 Kinetics of the reaction of Bu₃P with diethyl 2-vinylidenesuccinate (1i)

Table S11. Kinetics of the reactions of Bu_3P and **1i** (proton source: TBPT, conventional UV-Vis method, detection at 250 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[1i] (M)	[TBPT] (M)	$k_{\rm obs}~({\rm s}^{-1})$	0.005 r
6.33 × 10 ⁻³	6.24×10^{-4}	1.34×10^{-3}	1.17 × 10 ⁻³	y = 0.2006x - 1E-04 0.004 $B^2 = 0.9984$
9.12 × 10 ⁻³	8.80×10^{-4}	1.61×10^{-3}	1.72 × 10 ⁻³	
1.31 × 10 ⁻²	1.21 × 10 ⁻³	2.67 × 10 ⁻³	2.59 × 10 ⁻³	ੁੱ ⁸ 0.002
1.59 × 10 ⁻²	8.52 × 10 ⁻⁴	1.98 × 10 ⁻³	3.03 × 10 ⁻³	0.001
2.04×10^{-2}	1.11 × 10 ⁻³	2.56×10^{-3}	4.01×10^{-3}	0 0.008 0.016 0.024
$k_2 = 2.01 \times 10^{-1} \text{ M}^{-1} \text{ s}^{-1}$			- [Βu ₃ Ρ] (Μ)	

5.2.1.10 Kinetics of the reaction of Bu₃P with ethyl 2-methylbuta-2,3-dienoate (1j)

Table S12. Kinetics of the reactions of Bu_3P and **1j** (proton source: TBPT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1j** at 5.05 ppm, in CD₂Cl₂, residual solvent signal as internal integration standard IS)

[Bu₃P] (M)	[1j] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	^{0.003} [0.0400		~
4.50 × 10 ⁻²	4.14×10^{-3}	8.62 × 10 ⁻³	9.17 × 10 ⁻⁴	0.0025 - 	y = 0.0196x R ² = 0.9	+ 6E-05 993	
6.52 × 10 ⁻²	6.02×10^{-3}	1.23×10^{-2}	1.36×10^{-3}	<u>ى'</u> 0.0015 -	مر		
1.11×10^{-1}	7.91 × 10 ⁻³	1.60×10^{-2}	2.25 × 10 ⁻³	∝° 0.001 - 0.0005 -			
1.40×10^{-1}	7.91×10^{-3}	1.60×10^{-2}	2.79 × 10 ⁻³				
$k_2 = 1.96 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$				0.00	0.05 [Bu ₃ P	0.10] (M)	0.15

5.2.2 Kinetics of the reactions of 1 with Ph₃P in dichloromethane

5.2.2.1 Kinetics of the reaction of Ph₃P with phenyl buta-2,3-dienoate (1a)

Table S13. Kinetics of the reactions of Ph_3P and **1a** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1a** at 5.34 ppm, in CD₂Cl₂, mesitylene as internal integration standard IS)

³¹P NMR spectroscopic analysis of selected samples indicated selective conversion of **1a** to **3a** under the conditions of the kinetic experiments (Figure S19).

Figure S19. ³¹P NMR (162 MHz) spectrum of the sample with $[Ph_3P]_0 = 76.6 \text{ mM}$, $[1a]_0 = 7.59 \text{ mM}$ and $[CT]_0 = 15.4 \text{ mM}$ in CD_2Cl_2 after completion of their reaction.

5.2.2.2 Kinetics of the reaction of Ph₃P with benzyl buta-2,3-dienoate (1b)

Table S14. Kinetics of the reactions of Ph_3P and **1b** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1b** at 5.24 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph₃P] (M)	[1b] (M)	[CT] (M)	k _{obs} (s ⁻¹)	0.002	y = 0.0170x + 1E-05
3.24×10^{-2}	3.28×10^{-3}	6.66×10^{-3}	5.76 × 10 ⁻⁴	0.0015	R ² = 0.9993
4.84×10^{-2}	4.68×10^{-3}	9.43×10^{-3}	8.22 × 10 ⁻⁴	_s) 0.001	
6.79×10^{-2}	6.55×10^{-3}	1.33×10^{-2}	1.17 × 10 ⁻³	0.0005	
8.77 × 10 ⁻²	8.42×10^{-3}	1.72×10^{-2}	1.51 × 10 ⁻³	0	
$k_2 = 1.70 \times 10^{-2} \mathrm{M}^{-1} \mathrm{s}^{-1}$					$0 0.05 0.1 (Ph_3P] (M)$

5.2.2.3 Kinetics of the reaction of Ph₃P with ethyl 4-phenylbuta-2,3-dienoate (1c)

Time scale does not consider the time needed between the sample preparation and the first measured NMR spectrum (ca. 300 s).

Table S15. Kinetics of the reactions of Ph_3P and **1c** (proton source: CT, ¹H NMR method, monitoring of the increasing signal for the CH_2 group in **3c** at 3.67 ppm, in CD_2Cl_2 , mesitylene as internal integration standard)

[Ph ₃ P] (M)	[1c] (M)	[CT] (M)	$k_{\rm obs}$ (s ⁻¹)	0.0015 y = 0.0190x + 5E-05
2.29 × 10 ⁻²	2.36×10^{-3}	1.13×10^{-2}	4.70×10^{-4}	$R^2 = 0.9956$
3.81×10^{-2}	3.15×10^{-3}	6.45×10^{-3}	8.09×10^{-4}	22 23 24 24 24 24 24 24 24 24 24 24 24 24 24
5.64 × 10 ⁻²	5.12 × 10 ⁻³	1.05 × 10 ⁻²	1.10 × 10 ⁻³	~ 0.0005
6.90 × 10 ⁻²	6.69×10^{-3}	1.37 × 10 ⁻²	1.37 × 10 ⁻³	
$k_2 = 1.90 \times 10^{-2} \mathrm{M}^{-1} \mathrm{s}^{-1}$				0 0.02 0.04 0.06 0.08 [Ph ₃ P] (M)

³¹P NMR spectroscopic analysis indicated selective conversion of **1c** to **3c** under the conditions of the kinetic experiments (Figure S20).

Figure S20. ³¹P NMR (162 MHz) spectrum of the sample with $[Ph_3P]_0 = 38.1 \text{ mM}$, $[1c]_0 = 3.15 \text{ mM}$ and $[CT]_0 = 6.45 \text{ mM}$ in CD_2Cl_2 after completion of their reaction.
5.2.2.4 Kinetics of the reaction of Ph₃P with 3-vinylidenedihydrofuran-2(3H)-one (1d)

Table S16. Kinetics of the reactions of Ph_3P and **1d** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1d** at 5.28–5.27 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph ₃ P] (M)	[1d] (M)	[CT] (M)	k _{obs} (s ⁻¹)	0.002 r	
2.34 × 10 ⁻²	2.26 × 10 ⁻³	9.34 × 10 ⁻³	5.59 × 10 ⁻⁴	y = 0.0233x - 9E- 0.0015 - B ² = 0.9977	.06
3.62×10^{-2}	3.01×10^{-3}	1.04×10^{-2}	8.01 × 10 ⁻⁴	([-]) 0.001 - (1000)	
4.69×10^{-2}	4.52×10^{-3}	1.37×10^{-2}	1.09 × 10 ⁻³	0.0005	
6.02×10^{-2}	5.65×10^{-3}	1.81×10^{-2}	1.40×10^{-3}	0	
7.05×10^{-2}	6.78×10^{-3}	2.09×10^{-2}	1.64 × 10 ⁻³	0 0.02 0.04	0.06 0.08
	$k_2 = 2.33 \times$	10 ⁻² M ⁻¹ s ⁻¹		[P11 ₃ P] (IV	1)

³¹P NMR spectroscopic analysis indicated selective conversion of **1d** to **3d** under the conditions of the kinetic experiments (Figure S21).

Figure S21. ³¹P NMR (162 MHz) spectrum of a sample with $[Ph_3P]_0 = 141 \text{ mM}$, $[1d]_0 = 12.7 \text{ mM}$ and $[CT]_0 = 25.9 \text{ mM}$ in CD_2Cl_2 after completion of their reaction.

5.2.2.5 Kinetics of the reaction of Ph₃P with methyl buta-2,3-dienoate (1e)

Table S17. Kinetics of the reactions of Ph_3P and **1e** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1e** at 5.22 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph₃P] (M)	[1e] (M)	[CT] (M)	k _{obs} (s ⁻¹)	0.004 $v = 0.0110x - 0.0001$
1.15×10^{-1}	1.03×10^{-2}	2.09×10^{-2}	1.13 × 10 ⁻³	$R^2 = 0.9996$
1.95×10^{-1}	1.29×10^{-2}	2.68×10^{-2}	1.98×10^{-3}	<u>ن</u> <u>چ</u> 0.002
2.71×10^{-1}	1.54×10^{-2}	3.13×10^{-2}	2.87 × 10 ⁻³	0.001
3.43×10^{-1}	1.80×10^{-2}	3.57×10^{-2}	3.63 × 10 ⁻³	
	<i>k</i> ₂ = 1.10 ×	10 ⁻² M ⁻¹ s ⁻¹		0 0.1 0.2 0.3 0.4 [Ph ₃ P] (M)

5.2.2.6 Kinetics of the reaction of Ph₃P with ethyl buta-2,3-dienoate (1f)

Table S18. Kinetics of the reactions of Ph_3P and **1f** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1f** at 5.21 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph ₃ P] (M)	[1f] (M)	[CT] (M)	$k_{\rm obs}$ (s ⁻¹)	0.003
1.75 × 10 ⁻¹	1.82×10^{-2}	3.71 × 10 ⁻²	1.56 × 10 ⁻³	· · · 0.002
2.34×10^{-1}	1.82×10^{-2}	3.71×10^{-2}	1.99×10^{-3}	spa (2)
2.90×10^{-1}	2.90×10^{-2}	5.93 × 10 ⁻²	2.44×10^{-3}	y = 7.67E-03x + 2.10E-04
3.48×10^{-1}	2.90×10^{-2}	5.93 × 10 ⁻²	2.88 × 10 ⁻³	$R^2 = 0.9992$
	k ₂ = 7.67 ×	10 ⁻³ M ⁻¹ s ⁻¹		0 0.1 0.2 0.3 0.4 [Ph ₃ P] (M)

Our attempts to generate zwitterion 2f in order to determine the rate constant of the Ph₃Pretroaddition did not allow us to measure the kinetics of the C-P bond cleavage reaction. Already the first ¹H NMR spectrum recorded after mixing the vinylphosphonium triflate 3f with 4 equiv of potassium *tert*-butoxide in DMSO showed quantitative conversion to free Ph₃P and polymerised 1f(Figure S22). Subsequent ¹³C and ³¹P NMR spectroscopic analysis of this sample confirmed this interpretation (Figure S23 and S24).

$$\begin{array}{ccc} Ph_{3}P^{\textcircled{\bullet}} & TfO^{\textcircled{O}} & \underbrace{KOtBu}_{CO_{2}Et} & \underbrace{Ph_{3}P^{\textcircled{\bullet}}}_{CO_{2}Et} & \bigoplus_{CO_{2}Et} \end{array} \xrightarrow{Ph_{3}P} & Ph_{3}P & + \mathbf{1f} \\ \textbf{3f} & \textbf{2f} \end{array}$$

Figure S22. Comparison of the 400 MHz ¹H NMR spectrum of the **3f**/KOtBu mixture with that of Ph₃P (d_6 -DMSO).

Figure S23. Comparison of the 101 MHz ¹³C NMR spectrum of the **3f**/KOtBu mixture with that of Ph₃P (d_6 -DMSO).

Figure S24. Comparison of the 162 MHz ³¹P NMR spectrum of the **3f**/KO*t*Bu mixture with that of Ph₃P (d_6 -DMSO).

5.2.2.7 Kinetics of the reaction of Ph₃P with ethyl penta-2,3-dienoate (1g)

Table S19. Kinetics of the reactions of Ph_3P and **1g** (proton source: CT, ¹H NMR method, monitoring of the increasing signal for the OCH₂CH₃ group in **3g** at 1.07 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph₃P] (M)	[1g] (M)	[CT] (M)	$k_{\rm obs}$ (s ⁻¹)	0.001 F $y = 8.055.02y + 2.265.05 = -$
2.97 × 10 ⁻²	2.66×10^{-3}	6.14×10^{-3}	2.58 × 10 ⁻⁴	$0.0008 - R^2 = 0.9998$
4.00×10^{-2}	3.96×10^{-3}	8.32 × 10 ⁻³	3.48×10^{-4}	(T) 0.0006 -
6.44 × 10 ⁻²	6.34×10^{-3}	1.43 × 10 ⁻²	5.44 × 10 ⁻⁴	<u>َة</u> 0.0004
8.96×10^{-2}	8.72 × 10 ⁻³	1.78 × 10 ⁻²	7.49×10^{-4}	0.0002
1.14×10^{-1}	1.11×10^{-2}	2.24×10^{-2}	9.37×10^{-4}	0 0.04 0.08 0.12
	<i>k</i> ₂ = 8.05 ×	10 ⁻³ M ⁻¹ s ⁻¹		[PN ₃ P] (NI)

5.2.2.8 Kinetics of the reaction of Ph₃P with *tert*-butyl buta-2,3-dienoate (1h)

Table S20. Kinetics of the reactions of Ph_3P and **1h** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1h** at 5.16 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph₃P] (M)	[1h] (M)	[CT] (M)	$k_{\rm obs}~({\rm s}^{-1})$	0.0006 [$y = 3.305.027$ 8.065.06
8.77 × 10 ⁻²	8.56 × 10 ⁻³	1.78 × 10 ⁻²	2.01 × 10 ⁻⁴	$\begin{array}{c} 0.0005 \\ R^2 = 0.9999 \end{array}$
1.31×10^{-1}	1.29 × 10 ⁻²	2.66 × 10 ⁻²	3.06×10^{-4}	
1.73 × 10 ⁻¹	1.43 × 10 ⁻²	2.87 × 10 ⁻²	4.08×10^{-4}	v [°] 0.0002 − v 1
2.12 × 10 ⁻¹	2.00×10^{-2}	4.09×10^{-2}	4.98×10^{-4}	
	k ₂ = 2.39 ×	10 ⁻³ M ⁻¹ s ⁻¹		0 0.06 0.12 0.18 0.24 [Ph ₃ P] (M)

5.2.2.9 Kinetics of the reaction of Ph₃P with diethyl 2-vinylidenesuccinate (1i)

Table S21. Kinetics of the reactions of Ph_3P and **1i** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1i** at 5.21 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph ₃ P] (M)	[1i] (M)	[CT] (M)	k _{obs} (s ⁻¹)	0.0015	y = 4.59)E-03x - 1.	53E-05	
8.62 × 10 ⁻²	8.40 × 10 ⁻³	1.80 × 10 ⁻²	3.80 × 10 ⁻⁴	<u>,</u> 0.001	R R	² = 0.9996	5	
1.49×10^{-1}	1.42×10^{-2}	2.98×10^{-2}	6.66 × 10 ⁻⁴	s) operations (s)		~		
2.06×10^{-1}	1,57 × 10 ⁻²	3.14×10^{-2}	9.41×10^{-4}	~ 0.0005	· /			
2.57×10^{-1}	1.57 × 10 ⁻²	3.13×10^{-2}	1.16 × 10 ⁻³	0			0.2	
$k_2 = 4.59 \times 10^{-3} \mathrm{M}^{-1} \mathrm{s}^{-1}$					υι	.1 [Ph ₃ P] (N	0.2 Л)	0.3

³¹P NMR spectroscopic analysis indicated selective conversion of **1i** to **3i** under the conditions of the kinetic experiments (Figure S25).

Figure S25. ³¹P NMR (162 MHz) spectrum of a sample with $[Ph_3P]_0 = 118 \text{ mM}$, $[1i]_0 = 11.2 \text{ mM}$ and $[CT]_0 = 22.8 \text{ mM}$ in CD_2Cl_2 after completion of their reaction.

5.2.2.10 Kinetics of the reaction of Ph₃P with ethyl 2-methylbuta-2,3-dienoate (1j)

Table S22. Kinetics of the reactions of Ph_3P and **1j** (proton source: CT, ¹H NMR method, monitoring of the decreasing signal for the =CH₂ group in **1j** at 5.05 ppm, in CD₂Cl₂, mesitylene as internal integration standard)

[Ph ₃ P] (M)	[1j] (M)	[CT] (M)	k _{obs} (s ⁻¹)	0.00015	y = 3.49E-04x + 2.02E-06
1.16 × 10 ⁻¹	1.13 × 10 ⁻²	2.38 × 10 ⁻²	4.14 × 10 ⁻⁵	<u>,</u> 0.0001	R ² = 0.9979
1.96×10^{-1}	1.51×10^{-2}	3.13×10^{-2}	7.28 × 10 ⁻⁵	obs (S ⁻	×
3.06×10^{-1}	1.51×10^{-2}	3.13×10^{-2}	1.07×10^{-4}	<i>∝</i> 0.00005 ·	
3.82 × 10 ⁻¹	1.78 × 10 ⁻²	3.75 × 10 ⁻²	1.36 × 10 ⁻⁴	0 l	
$k_2 = 3.49 \times 10^{-4} \mathrm{M}^{-1} \mathrm{s}^{-1}$				C	$0.1 0.2 0.3 0.4 [Ph_3P] (M)$

³¹P NMR spectroscopic analysis indicated selective conversion of **1j** to **3j** under the conditions of the kinetic experiments (Figure S26).

Figure S26. ³¹P NMR (162 MHz) spectrum of a sample with $[Ph_3P]_0 = 118 \text{ mM}$, $[1j]_0 = 10.8 \text{ mM}$ and $[CT]_0 = 19.8 \text{ mM}$ in CD_2Cl_2 after completion of their reaction.

5.3 Kinetics of the reactions of tributylphosphine with Michael acceptors 4

5.3.1 Kinetics of the reaction of Bu₃P with 4a

Table S23. Kinetics of the reactions of Bu_3P and **4a** (proton source: TBPT, conventional UV-Vis method, detection at 376 nm, in CH_2CI_2)

[Bu ₃ P] (M)	[4 a] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.0008	
5.13 × 10 ⁻³	3.13 × 10 ⁻⁵	1.59×10^{-4}	1.51×10^{-4}	0.0006	$R^2 = 0.99999$
1.01×10^{-2}	3.09×10^{-5}	1.57×10^{-4}	2.98×10^{-4}	^{'د} ۾ 0.0004	
1.54×10^{-2}	3.14×10^{-5}	1.59×10^{-4}	4.60×10^{-4}	× 0.0002	
2.05×10^{-2}	3.14 × 10 ⁻⁵	1.59×10^{-4}	6.17×10^{-4}	0	
	$k_2 = 3.03 \times$	10 ⁻² M ⁻¹ s ⁻¹			0 0.007 0.014 0.021 [Bu ₃ P] (M)

5.3.2 Kinetics of the reaction of Bu₃P with 4b

Table S24. Kinetics of the reactions of Bu_3P and **4b** (proton source: TBPT, conventional UV-Vis method, detection at 312 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4b] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.001 F	-
1.69×10^{-3}	6.34×10^{-5}	0	2.78 × 10 ⁻⁴	y = 0.1373x + 6E-0 0.0008 $R^2 = 0.9962$	15
1.85×10^{-3}	6.27 × 10 ⁻⁵	3.10×10^{-4}	3.05×10^{-4}	F_S 0.0006	
3.50×10^{-3}	6.22×10^{-5}	0	5.71×10^{-4}	v ⁸ 0.0004 -	
5.07×10^{-3}	6.02×10^{-5}	2.98×10^{-4}	7.53×10^{-4}	0.0002	
6.76×10^{-3}	6.01×10^{-5}	2.98×10^{-4}	9.77 × 10 ⁻⁴	0 0.0035	0.007
	$k_2 = 1.37 \times$	10 ⁻¹ M ⁻¹ s ⁻¹			

5.3.3 Kinetics of the reaction of Bu3P with 4c

Table S25. Kinetics of the reactions of Bu_3P and **4c** (proton source: TBPT, conventional UV-Vis method, detection at 291 nm, in CH_2CI_2)

[Bu ₃ P] (M)	[4c] (M)	[TBPT] (M)	$k_{\rm obs}$ (s ⁻¹)	0.0012 r
1.25 × 10 ⁻³	4.61 × 10 ⁻⁵	2.30×10^{-4}	3.29×10^{-4}	0.001 - y = 0.2076x + 6E-05
1.78×10^{-3}	4.20 × 10 ⁻⁵	0	4.13×10^{-4}	r = 0.0008
2.48×10^{-3}	4.57 × 10 ⁻⁵	2.29×10^{-4}	5.69×10^{-4}	∞ 0.0004 -
3.67 × 10 ⁻³	4.50 × 10 ⁻⁵	2.25×10^{-4}	8.11×10^{-4}	0.0002
4.51×10^{-3}	4.43×10^{-5}	2.22×10^{-4}	1.00×10^{-3}	0 0.0025 0.005
	$k_2 = 2.08 \times$	10 ⁻¹ M ⁻¹ s ⁻¹		[543:](11)

5.3.4 Kinetics of the reaction of Bu₃P with 4d

Table S26. Kinetics of the reactions of Bu_3P and **4d** (proton source: TBPT, conventional UV-Vis method, detection at 280 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[4d] (M)	[TBPT] (M)	<i>k</i> _{obs} (s ⁻¹)	0.0018
1.13 × 10 ⁻³	1.08×10^{-4}	5.35×10^{-4}	4.33 × 10 ⁻⁴	$r = 0.0012$ $R^2 = 0.9989$
2.24 × 10 ⁻³	1.07×10^{-4}	5.28×10^{-4}	8.31×10^{-4}	^{bbs} (5-
3.24 × 10 ⁻³	1.01×10^{-4}	5.18×10^{-4}	1.18 × 10 ⁻³	~ 0.0006
4.25 × 10 ⁻³	1.02×10^{-4}	5.02×10^{-4}	1.59 × 10 ⁻³	0
	<i>k</i> ₂ = 3.69 ×	10 ⁻¹ M ⁻¹ s ⁻¹		0 0.0015 0.003 0.0045 [Bu ₃ P] (M)

5.3.5 Kinetics of the reaction of Bu₃P with 4e

Table S27. Kinetics of the reactions of Bu_3P and **4e** (proton source: TBPT, conventional UV-Vis method, detection at 274 nm, in CH_2CI_2)

[Bu₃P] (M)	[4e] (M)	[TBPT] (M)	$k_{\rm obs}~({\rm s}^{-1})$	0.005
1.24 × 10 ⁻³	5.60 × 10 ⁻⁵	0	1.27 × 10 ⁻³	$\begin{array}{c} 0.004 \\ \hline R^2 = 0.9987 \end{array}$
1.90×10^{-3}	5.54 × 10 ⁻⁵	2.75×10^{-4}	1.84×10^{-3}	ි 0.003 - දී 0.002 -
3.63×10^{-3}	5.45 × 10 ⁻⁵	2.70×10^{-4}	3.50×10^{-3}	0.001
4.77×10^{-3}	5.37 × 10 ⁻⁵	2.67×10^{-4}	4.73 × 10 ⁻³	
	$k_2 = 9.79 \times$	10 ⁻¹ M ⁻¹ s ⁻¹		- 0 0.0025 0.005 [Bu ₃ P] (M)

5.3.6 Kinetics of the reaction of Bu₃P with 4f

Table S28. Kinetics of the reactions of Bu_3P and **4f** (proton source: TBPT, conventional UV-Vis method, detection at 282 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4f] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.01
9.26 × 10 ⁻⁴	3.92 × 10⁻⁵	1.97 × 10 ⁻⁴	2.24 × 10 ⁻³	$\begin{array}{c} 0.008 \\ R^2 = 0.9997 \\ R^2 = 0.9997 \end{array}$
1.82×10^{-3}	3.86 × 10 ⁻⁵	1.94×10^{-4}	4.69 × 10 ⁻³	
2.71×10^{-3}	3.83×10^{-5}	1.92×10^{-4}	6.89×10^{-3}	0.002
3.62×10^{-3}	3.83 × 10 ⁻⁵	1.93×10^{-4}	9.31 × 10 ⁻³	
	k ₂ = 2.62	$L M^{-1} s^{-1}$		0 0.001 0.002 0.003 0.004 [Bu ₃ P] (M)

5.3.7 Kinetics of the reaction of Bu₃P with 4g

Table S29. Kinetics of the reactions of Bu_3P and 4g (proton source: TBPT, conventional UV-Vis method, detection at 300 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[4 g] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.004 y = 3.2087x - 4E-06
4.17×10^{-4}	4.00×10^{-5}	2.12×10^{-4}	1.33 × 10 ⁻³	$R^2 = 0.9989$
6.29×10^{-4}	4.01×10^{-5}	2.13×10^{-4}	2.04×10^{-3}	<u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>الح</u> <u>ا</u> <u>ا</u> <u>ا</u> <u>ا</u> <u>ا</u> <u>ا</u> <u>ا</u> <u>ا</u> <u>ا</u> <u>ا</u>
8.30×10^{-4}	3.98 × 10 ⁻⁵	2.11×10^{-4}	2.62 × 10 ⁻³	0.001
1.04×10^{-3}	3.97 × 10 ⁻⁵	2.11×10^{-4}	3.35 × 10 ⁻³	0
<i>k</i> ₂ = 3.21 M ⁻¹ s ⁻¹			0 0.0004 0.0008 0.0012 [Bu ₃ P] (M)	

5.3.8 Kinetics of the reaction of Bu₃P with 4h

Table S30. Kinetics of the reactions of Bu_3P and **4h** (proton source: TBPT, conventional UV-Vis method, detection at 383 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4h] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	0.0015	v = 1.8604x - 0.0002 .●
3.21 × 10 ⁻⁴	2.45 × 10 ⁻⁵	1.28×10^{-4}	4.44×10^{-4}	<u>.</u> 0.001	R ² = 0.9999
4.75×10^{-4}	2.42×10^{-5}	1.27×10^{-4}	7.37×10^{-4}	_{bbs} (s ⁻	×
6.34×10^{-4}	2.43 × 10 ⁻⁵	1.27×10^{-4}	1.03×10^{-3}	-×° 0.0005	×
7.86×10^{-4}	2.41 × 10 ⁻⁵	1.26×10^{-4}	1.31×10^{-3}	0	
<i>k</i> ₂ = 1.86 M ⁻¹ s ⁻¹				0	0.0005 0.001 [Bu ₃ P] (M)

5.3.9 Kinetics of the reaction of Bu₃P with 4i

Table S31. Kinetics of the reactions of Bu_3P and **4i** (proton source: TBPT, conventional UV-Vis method, detection at 353 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[4i] (M)	[TBPT] (M)	k _{obs} (s ⁻¹)	^{0.02} [
2.81 × 10 ⁻⁴	2.64 × 10 ⁻⁵	1.47 × 10 ⁻⁴	4.65 × 10 ⁻³	$\begin{array}{c} y = 19.889 x - 0.0008 \\ 0.015 - R^2 = 0.9988 \end{array}$
4.78×10^{-4}	4.19 × 10 ⁻⁵	2.18×10^{-4}	8.97 × 10 ⁻³	ر بي الم
6.75 × 10 ⁻⁴	4.18 × 10 ⁻⁵	2.17 × 10 ⁻⁴	1.26 × 10 ⁻²	×0.005 -
8.67×10^{-4}	4.15 × 10⁻⁵	2.16 × 10 ⁻⁴	1.64 × 10 ⁻²	0
	k ₂ = 1.99 ×	10 ¹ M ⁻¹ s ⁻¹		- 0 0.0005 0.001 [Bu ₃ P] (M)

5.3.10 Kinetics of the reaction of Bu_3P with 4j

Table S32. Kinetics of the reactions of Bu_3P and **4j** (without added proton source, stopped-flow method, detection at 249 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4j] (M)	k _{obs} (s ⁻¹)	
	3.11 × 10 ⁻³	2.06	$-\frac{8}{1}$ 8 $\sqrt{-19888} = 0.4602$
	4.14×10^{-3}	2.88	$R^2 = 0.9994$
2.21×10^{-4}	5.18 × 10 ⁻³	3.61	50 4 -
5.21 × 10	6.21×10^{-3}	4.45	* 2 - *
	8.28 × 10 ⁻³	6.20	
	9.32 × 10 ⁻³	6.99	0 0.005 0.01 [4j] (M)
	$x_2 = 7.99 \times 10^2 \text{ M}^{-1} \cdot \text{s}^{-1}$		_

5.3.11 Kinetics of the reaction of Bu_3P with 4k

Table S33. Kinetics of the reactions of Bu_3P and **4k** (without added proton source, stopped-flow method, detection at 294 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4k] (M)	k _{obs} (s ⁻¹)	4 r
3.13 × 10 ⁻⁴		8.88×10^{-1}	y = 3088.3x - 0.0873
4.92×10^{-4}		1.44	(
6.71×10^{-4}	3.12 × 10 ⁻⁵	1.99	
8.50×10^{-4}		2.47	
1.03×10^{-3}		3.14	0 0.0004 0.0008 0.0012
k2	$= 3.09 \times 10^3 \text{ M}^{-1} \text{ s}$	-1	– [bu ₃ r] (м)

5.3.12 Kinetics of the reaction of Bu₃P with 4I

Table S34. Kinetics of the reactions of Bu_3P and **4I** (without added proton source, stopped-flow method, detection at 522 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4I] (M)	$k_{\rm obs}~({\rm s}^{-1})$	4 -	
1.34 × 10 ⁻⁴		8.08 × 10 ⁻¹	y = 6976.4x - 0.1274	
2.24×10^{-4}		1.42	$(1)^{-1}$ $(1)^{-1}$ $(2)^{-1}$	
3.13×10^{-4}	6.19×10^{-6}	2.08		
4.03×10^{-4}		2.68		
4.92×10^{-4}		3.30	0 0.00025 0.0005	
k ₂	$= 6.98 \times 10^3 \text{ M}^{-1} \text{ s}$	-1	— [Bu ₃ P] (M)	

5.3.13 Kinetics of the reaction of Bu_3P with 4m

Table S35. Kinetics of the reactions of Bu_3P and **4m** (without added proton source, stopped-flow method, detection at 378 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4m] (M)	$k_{\rm obs}~({\rm s}^{-1})$	15 r		•
1.58×10^{-4}		4.33	y = 1	32456x - 0.8147 R ² = 0.9936	
2.37×10^{-4}		7.10	- 01 (s ⁻¹)		
3.15×10^{-4}	1.64 × 10 ⁻⁵	9.28	× 5 -	x	
3.94×10^{-4}		1.15×10^{1}	0	·	
4.73×10^{-4}		1.49×10^{1}	0	0.00025	0.0005
k2	$s = 3.25 \times 10^4 \text{ M}^{-1} \text{ s}$	-1	_	[Bu ₃ P] (W)	

5.3.14 Kinetics of the reaction of Bu_3P with 4n

Table S36. Kinetics of the reactions of Bu_3P and **4n** (without added proton source, stopped-flow method, detection at 344 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[4n] (M)	k _{obs} (s ⁻¹)	8 r 🌘
1.34×10^{-4}		1.94	- y = 16479x - 0.3373 6 R ² = 0.9987
2.24 × 10 ⁻⁴		3.29	
3.13×10^{-4}	1.15 × 10 ⁻⁵	4.83	
4.03×10^{-4}		6.20	
4.92×10^{-4}		7.86	0 0.00025 0.0005
k ₂	$= 1.65 \times 10^4 \text{ M}^{-1} \text{ s}$	-1	

5.3.15 Kinetics of the reaction of Bu_3P with 40

Table S37. Kinetics of the reactions of Bu_3P and **40** (without added proton source, stopped-flow method, detection at 321 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4o] (M)	k _{obs} (s ⁻¹)	250 r		
2.68×10^{-4}		6.44×10^{1}		= 271234x - 8.8782 R ² = 0.9998	•
4.03×10^{-4}		9.92×10^{1}	(²⁻¹) 150 -	A A	
5.37×10^{-4}	2.71 × 10 ⁻⁵	1.37×10^{2}	్లో 100 -		
6.71×10^{-4}		1.74×10^{2}	50		
8.05×10^{-4}		2.09×10^{2}	0	0.0005	0.001
k2	$x = 2.71 \times 10^5 \text{ M}^{-1} \text{ s}$	-1	_	[Du ₃ P] (IVI)	

5.3.16 Kinetics of the reaction of Bu₃P with 4p

first mixer: generation of a known concentration of Bu₃P

TBPT (excess) +
$$Et_3N$$

 H_2Cl_2
 $Bu_3P + TBPT + Et_3NH^+ TfO^-$

Table S38. Kinetics of the reactions of Bu_3P and 4p (Bu_3P was generated by the deprotonation of TBPT with NEt₃ in the first step of the sequential mixing stopped-flow method, detection at 640 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[4p] (M)	k _{obs} (s ⁻¹)	4 r
7.51 × 10 ⁻⁵		8.40×10^{-1}	y = 11272x + 0.0245
1.50×10^{-4}		1.74	R ² = 0.9977
1.88×10^{-4}	7.19×10^{-6}	2.20	
2.25×10^{-4}		2.53	0
2.63×10^{-4}		2.97	0 0.0001 0.0002 0.0003
	$k_2 = 1.13 \times 10^4 \text{ M}^{-1} \cdot \text{s}^{-1}$	1	— [Bu ₃ P] (M)

5.3.17 Kinetics of the reaction of Bu_3P with 4q

first mixer: generation of a known concentration of Bu₃P

TBPT (excess) +
$$Et_3N$$

 H_2Cl_2 $Bu_3P + TBPT + Et_3NH^+ TfO^-$

Table S39 Kinetics of the reactions of Bu_3P and **4q** (Bu_3P was generated by the deprotonation of TBPT with NEt₃ in the first step of the sequential mixing stopped-flow method, detection at 626 nm, in CH_2Cl_2)

[Bu ₃ P] (M)	[4q] (M)	$k_{\rm obs}~({\rm s}^{-1})$	
1.33 × 10 ⁻⁴		1.01×10^{1}	-50 $v = 89132x - 1.8045$
2.00×10^{-4}		1.60×10^{1}	$40 = R^2 = 0.9998$
2.67×10^{-4}	7 25 × 10-6	2.20×10^{1}	
3.34×10^{-4}	7.35 × 10 ⁻	2.80×10^{1}	10
4.00×10^{-4}		3.36×10^{1}	0
4.67×10^{-4}		4.00×10^{1}	0 0.00025 0.0005 [Bu ₃ P] (M)
	$k_2 = 8.91 \times 10^4 \text{ M}^{-1} \cdot \text{s}^{-2}$	L	_

5.3.18 Kinetics of the reaction of Bu₃P with 4r

first mixer: generation of a known concentration of Bu₃P

Table S40. Kinetics of the reactions of Bu_3P and 4r (Bu_3P was generated by the deprotonation of TBPT with NEt₃ in the first step of the sequential mixing stopped-flow method, detection at 613 nm, in CH_2Cl_2)

[Bu₃P] (M)	[4r] (M)	k _{obs} (s ⁻¹)	
6.42 × 10 ⁻⁵		7.53 × 10 ¹	300 y = 1.390E+06x - 1.538E+01
9.64 × 10 ⁻⁵		1.20×10^{2}	$R^2 = 0.9983$
1.28×10^{-4}	6.47×10^{-6}	1.56×10^{2}	ن 150 -
1.61×10^{-4}	0.47 × 10	2.10×10^{2}	≤ 100 50
1.93×10^{-4}		2.56×10^{2}	
2.25×10^{-4}		2.96×10^{2}	0 0.00008 0.00016 0.00024 [Bu ₃ P] (M)
	$k_2 = 1.39 \times 10^6 \text{ M}^{-1} \cdot \text{s}^{-1}$		

S63

6 Methyl Anion Affinities (MAA) and Phosphine Affinities (PA)

Methyl Anion Affinities (MAA). Using the same methodology employed successfully in earlier studies, ⁵² methyl anion affinities (MAAs) were calculated as the free energy at 298.15 K (ΔG_{sol}) for the reaction shown in equation S1. [MAA = (ΔG_{sol} of eqn S1)].

$$H_{3}C \underbrace{\bigcap_{\alpha} R^{4}}_{R^{2}} \xrightarrow{\Delta G_{sol}} H_{3}C^{\Theta} + \underbrace{CO_{2}R^{3}}_{R^{4}}; MAA = \Delta G_{sol}$$
(S1)

Geometry optimizations were performed at the B3LYP/6-31G(d,p) levels of theory.⁵ ¹⁹ ,⁵ ²⁰ Thermochemical corrections to Gibbs energies (corr. ΔG) and enthalpy (corr. ΔH) at 298.15 K were calculated using the rigid rotor/harmonic oscillator model without any scaling. Thermal corrections to Gibbs energies were alternatively evaluated using the quasi-harmonic approximation with a cutoff value of 100 cm⁻¹ (corr. qh- ΔG) using Goodvibes.⁵²¹

Single point total electronic energies (ΔE_{tot}) were subsequently calculated using a combination of the B3LYP hybrid functional and the larger 6-311++G(3df,2pd) basis set.^{520,522} Solvent effects on MAA values were estimated by adding single point solvation corrections (ΔG_{Solv}). ΔG_{Solv} was calculated for gas phase optimized geometries using the SMD continuum solvation model.⁵²³ Thermal corrections to Gibbs energies are identical to those calculated before.⁵²¹ The final free energy in solution (ΔG_{Sol}) is then obtained as:

 $\Delta G_{sol} [B3LYP/6-311++G(3df,2pd)] = \Delta E_{tot} [B3LYP/6-311++G(3df,2pd)] + corr. qh-\Delta G [B3LYP/6-31G(d,p)] + \Delta G_{solv} [SMD(DMSO)/B3LYP/6-31G(d,p)]$

Phosphine Affinities (PA) were calculated as the free energy at 298.15 K (ΔG_{sol}) for reaction shown in equation S2. [PA = (ΔG_{sol} of eqn S2)].

$$Ph_{3}P \xrightarrow{CO_{2}R^{3}}_{R^{2}} \xrightarrow{\Delta G_{sol}} Ph_{3}P \xrightarrow{+ CO_{2}R^{3}}_{R^{2}}; PA = \Delta G_{sol}$$
(S2)

Geometry optimizations were performed with a combination of the B3LYP hybrid functional⁵¹⁹ complemented by the D3 dispersion correction⁵²⁴ and the 6-31+G(d,p)⁵²⁰ basis set under implicit solvation that is implemented using polarizable continuum model^{5 25} (solvent=dichloromethane, radii=ua0). In the text and the tables, we refer to these settings as the PCM(DCM,ua0)/B3LYP-D3/6-31+G(d,p) level of theory. Thermochemical corrections to Gibbs energies (corr. ΔG) and enthalpies (corr. ΔH) at 298.15 K were calculated using the rigid rotor/harmonic oscillator model without any scaling. Thermal correction to Gibbs energies (corr. ΔG) are future treated for quasi-harmonic

approximation with cutoff value of 100 cm⁻¹ using Goodvibes (corr. qh- ΔG).^{S21} Free energies in solution have been corrected to a reference state of 1 mol/l at 298.15 K through addition of RTln(24.46) = +7.925 kJ mol⁻¹ (= 0.0030185 Hartree) to the gas phase (1 atm) free energies. The value for R = 8.31451 J K⁻¹ mol⁻¹.

All calculations have been performed with Gaussian 09, Rev. D.⁵²⁶

Table S41. Methyl anion affinities (kJ mol⁻¹, MAA) calculated at the SMD(DMSO)/B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G(d,p) level of theory for electrophiles **1a-1j** and **4t-4u**.

Flootrophilo	Internal	Bas	ed on Bes	st Conforn	ner	Based on Boltzmann Avg.						
Electrophile	Reference	ΔE_{tot}	∆H _{sol}	∆G _{sol} ^a	∆G _{sol} ^b	ΔE_{tot}	ΔH _{sol}	∆G _{sol} ^a	ΔG_{sol}^{b}			
1a	b3	254.9	234.6	182.4	183.1	254.7	234.5	182.5	183.3			
1b	b5	235.1	215.5	162.8	155.9	235.3	215.7	163.1	156.2			
1c	b14	237.3	217.2	165.6	162.9	237.1	217.0	165.5	162.8			
1d	d1	241.6	222.2	171.4	171.5	241.4	222.0	171.2	171.4			
1e	b2	237.9	218.1	168.3	169.2	237.0	217.4	167.6	168.7			
1f	b9	234.8	215.0	163.9	165.8	233.9	214.2	163.4	165.3			
1g	b13	220.2	202.0	152.4	152.7	220.4	202.3	152.7	153.4			
1h	b15	226.1	206.4	153.9	155.1	225.9	206.2	153.9	155.1			
1 i	b16	216.2	196.3	142.9	144.0	215.8	195.9	142.5	143.7			
1j	b11	207.4	187.6	133.1	133.5	207.9	188.1	133.6	134.0			
4t	e2	192.1	171.4	119.6	123.1	192.5	171.7	120.1	122.9			
4u	e5	216.1	194.1	144.4	141.1	215.7	194.4	144.6	141.0			

 a With Truhlar's quasi-harmonic approximation based (corr. qh- ΔG) thermal correction. b With

standard (corr. ΔG) thermal correction.

Table S42. Phosphine affinities (kJ mol⁻¹, PA) calculated at the PCM(DCM,ua0)/B3LYP-D3/6-31+G(d,p)level of theory for electrophiles 1a-1j.

Electrophile	Internal	Ва	sed on Be	est Confor	mer	Based on Boltzmann Avg.					
Electrophile	Reference	ΔE_{tot}	ΔH _{sol}	ΔG_{sol}^{a}	∆G _{sol} ^b	ΔE_{tot}	ΔH _{sol}	ΔG_{sol}^{a}	ΔG_{sol}^{b}		
1a	b3	65.6	56.1	-13.8	-15.7	64.6	54.9	-15.0	-15.9		
1b	b5	57.5	48.4	-21.4	-24.4	56.0	47.1	-22.6	-24.8		
1c	b14	54.7	46.1	-23.7	-23.4	54.1	45.5	-23.7	-23.1		
1d	d1	55.8	48.0	-15.8	-14.8	55.7	48.0	-15.9	-14.8		
1e	b2	45.8	37.6	-26.2	-26.7	45.3	37.1	-26.5	-27.2		
1f	b9	45.4	39.5	-29.4	-27.5	45.0	38.2	-29.8	-28.2		
1g	b13	45.5	37.9	-29.5	-27.9	45.9	38.1	-29.5	-27.7		
1h	b15	43.0	35.0	-33.1	-30.9	43.1	34.8	-33.3	-31.4		
1i	b16	55.6	46.2	-26.1	-25.9	55.1	45.9	-26.0	-26.3		
1j	b11	38.2	29.9	-38.8	-39.3	38.7	30.4	-38.3	-38.4		

^a With Truhlar's quasi-harmonic approximation based (corr. qh- Δ G) thermal correction. ^b With standard (corr. Δ G) thermal correction.

Figure S27. Phosphine affinities PA (= ΔG_{sol} , kJ mol⁻¹) calculated at the PCM(DCM,ua0)/B3LYP-D3/6-31+G(d,p) level of theory. PA values used here are Boltzmann averaged with Truhlar's quasi-harmonic approximation based (corr. qh- ΔG) thermal corrections (from Table S42).

			<u></u>	×	B3LYP\6-31G(d,p)											
SI	Mol.	Type ^a	File Name Internal Reference	ΔE_{tot} (hartree)	HOMO _E (hartree)	LUMO _E (hartree)	Fre	Low Frequency		corr. ZPE (hartree)	corr. Δ <i>H</i> (hartree)	corr. ΔG (hartree)	corr. $qh-\Delta G^b$ (hartree)	∆G _{Solv} ¢	ΔE_{tot}^{d} (hartree)	Rel. ΔG_{sol}^{e}
1	CH₃⁻	Ref.	ch3anion	-39.7960280	0.13514	0.37353	-29	0	0	0.027840	0.031650	0.008651	0.008651	-78.86	-39.8566373	0.0
2	1a	а	b3_2	-536.2852306	-0.23821	-0.04796	-7	-5	-3	0.151706	0.163245	0.113531	0.115692	-6.51	-536.4625979	0.0
3		а	b3_1	-536.2850363	-0.23821	-0.04769	-4	0	0	0.151697	0.163246	0.113691	0.115854	-6.60	-536.4623199	0.8
4		а	b3_3	-536.2774258	-0.24699	-0.04823	-4	0	0	0.151426	0.163026	0.112892	0.115429	-8.43	-536.4553970	10.2
5		а	b3_4	-536.2746318	-0.23990	-0.04880	-5	0	0	0.151322	0.162888	0.113686	0.115376	-8.29	-536.4527299	17.6
6		ma	ma_b3_3	-576.2722893	0.00062	0.12682	-10	-2	0	0.189411	0.202626	0.149500	0.151944	-48.10	-576.4757030	0.0
7		ma	ma_b3_6	-576.2653644	0.00453	0.12814	-5	0	0	0.189621	0.202750	0.149888	0.152214	-49.86	-576.4696981	9.1
8		ma	ma_b3_1	-576.2669971	0.00318	0.12594	0	0	0	0.189773	0.202793	0.150231	0.152689	-48.63	-576.4708625	12.4
9	1b	а	b5_3	-575.6025457	-0.24944	-0.03704	-9	-6	-2	0.180668	0.193687	0.137059	0.143322	-8.11	-575.7921399	0.0
10		а	b5_2	-575.6025513	-0.24860	-0.03739	-10	-4	0	0.180669	0.193673	0.138840	0.143305	-8.02	-575.7920488	0.6
11		а	b5_5	-575.6028220	-0.24577	-0.04012	-6	0	0	0.180694	0.193671	0.138773	0.143240	-7.62	-575.7918664	2.6
12		а	b5_4	-575.6037632	-0.24727	-0.03919	-5	0	0	0.181227	0.193953	0.141116	0.143884	-7.02	-575.7921996	5.9
13		а	b5_1	-575.6035430	-0.24701	-0.03854	-4	0	0	0.181201	0.193941	0.141147	0.143915	-7.13	-575.7919823	6.1
14		а	b5_7	-575.5886826	-0.24709	-0.04689	-5	-4	0	0.180359	0.193420	0.138954	0.142766	-10.42	-575.7783665	25.0
15		а	b5_6	-575.5899441	-0.25240	-0.04233	-7	0	0	0.180759	0.193545	0.140618	0.143570	-9.68	-575.7788268	29.0
16		ma	ma_b5_10	-615.5820501	0.01134	0.10428	-4	0	0	0.218343	0.232780	0.175863	0.179478	-50.12	-615.7970296	0.0
17		ma	ma_b5_8	-615.5820983	0.01177	0.10767	-4	-2	0	0.218810	0.233115	0.177360	0.179907	-50.02	-615.7962934	3.5
18		ma	ma_b5_1	-615.5771846	0.01349	0.10423	-4	0	0	0.218647	0.232947	0.176380	0.180226	-50.69	-615.7925760	11.3
19		ma	ma_b5_5	-615.5780057	0.01334	0.10755	-12	-4	0	0.219050	0.233230	0.177707	0.180487	-50.42	-615.7924501	13.4
20	1c	а	b14_5	-614.9321547	-0.22790	-0.03889	-6	-2	0	0.209769	0.224125	0.166913	0.170541	-8.25	-615.1308316	0.0
21		а	b14_1	-614.9316059	-0.22776	-0.03775	-3	-3	0	0.209719	0.224084	0.167029	0.170519	-8.51	-615.1303272	0.2
22		а	b14_7	-614.9319277	-0.22791	-0.03946	-6	-1	0	0.210034	0.224252	0.167689	0.170962	-7.95	-615.1301857	4.1
23		а	b14_6	-614.9319120	-0.22804	-0.03947	-9	-4	0	0.210024	0.224248	0.167531	0.170955	-7.95	-615.1301572	4.1
24		а	b14_3	-614.9314564	-0.22803	-0.03840	0	0	0	0.210030	0.224246	0.167794	0.171011	-8.18	-615.1297173	4.5
25		ma		-654.9174389	-0.00138	0.12458	-2	0	0	0.247510	0.263444	0.203919	0.206500	-47.78	-655.1405304	0.0
26		ma	ma_b14_10	-654.9180858	-0.00262	0.12351	-8	0	0	0.247757	0.263551	0.204461	0.206998	-47.12	-655.1402590	4.8
27		ma	ma_b14_9	-654.9180551	-0.00263	0.12351	-11	-7	0	0.247713	0.263519	0.204261	0.206923	-47.12	-655.1401746	4.8

Table S43. QM properties for gas phase optimised conformers of selected allenoates (**1a-j**, a) and their corresponding methyl anion adducts (ma). ^a Methyl anion adducts=ma, Allenoate=a. ^b Truhlar quasi-harmonic treatment was used for thermal corrections. ^c Single point solvation corrections (in kcal mol⁻¹) calculated at SMD(DMSO)/B3LYP/6-31G(d,p)//B3LYP/6-31G(d,p) level of theory. ^d Single point total electronic energies (ΔE_{tot}) calculated at B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G(d,p)] + ΔG_{solv} [SMD(DCM)/B3LYP/6-31G(d,p)].

20				CE 4 00020C4	0.005.00	0 1 2 0 0 2	0	F	-	0.2475.64	0.262420	0 202014	0.206760	40.50	CEE 4227002	15.0
28		ma	ma_b14_1	-654.9093864	-0.00566	0.12082	-9	-5	-5	0.247561	0.263428	0.203914	0.206769	-48.59	-055.1337883	15.0
29		ma	ma_b14_8	-654.9055867	0.00004	0.13255	-5	0	0	0.246841	0.262852	0.203089	0.205853	-50.58	-655.1296561	15.1
30		ma	ma_b14_11	-654.9063862	-0.00117	0.13158	-6	-2	0	0.247172	0.262972	0.204258	0.206445	-49.90	-655.1294304	20.1
31		ma	ma_b14_3	-654.9076026	-0.00617	0.12088	-7	-3	0	0.247724	0.263436	0.204597	0.207253	-48.33	-655.1312501	24.0
32		ma	ma_b14_4	-654.9077258	-0.00581	0.12058	0	0	0	0.247859	0.263523	0.204819	0.207366	-48.36	-655.1313123	24.0
33		ma	ma_b14_2	-654.8970912	-0.00430	0.13026	-6	-4	0	0.246868	0.262776	0.203722	0.205922	-51.97	-655.1226048	28.0
34		ma	ma_b14_6	-654.8955455	-0.00445	0.12991	-6	-2	0	0.246967	0.262796	0.203792	0.206278	-51.75	-655.1204626	35.5
35		ma	ma_b14_5	-654.8953944	-0.00483	0.13016	-6	0	0	0.246988	0.262758	0.204109	0.206433	-51.69	-655.1198853	37.7
36	1d	а	d1_1	-382.6511448	-0.26101	-0.04077	-7	0	0	0.107421	0.115538	0.075548	0.075767	-8.08	-382.7831211	0.0
37		ma	ma_d1_2	-422.6292500	0.02045	0.20083	-7	0	0	0.144768	0.154586	0.110891	0.111172	-50.78	-422.7894073	0.0
38		ma	ma_d1_1	-422.6229489	0.02595	0.20202	-13	-8	0	0.144846	0.154486	0.111420	0.111541	-52.83	-422.7826006	10.3
39	1e	а	b2_1	-344.5438333	-0.26749	-0.03802	-10	-4	-3	0.099406	0.108053	0.067112	0.067542	-4.50	-344.6669600	0.0
40		а	b2_2	-344.5441270	-0.26480	-0.03898	-7	-6	0	0.099484	0.108095	0.067212	0.067493	-4.29	-344.6671856	0.2
41		а	b2_3	-344.5299781	-0.26444	-0.04472	-9	0	0	0.099201	0.107814	0.066623	0.067471	-7.45	-344.6537030	22.3
42		ma	ma_b2_2	-384.5146697	0.02715	0.20713	-4	-3	0	0.136814	0.147217	0.101911	0.102692	-50.82	-384.6660460	0.0
43		ma	ma_b2_5	-384.5094172	0.02934	0.20724	-9	0	0	0.137115	0.147391	0.102557	0.103152	-52.47	-384.6620716	4.7
44		ma	ma_b2_1	-384.5107363	0.02849	0.20501	-9	0	0	0.137156	0.147382	0.102660	0.103448	-51.18	-384.6624460	9.9
45		ma	ma_b2_4	-384.5073991	0.02222	0.20420	-15	-4	0	0.137117	0.147217	0.102685	0.103663	-51.66	-384.6600719	14.7
46	1f	а	b9_3	-383.8659710	-0.26273	-0.03757	-11	-8	0	0.127844	0.137752	0.093202	0.094110	-4.78	-383.9992046	0.0
47		а	b9_1	-383.8656605	-0.26502	-0.03649	-6	0	0	0.127816	0.137737	0.093307	0.094346	-4.95	-383.9989643	0.5
48		а	b9_4	-383.8657690	-0.26358	-0.03816	-9	0	0	0.128117	0.137886	0.093854	0.094594	-4.51	-383.9985832	4.0
49		а	b9_2	-383.8655085	-0.26617	-0.03722	0	0	0	0.128127	0.137895	0.093993	0.094797	-4.66	-383.9983477	4.6
50		а	b9_5	-383.8522707	-0.26221	-0.04301	-7	-6	0	0.127553	0.137534	0.092545	0.093872	-7.69	-383.9861814	21.4
51		а	b9_6	-383.8509049	-0.26215	-0.04213	0	0	0	0.127832	0.137635	0.093328	0.094436	-7.81	-383.9845082	26.8
52		а	b9_7	-383.8508840	-0.26186	-0.03990	-9	-3	0	0.127589	0.137538	0.093060	0.093823	-6.71	-383.9844083	30.0
53		ma	ma_b9_4	-423.8366995	0.02535	0.20546	-9	-7	0	0.165292	0.176929	0.128194	0.129827	-50.78	-423.9976867	0.0
54		ma	ma_b9_10	-423.8314089	0.02758	0.20556	-10	-4	-1	0.165503	0.177047	0.128606	0.130016	-52.47	-423.9935981	4.2
55		ma	ma_b9_5	-423.8378318	0.02324	0.20347	0	0	0	0.165761	0.177116	0.129617	0.130641	-49.99	-423.9976439	5.6
56		ma	ma_b9_1	-423.8326363	0.02685	0.20334	-9	-3	0	0.165542	0.177043	0.128507	0.130322	-51.18	-423.9938176	9.8
57		ma	ma_b9_12	-423.8324293	0.02570	0.20378	-1	0	0	0.165970	0.177255	0.129970	0.130907	-51.71	-423.9935107	9.9
58		ma	ma_b9_7	-423.8295742	0.02079	0.20281	-9	-3	0	0.165466	0.176945	0.128864	0.130143	-51.66	-423.9919704	12.2
59		ma	ma_b9_2	-423.8338096	0.02475	0.20153	-11	-2	0	0.165979	0.177211	0.130106	0.131136	-50.33	-423.9938747	15.3
60		ma	ma_b9_9	-423.8281844	0.01990	0.20267	0	0	0	0.165738	0.177011	0.129754	0.130660	-51.24	-423.9895380	21.7

61	1g	а	b13_4	-423.1873427	-0.25287	-0.03345	-4	-3	0	0.156478	0.167929	0.119438	0.120828	-5.67	-423.3308445	0.0
62		а	b13_1	-423.1871602	-0.25640	-0.03219	-17	-5	-3	0.156363	0.167878	0.119086	0.120926	-5.79	-423.3307496	0.0
63		а	b13_3	-423.1870134	-0.25725	-0.03291	-12	-5	0	0.156660	0.168020	0.119874	0.121237	-5.48	-423.3301464	3.7
64		а	b13_6	-423.1871496	-0.25341	-0.03402	-6	0	0	0.156730	0.168062	0.119961	0.121159	-5.38	-423.3302159	3.7
65		а	b13_5	-423.1871460	-0.25343	-0.03405	-4	-1	0	0.156732	0.168055	0.120109	0.121111	-5.35	-423.3302040	3.8
66		ma	ma_b13_7	-463.1553748	0.02449	0.19933	-5	0	0	0.193108	0.206447	0.153452	0.155396	-50.43	-463.3257890	0.0
67		ma	ma_b13_10	-463.1564463	0.02263	0.19758	-12	-5	0	0.193429	0.206573	0.154283	0.156093	-49.63	-463.3257528	5.3
68		ma	ma_b13_1	-463.1483542	0.01973	0.19734	-8	-7	0	0.193296	0.206479	0.154059	0.155919	-51.30	-463.3202681	12.2
69		ma	ma_b13_12	-463.1493140	0.02096	0.20103	-3	0	0	0.193545	0.206481	0.155285	0.156487	-50.58	-463.3187082	20.8
70		ma	ma_b13_11	-463.1493565	0.02086	0.20076	-3	0	0	0.193500	0.206456	0.155140	0.156480	-50.45	-463.3186099	21.6
71		ma	ma_b13_3	-463.1469913	0.01882	0.19692	-12	-6	0	0.193496	0.206486	0.154867	0.156434	-50.81	-463.3175915	22.7
72		ma	ma_b13_2	-463.1413587	0.01784	0.20123	-6	0	0	0.193266	0.206257	0.154992	0.156069	-52.30	-463.3131548	27.1
73		ma	ma_b13_6	-463.1398811	0.01748	0.19978	-12	-10	-5	0.193308	0.206235	0.154975	0.156294	-51.96	-463.3109995	34.8
74		ma	ma_b13_5	-463.1397914	0.01667	0.20089	-10	-9	0	0.193380	0.206235	0.155334	0.156578	-51.87	-463.3103814	37.5
75	1h	а	b15_2	-462.5035176	-0.25679	-0.03576	-11	-7	0	0.183449	0.195942	0.146320	0.147271	-4.35	-462.6559840	0.0
76		а	b15_1	-462.5032082	-0.25877	-0.03459	-5	0	0	0.183440	0.195930	0.146414	0.147320	-4.51	-462.6556887	0.2
77		ma	ma_b15_2	-502.4757427	0.01959	0.19900	-4	0	0	0.221053	0.235116	0.182030	0.183413	-48.58	-502.6539346	0.0
78		ma	ma_b15_1	-502.4715450	0.02118	0.19670	-16	-11	-7	0.221248	0.235186	0.182429	0.183988	-48.99	-502.6499318	10.3
79	1 i	а	b16_7	-690.3824887	-0.26006	-0.03324	-5	-2	0	0.227746	0.244796	0.181394	0.185690	-9.02	-690.6189587	0.0
80		а	b16_8	-690.3815225	-0.25338	-0.03690	-3	0	0	0.227709	0.244789	0.181050	0.185853	-9.24	-690.6176437	3.0
81		а	b16_1	-690.3797924	-0.25602	-0.03523	-4	0	0	0.227742	0.244775	0.181516	0.186026	-9.44	-690.6157071	7.7
82		а	b16_6	-690.3799728	-0.26211	-0.03252	-1	0	0	0.228018	0.244898	0.182252	0.186213	-9.21	-690.6157431	9.0
83		а	b16_4	-690.3800104	-0.26240	-0.03213	-5	-2	0	0.227943	0.244846	0.182044	0.186146	-9.14	-690.6155928	9.5
84		а	b16_5	-690.3802253	-0.26199	-0.03195	-7	-5	0	0.227846	0.244811	0.181346	0.186110	-8.99	-690.6157012	9.8
85		а	b16_11	-690.3811994	-0.25466	-0.03777	-7	-2	0	0.228212	0.245023	0.182648	0.186599	-8.59	-690.6161774	11.5
86		а	b16_9	-690.3793030	-0.25668	-0.03622	-6	0	0	0.228164	0.244998	0.182180	0.186629	-8.89	-690.6143398	15.1
87		а	b16_2	-690.3790237	-0.25629	-0.03659	-5	-5	0	0.228317	0.245050	0.183188	0.186741	-8.83	-690.6140158	16.5
88		ma	ma_b16_12	-730.3576450	0.00917	0.15527	-10	-4	0	0.265518	0.284032	0.217542	0.222268	-49.36	-730.6193365	0.0
89		ma	ma_b16_2	-730.3563036	0.00966	0.15889	-12	-1	0	0.265731	0.284115	0.218284	0.222577	-49.45	-730.6180759	3.7
90		ma	ma_b16_8	-730.3546796	0.01030	0.15834	-4	-1	0	0.265706	0.284072	0.218485	0.222514	-50.66	-730.6160808	3.8
91		ma	ma_b16_10	-730.3585729	0.00738	0.15486	-8	-4	0	0.265925	0.284216	0.218627	0.223042	-48.48	-730.6191722	6.1
92		ma	ma_b16_6	-730.3563530	0.00904	0.15758	-8	0	0	0.266085	0.284318	0.219031	0.223089	-49.04	-730.6170496	9.5
93		ma	ma_b16_15	-730.3582709	0.00735	0.15287	-5	0	0	0.266226	0.284363	0.219483	0.223304	-48.39	-730.6182591	9.6

94		ma	ma_b16_11	-730.3586622	0.00677	0.15379	-6	0	0	0.266205	0.284373	0.219179	0.223426	-48.18	-730.6183127	10.7
95		ma	ma_b16_5	-730.3569348	0.00799	0.15615	-10	0	0	0.266462	0.284484	0.219961	0.223736	-48.50	-730.6170611	13.4
96		ma	ma_b16_7	-730.3569361	0.00793	0.15619	-4	0	0	0.266506	0.284485	0.220282	0.223829	-48.50	-730.6170333	13.7
97		ma	ma_b16_1	-730.3540099	0.00601	0.17316	-7	-5	0	0.265602	0.283957	0.218615	0.222618	-48.83	-730.6149116	14.8
98		ma	ma_b16_4	-730.3542372	0.00501	0.16945	0	0	0	0.266279	0.284263	0.220511	0.223685	-48.10	-730.6136965	23.8
99	1j	а	b11_3	-423.1875852	-0.25754	-0.03100	-9	0	0	0.155912	0.167440	0.119000	0.120363	-4.44	-423.3304022	0.0
100		а	b11_4	-423.1873664	-0.25819	-0.03162	-7	0	0	0.156203	0.167570	0.119892	0.120853	-4.21	-423.3297139	4.1
101		а	b11_1	-423.1856083	-0.25816	-0.02967	-5	0	0	0.155999	0.167442	0.119483	0.120720	-4.93	-423.3281430	4.8
102		а	b11_2	-423.1854317	-0.25856	-0.03039	-10	0	0	0.156242	0.167560	0.119931	0.121129	-4.59	-423.3275275	8.9
103		ma	ma_b11_10	-463.1505478	0.02436	0.20083	-11	-5	0	0.193874	0.206647	0.155819	0.157310	-49.39	-463.3200794	0.0
104		ma	ma_b11_5	-463.1516378	0.02241	0.19912	-17	0	0	0.194261	0.206806	0.156872	0.158107	-48.57	-463.3200936	5.5
105		ma	ma_b11_1	-463.1450568	0.02922	0.20247	0	0	0	0.193714	0.206541	0.155665	0.156862	-50.65	-463.3142054	9.0
106		ma	ma_b11_3	-463.1460068	0.02746	0.20078	-13	0	0	0.194031	0.206670	0.156356	0.157673	-49.84	-463.3140734	14.8
107	4t	а	e2_1	-1144.6604725	-0.25325	-0.07526	-4	-3	0	0.241158	0.258291	0.194102	0.199002	-12.79	-1144.9686985	0.0
108		а	e2_2	-1144.6547663	-0.25776	-0.07343	-31	-11	-5	0.240884	0.257228	0.195835	0.199360	-14.71	-1144.9650800	2.4
109		ma	ma_e2_2	-1184.6230863	-0.05639	0.10814	-7	-4	0	0.278568	0.297370	0.229421	0.235239	-53.72	-1184.9589197	0.0
110		ma	ma_e2_1	-1184.6229082	-0.05364	0.10930	-4	0	0	0.278565	0.297331	0.229693	0.235282	-53.62	-1184.9591214	0.0
111		ma	ma_e2_4	-1184.6223730	-0.05529	0.10927	-12	-4	-1	0.278505	0.297352	0.228913	0.235296	-53.73	-1184.9588237	0.4
112		ma	ma_e2_8	-1184.6163866	-0.05721	0.10918	-5	0	0	0.278739	0.297480	0.230630	0.235526	-54.26	-1184.9513732	18.3
113		ma	ma_e2_10	-1184.6149012	-0.05507	0.11151	-8	0	0	0.278770	0.297557	0.229575	0.235759	-54.63	-1184.9497771	21.6
114		ma	ma_e2_12	-1184.6164873	-0.03978	0.10929	-3	0	0	0.278797	0.297517	0.230615	0.235375	-53.37	-1184.9499128	25.5
115		ma	ma_e2_11	-1184.6159449	-0.03960	0.10976	-7	0	0	0.278693	0.297479	0.229779	0.235273	-53.49	-1184.9495971	25.5
116	4u	а	e5_1	-1387.2683067	-0.23897	-0.08281	-5	-3	0	0.250831	0.270489	0.200762	0.206356	-13.05	-1387.6662036	0.0
117		а	e5_3	-1387.2683063	-0.23897	-0.08282	-9	-5	0	0.250782	0.269546	0.202878	0.207054	-13.05	-1387.6662033	1.8
118		ma	ma_e5_2	-1427.2481016	-0.02865	0.06069	-9	0	0	0.288280	0.309565	0.237986	0.242296	-49.76	-1427.6723115	0.0
119		ma	ma_e5_1	-1427.2458821	-0.03243	0.06313	-4	0	0	0.288307	0.309691	0.237576	0.242198	-49.17	-1427.6698618	8.6
120		ma	ma_e5_3	-1427.2410800	-0.02518	0.05234	0	0	0	0.288067	0.309486	0.236984	0.241913	-51.61	-1427.6648273	10.9
121		ma	ma_e5_4	-1427.2418801	-0.02634	0.05595	-11	-4	-1	0.288287	0.309685	0.237139	0.242283	-50.34	-1427.6658762	14.4

				PCM(DCM,ua0)/B3LYP-D3/6-31+G(d,p)											
SI	Mol.	Type ^a	File Name Internal Reference	$\frac{\Delta E_{\rm tot}}{\rm (hartree)}$	HOMO _E (hartree)	LUMO _E (hartree)	I	Low Frequency		corr. ZPE (hartree)	corr. Δ <i>H</i> (hartree)	$\begin{array}{c} \text{corr.} \\ \Delta G \\ \text{(hartree)} \end{array}$	corr. $qh-\Delta G^b$ (hartree)	Rel. ΔG_{Sol}^{c}	
1	PPh3	Ref.	p1_3	-1036.3867840	-0.22445	-0.03450	0	0	0	0.272896	0.289760	0.226637	0.231592	0.0	
2	1a	а	b3_2	-536.3288171	-0.25968	-0.06174	-16	-6	0	0.150655	0.162288	0.111760	0.114650	0.0	
3		а	b3_1	-536.3285250	-0.25914	-0.06290	-16	-5	0	0.150628	0.162259	0.112103	0.114697	0.9	
4		а	b3_3	-536.3240374	-0.26048	-0.06779	-13	0	0	0.150539	0.162147	0.111890	0.114551	12.3	
5		а	b3_4	-536.3224907	-0.25503	-0.06410	-11	0	0	0.150490	0.162045	0.112790	0.114695	16.7	
6		ра	pa_b3_200	-1572.7375669	-0.17432	-0.05627	-3	0	0	0.428062	0.455675	0.369964	0.376470	0.0	
7		ра	pa_b3_8	-1572.7358786	-0.17675	-0.05364	-10	-6	0	0.427586	0.455418	0.367655	0.375833	2.8	
8		ра	pa_b3_7	-1572.7349136	-0.17545	-0.05307	-7	-4	0	0.427545	0.455409	0.367212	0.375774	5.1	
9		ра	pa_b3_13	-1572.7349749	-0.17681	-0.06118	-12	0	0	0.427655	0.455639	0.366778	0.375988	5.5	
10		ра	pa_b3_12	-1572.7336307	-0.17508	-0.06149	-7	0	0	0.427521	0.455531	0.366376	0.375470	7.7	
11		ра	pa_b3_4	-1572.7332041	-0.17651	-0.05374	-5	0	0	0.427587	0.455427	0.367411	0.375719	9.5	
12		ра	pa_b3_10	-1572.7252180	-0.17813	-0.05821	-12	-11	0	0.427035	0.455034	0.366263	0.375054	28.7	
13	1b	а	b5_5	-575.6519010	-0.26129	-0.05682	-13	-3	0	0.179916	0.192871	0.138806	0.142401	0.0	
14		а	b5_2	-575.6517700	-0.26159	-0.05731	-2	0	0	0.179927	0.192852	0.139278	0.142512	0.6	
15		а	b5_4	-575.6518587	-0.26032	-0.05669	-11	0	0	0.180240	0.193029	0.139677	0.142899	1.4	
16		а	b5_1	-575.6517246	-0.26033	-0.05705	-8	0	0	0.180196	0.192997	0.139633	0.142926	1.8	
17		а	b5_6	-575.6427432	-0.26010	-0.06457	-25	-10	0	0.179808	0.192659	0.139093	0.142646	24.7	
18		а	b5_7	-575.6419924	-0.26341	-0.06465	-9	0	0	0.179760	0.192752	0.138870	0.142249	25.6	
19		ра	pa_b5_154	-1612.0575812	-0.16728	-0.05621	-8	-4	0	0.457165	0.486125	0.397330	0.404066	0.0	
20		ра	pa_b5_111	-1612.0569534	-0.16994	-0.05473	-8	0	0	0.457070	0.485981	0.397164	0.404144	1.9	
21		ра	pa_b5_1	-1612.0569154	-0.16686	-0.05776	-1	0	0	0.457239	0.486185	0.397345	0.404146	2.0	
22		ра	pa_b5_143	-1612.0568299	-0.16777	-0.05419	-10	-1	0	0.456981	0.485988	0.396192	0.404175	2.3	
23		ра	pa_b5_158	-1612.0565335	-0.17006	-0.05107	-12	-4	0	0.457059	0.485922	0.396696	0.404298	3.4	
24		ра	pa_b5_151	-1612.0563183	-0.16874	-0.05074	-8	0	0	0.456940	0.485788	0.397188	0.404086	3.4	
25		ра	pa_b5_4	-1612.0560393	-0.16833	-0.05416	0	0	0	0.456871	0.485890	0.396201	0.403978	3.8	
26		ра	pa_b5_116	-1612.0562405	-0.16959	-0.05120	-9	-4	0	0.457095	0.486088	0.395302	0.404250	4.0	

Table S44. QM properties for gas phase optimized conformers of selected allenoates (**1a-j**, a) and their corresponding PPh₃ adducts (pa). ^a PPh₃ adducts=pa, Allenoate=a. ^b Truhlar quasi-harmonic treatment was used for thermal corrections. ^c Relative Gibbs energies (Rel. ΔG_{sol}) = ΔE_{tot} + corr. qh- ΔG calculated at PCM(DCM,ua0)/B3LYP-D3/6-31+G(d,p) level of theory.
27		ра	pa_b5_115	-1612.0535517	-0.16812	-0.05142	-10	-8	0	0.456517	0.485837	0.393104	0.403109	8.1
28		ра	pa_b5_137	-1612.0522463	-0.17345	-0.05091	-13	-7	0	0.457170	0.486032	0.396413	0.404395	14.9
29		ра	pa_b5_120	-1612.0519109	-0.17256	-0.05072	-14	-7	0	0.457133	0.486094	0.395643	0.404327	15.6
30		ра	pa_b5_110	-1612.0508626	-0.17316	-0.05713	-9	-8	-4	0.456254	0.485411	0.395397	0.403291	15.6
31		ра	pa_b5_123	-1612.0513717	-0.17344	-0.05105	-10	-7	0	0.456919	0.485893	0.395239	0.404181	16.6
32		ра	pa_b5_126	-1612.0496272	-0.17473	-0.05098	-8	-3	0	0.456779	0.485984	0.393971	0.403381	19.1
33		ра	pa_b5_139	-1612.0420121	-0.17689	-0.05687	-5	0	0	0.456165	0.485425	0.393798	0.402946	37.9
34	1c	а	b14_5	-614.9829014	-0.23902	-0.05716	-10	-5	0	0.208749	0.223123	0.165864	0.169482	0.0
35		а	b14_1	-614.9824898	-0.24002	-0.05729	-8	-3	0	0.208724	0.223101	0.165987	0.169493	1.1
36		а	b14_6	-614.9823329	-0.23904	-0.05730	-8	-4	0	0.208958	0.223215	0.166442	0.169872	2.5
37		а	b14_7	-614.9822752	-0.23899	-0.05732	-11	0	0	0.208969	0.223220	0.166592	0.169870	2.7
38		а	b14_2	-614.9820129	-0.24002	-0.05752	0	0	0	0.209016	0.223237	0.166785	0.169927	3.5
39		а	b14_3	-614.9819694	-0.23996	-0.05746	-10	0	0	0.208962	0.223208	0.166709	0.169914	3.6
40		ра	pa_b14_18	-1651.3874877	-0.16535	-0.05439	-4	-2	0	0.485521	0.516139	0.422650	0.430930	0.0
41		ра	pa_b14_9	-1651.3867843	-0.16530	-0.05391	-4	0	0	0.485264	0.516118	0.421514	0.430338	0.3
42		ра	pa_b14_201	-1651.3870125	-0.16549	-0.05750	-7	-6	0	0.485710	0.516244	0.423728	0.430972	1.4
43		ра	pa_b14_19	-1651.3865537	-0.16554	-0.05359	-6	0	0	0.485501	0.516223	0.421521	0.431013	2.7
44		ра	pa_b14_16	-1651.3853467	-0.16588	-0.05321	-10	-5	0	0.485258	0.516187	0.420814	0.430454	4.4
45		ра	pa_b14_200	-1651.3856223	-0.16496	-0.05702	-4	0	0	0.485565	0.516195	0.422846	0.430889	4.8
46		ра	pa_b14_27	-1651.3855217	-0.16627	-0.05291	-7	0	0	0.485487	0.516217	0.421629	0.430955	5.2
47		ра	pa_b14_23	-1651.3854150	-0.16624	-0.05328	-2	0	0	0.485517	0.516207	0.422304	0.430931	5.4
48		ра	pa_b14_1	-1651.3829721	-0.17108	-0.05438	-6	-4	0	0.485572	0.516285	0.422106	0.430753	11.4
49		ра	pa_b14_6	-1651.3820645	-0.17010	-0.05464	-8	-1	0	0.485646	0.516247	0.422601	0.431098	14.7
50		ра	pa_b14_14	-1651.3820110	-0.17045	-0.05422	-7	0	0	0.485639	0.516244	0.422356	0.431127	14.9
51		ра	pa_b14_2	-1651.3817294	-0.17171	-0.05348	-5	0	0	0.485704	0.516436	0.422187	0.430967	15.2
52		ра	pa_b14_12	-1651.3807027	-0.17086	-0.05338	-11	-6	-3	0.485625	0.516305	0.422052	0.431052	18.1
53		ра	pa_b14_11	-1651.3804385	-0.17093	-0.05329	-5	-1	0	0.485717	0.516394	0.422159	0.431079	18.9
54		ра	pa_b14_26	-1651.3745597	-0.17199	-0.05831	-10	-5	0	0.485083	0.515859	0.421060	0.430477	32.8
55	1d	а	d1_1	-382.6858145	-0.28036	-0.05999	-9	0	0	0.106955	0.115068	0.075123	0.075314	0.0
56		ра	pa_d1_2	-1419.0908257	-0.16798	-0.05371	-11	-7	0	0.383226	0.407779	0.328629	0.334185	0.0
57		ра	pa_d1_1	-1419.0862075	-0.16577	-0.06328	0	0	0	0.383937	0.408208	0.330132	0.335220	14.8
58	1e	а	b2_2	-344.5732599	-0.28378	-0.05735	-14	-13	0	0.098890	0.107487	0.066683	0.066966	0.0
59		а	b2_1	-344.5732682	-0.28896	-0.05762	-15	-10	0	0.098854	0.107463	0.066699	0.067114	0.4

60		а	b2_3	-344.5635137	-0.29020	-0.06556	-19	0	0	0.098791	0.107371	0.066234	0.067165	26.1
61		ра	pa_b2_11	-1380.9744888	-0.16735	-0.05123	-12	0	0	0.375521	0.400361	0.320956	0.326005	0.0
62		ра	pa_b2_12	-1380.9744271	-0.16734	-0.05125	-12	0	0	0.375517	0.400360	0.320922	0.326004	0.2
63		ра	pa_b2_1	-1380.9729478	-0.16783	-0.05496	0	0	0	0.375525	0.400352	0.321199	0.326065	4.2
64		ра	pa_b2_14	-1380.9709872	-0.17429	-0.05084	-12	-9	0	0.375809	0.400495	0.321093	0.326696	11.0
65		ра	pa_b2_3	-1380.9661837	-0.17190	-0.05780	-7	0	0	0.375111	0.399872	0.321144	0.325904	21.5
66		ра	pa_b2_110	-1380.9621797	-0.17595	-0.05630	-9	0	0	0.375316	0.400073	0.320616	0.326151	32.7
67		ра	pa_b2_114	-1380.9528496	-0.17734	-0.06030	-14	-7	0	0.374785	0.399705	0.319833	0.325441	55.3
68	1f	а	b9_3	-383.8985206	-0.28214	-0.05598	-27	-12	0	0.127113	0.137031	0.092515	0.093335	0.0
69		а	b9_1	-383.8984764	-0.28720	-0.05639	0	0	0	0.127174	0.137044	0.092935	0.093726	1.1
70		а	b9_4	-383.8979756	-0.28224	-0.05621	-15	0	0	0.127320	0.137118	0.093027	0.093752	2.5
71		а	b9_2	-383.8979223	-0.28719	-0.05650	0	0	0	0.127365	0.137142	0.093265	0.094016	3.4
72		а	b9_5	-383.8891899	-0.28815	-0.06370	-18	-14	-9	0.126983	0.136937	0.092055	0.093394	24.7
73		а	b9_6	-383.8882269	-0.28848	-0.06271	-25	-15	0	0.127139	0.136969	0.092198	0.093817	28.3
74		а	b9_7	-383.8875722	-0.28277	-0.05826	-7	-4	0	0.127035	0.136943	0.092658	0.093319	28.7
75		ра	pa_b9_16	-1420.2992854	-0.16693	-0.05107	-4	0	0	0.403745	0.429947	0.346620	0.353120	0.0
76		ра	pa_b9_111	-1420.2993378	-0.16789	-0.05530	-8	-5	0	0.404159	0.430108	0.348789	0.353662	1.3
77		ра	pa_b9_17	-1420.2992889	-0.16739	-0.05080	-5	0	0	0.404126	0.430060	0.348126	0.353853	1.9
78		а	ts_p1a_9_ircr_o	-1420.2995844	-0.16720	-0.05063	-24	-10	0	0.403906	0.429053	0.349559	0.354261	2.2
79		ра	pa_b9_118	-1420.2985171	-0.16600	-0.05501	-8	0	0	0.404147	0.430094	0.348550	0.353710	3.6
80		ра	pa_b9_121	-1420.2981638	-0.16628	-0.05477	-3	0	0	0.404032	0.430029	0.348103	0.353690	4.4
81		ра	pa_b9_1	-1420.2958438	-0.17354	-0.05062	-5	0	0	0.404021	0.430068	0.347454	0.353414	9.8
82		ра	pa_b9_2	-1420.2946083	-0.17287	-0.05050	0	0	0	0.404174	0.430127	0.347576	0.353841	14.2
83		ра	pa_b9_113	-1420.2922301	-0.17183	-0.05794	-12	-9	0	0.403647	0.429615	0.348162	0.353373	19.2
84		ра	pa_b9_119	-1420.2905995	-0.17101	-0.05741	0	0	0	0.403484	0.429527	0.347666	0.353021	22.5
85		ра	pa_b9_120	-1420.2886045	-0.17031	-0.05833	-13	-8	0	0.403538	0.429574	0.347730	0.353147	28.1
86	1g	а	b13_4	-423.2228539	-0.26924	-0.05380	-14	-8	0	0.155661	0.167111	0.118716	0.119958	0.0
87		а	b13_1	-423.2227431	-0.27355	-0.05407	-20	-9	-5	0.155563	0.167064	0.118472	0.120075	0.6
88		а	b13_5	-423.2222889	-0.26927	-0.05405	-6	0	0	0.155840	0.167194	0.119166	0.120172	2.0
89		а	b13_6	-423.2222677	-0.26926	-0.05401	-13	-1	0	0.155843	0.167201	0.119083	0.120217	2.2
90		а	b13_2	-423.2222370	-0.27360	-0.05432	-8	0	0	0.155801	0.167175	0.119048	0.120326	2.6
91		ра	pa_b13_7	-1459.6237884	-0.16372	-0.05015	-7	-3	0	0.431924	0.459735	0.373004	0.379960	0.0
92		ра	pa_b13_19	-1459.6239639	-0.16391	-0.04975	-11	0	0	0.432143	0.459791	0.373387	0.380440	0.8

93		ра	pa_b13_12	-1459.6236044	-0.16411	-0.04984	-9	0	0	0.432172	0.459782	0.374016	0.380479	1.8
94		ра	pa_b13_200	-1459.6239297	-0.16469	-0.05422	0	0	0	0.432673	0.460033	0.376040	0.381043	2.5
95		ра	pa_b13_1	-1459.6205267	-0.17042	-0.04975	-12	0	0	0.432058	0.459795	0.373248	0.380015	8.7
96		ра	pa_b13_8	-1459.6191079	-0.16959	-0.04962	-4	0	0	0.432421	0.459972	0.374297	0.380620	14.0
97		ра	pa_b13_3	-1459.6191575	-0.16950	-0.04967	0	0	0	0.432415	0.459930	0.374398	0.380706	14.1
98		ра	pa_b13_4	-1459.6190305	-0.16972	-0.04981	-5	0	0	0.432462	0.460011	0.374156	0.380680	14.4
99		ра	pa_b13_17	-1459.6153200	-0.16520	-0.05486	0	0	0	0.431217	0.459151	0.372474	0.378624	18.7
100		ра	pa_b13_11	-1459.6127515	-0.17207	-0.05511	-12	-10	0	0.431263	0.459278	0.371319	0.378806	25.9
101		ра	pa_b13_16	-1459.6112788	-0.17123	-0.05507	-6	0	0	0.431518	0.459353	0.372543	0.379212	30.9
102	1h	а	b15_2	-462.5446932	-0.27554	-0.05305	-15	-8	0	0.182821	0.195267	0.145646	0.146670	0.0
103		а	b15_1	-462.5444808	-0.28005	-0.05339	-7	-6	0	0.182788	0.195241	0.145749	0.146671	0.6
104		ра	pa_b15_3	-1498.9448304	-0.16467	-0.04962	-10	-1	0	0.459444	0.488059	0.401006	0.407223	0.0
105		ра	pa_b15_2	-1498.9447072	-0.16497	-0.04938	-11	-6	0	0.459383	0.488049	0.400294	0.407220	0.3
106		ра	pa_b15_4	-1498.9448089	-0.16368	-0.06036	-19	-5	0	0.460405	0.488689	0.402704	0.408565	3.6
107		ра	pa_b15_5	-1498.9353007	-0.16802	-0.05728	-15	-6	0	0.459343	0.487885	0.401452	0.407152	24.8
108	1i	а	b16_7	-690.4414700	-0.28046	-0.05476	-21	-4	0	0.226676	0.243714	0.180279	0.184563	0.0
109		а	b16_8	-690.4413506	-0.27411	-0.05531	-11	-6	0	0.226694	0.243701	0.180820	0.184769	0.9
110		а	b16_1	-690.4409317	-0.27512	-0.05479	-7	0	0	0.226738	0.243699	0.181232	0.184971	2.5
111		а	b16_4	-690.4409664	-0.28074	-0.05460	-16	-12	0	0.227145	0.243915	0.182206	0.185404	3.5
112		а	b16_11	-690.4407141	-0.27440	-0.05510	-13	-10	0	0.227180	0.243934	0.181965	0.185631	4.8
113		а	b16_5	-690.4401999	-0.28057	-0.05464	-7	0	0	0.226964	0.243825	0.181340	0.185247	5.1
114		а	b16_6	-690.4399280	-0.28085	-0.05480	-3	0	0	0.226883	0.243782	0.180956	0.185076	5.4
115		а	b16_9	-690.4401894	-0.27561	-0.05532	-10	0	0	0.227203	0.243925	0.182280	0.185673	6.3
116		а	b16_2	-690.4400728	-0.27491	-0.05597	-11	0	0	0.227436	0.244060	0.182918	0.185961	7.3
117		ра	pa_b16_4	-1726.8462372	-0.17011	-0.05478	-8	-5	0	0.504159	0.537043	0.438567	0.447113	0.0
118		ра	pa_b16_18	-1726.8464033	-0.17052	-0.05005	-14	-10	-7	0.504131	0.537039	0.438355	0.447399	0.3
119		ра	pa_b16_2	-1726.8459853	-0.17023	-0.04889	-4	0	0	0.504043	0.536944	0.438399	0.447093	0.6
120		ра	pa_b16_21	-1726.8458553	-0.16917	-0.05498	-4	0	0	0.504111	0.536993	0.439144	0.447195	1.2
121		ра	pa_b16_16	-1726.8460370	-0.17043	-0.04940	-9	-4	0	0.504242	0.537077	0.438980	0.447406	1.3
122		ра	pa_b16_8	-1726.8445277	-0.17031	-0.04979	0	0	0	0.503534	0.536779	0.436061	0.446274	2.3
123		ра	pa_b16_3	-1726.8455869	-0.17002	-0.05475	-11	-10	-6	0.504208	0.537014	0.438890	0.447387	2.4
124		ра	pa_b16_12	-1726.8450198	-0.16921	-0.05372	-8	0	0	0.503877	0.536911	0.437576	0.446847	2.5
125		ра	pa_b16_1	-1726.8454387	-0.16999	-0.04885	-7	0	0	0.504186	0.537009	0.438298	0.447415	2.9

126		ра	pa_b16_24	-1726.8451486	-0.17065	-0.04941	-10	0	0	0.504136	0.537058	0.438007	0.447407	3.6
127		ра	pa_b16_26	-1726.8450996	-0.16916	-0.05516	-7	-6	0	0.504281	0.537111	0.439218	0.447487	4.0
128		ра	pa_b16_23	-1726.8446667	-0.17062	-0.04954	-5	0	0	0.504015	0.536974	0.437448	0.447064	4.0
129		ра	pa_b16_22	-1726.8446602	-0.17057	-0.04968	-4	0	0	0.504097	0.537039	0.437376	0.447288	4.6
130		ра	pa_b16_9	-1726.8443666	-0.16927	-0.05379	-11	-7	0	0.503998	0.536970	0.437845	0.447070	4.8
131		ра	pa_b16_29	-1726.8444587	-0.16884	-0.05414	-9	0	0	0.504248	0.537062	0.439189	0.447306	5.2
132		ра	pa_b16_20	-1726.8434891	-0.16878	-0.05400	-9	-1	0	0.504057	0.536920	0.438566	0.447068	7.1
133		ра	pa_b16_17	-1726.8438750	-0.17059	-0.05013	-13	-7	0	0.504398	0.537204	0.438768	0.447752	7.9
134		ра	pa_b16_13	-1726.8414265	-0.16973	-0.05796	-11	-9	-6	0.503889	0.536835	0.439742	0.446858	12.0
135		ра	pa_b16_6	-1726.8404896	-0.16891	-0.05633	-10	0	0	0.504187	0.536914	0.440495	0.447314	15.6
136		ра	pa_b16_19	-1726.8396092	-0.17005	-0.05789	-15	-10	0	0.503824	0.536824	0.438635	0.446867	16.8
137		ра	pa_b16_27	-1726.8370619	-0.16996	-0.05801	-7	-1	0	0.503256	0.536387	0.436611	0.446106	21.4
138		ра	pa_b16_11	-1726.8382404	-0.16808	-0.05614	-10	0	0	0.504251	0.537020	0.440231	0.447516	22.1
139		ра	pa_b16_15	-1726.8378338	-0.16893	-0.05650	-10	0	0	0.504161	0.537087	0.438162	0.447330	22.6
140		ра	pa_b16_14	-1726.8373065	-0.16839	-0.05853	0	0	0	0.503855	0.536779	0.439045	0.446875	22.8
141		ра	pa_b16_28	-1726.8363574	-0.17042	-0.05958	-9	0	0	0.503289	0.536555	0.437189	0.445927	22.8
142		ра	pa_b16_30	-1726.8345277	-0.16989	-0.05928	-11	0	0	0.503245	0.536494	0.437481	0.445834	27.4
143		ра	pa_b16_31	-1726.8268128	-0.16796	-0.06388	-9	0	0	0.503776	0.536738	0.439906	0.446533	49.5
144	1j	а	b11_3	-423.2218997	-0.27338	-0.05034	-16	-7	0	0.155220	0.166692	0.118658	0.119738	0.0
145		а	b11_4	-423.2213195	-0.27351	-0.05061	-7	0	0	0.155369	0.166747	0.119095	0.120026	2.3
146		а	b11_1	-423.2207766	-0.27265	-0.05024	-15	-4	0	0.155258	0.166697	0.118842	0.119935	3.5
147		а	b11_2	-423.2201887	-0.27272	-0.05056	-11	0	0	0.155462	0.166777	0.119224	0.120362	6.1
148		ра	pa_b11_201	-1459.6199522	-0.16288	-0.04800	0	0	0	0.432141	0.459626	0.374543	0.380378	0.0
149		ра	pa_b11_16	-1459.6202236	-0.16312	-0.04763	-2	0	0	0.432278	0.459618	0.375021	0.380863	0.6
150		ра	pa_b11_202	-1459.6202235	-0.16312	-0.04763	-2	0	0	0.432278	0.459618	0.375025	0.380863	0.6
151		ра	pa_b11_200	-1459.6198476	-0.16352	-0.04752	-9	-1	0	0.432236	0.459618	0.374471	0.380858	1.5
152		ра	pa_b11_2	-1459.6189621	-0.16184	-0.05329	-6	0	0	0.432577	0.459789	0.376246	0.381111	4.5
153		ра	pa_b11_6	-1459.6185601	-0.16203	-0.05307	-7	0	0	0.432386	0.459703	0.375436	0.380886	5.0
154		ра	pa_b11_4	-1459.6121839	-0.16255	-0.05693	-4	0	0	0.431934	0.459314	0.375734	0.380233	20.0
155		ра	pa_b11_5	-1459.6103835	-0.16163	-0.05622	-11	-1	0	0.431201	0.458953	0.372987	0.379256	22.2

- 7 Copies of NMR Spectra
- 7.1 NMR spectra of alkyl allenoates 1
- 7.1.1 Phenyl buta-2,3-dienoate (1a)

7.1.2 Benzyl buta-2,3-dienoate (1b)

7.1.4 3-Vinylidenedihydrofuran-2(3H)-one (1d)

7.2.2 Triphenylphosphine (Ph₃P)

7.3 NMR spectra of phosphonium triflates and 2,4,6-collidinium triflate

7.3.1 Tributylphosphonium triflate (TBPT)

7.3.2 Triphenylphosphonium triflate (TPPT)

110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -27(f1 (ppm)

7.3.3 2,4,6-Collidinium triflate (CT)

7.4 NMR and IR spectra of the product studies

7.4.1 (4-Oxo-4-phenoxybut-1-en-2-yl)triphenylphosphonium triflate (3a) from TPPT and phenyl buta-2,3-dienoate (1a)

7.4.3 (4-Ethoxy-4-oxobut-1-en-2-yl)triphenylphosphonium triflate (3f) from TPPT and ethyl buta-2,3-dienoate (1f)

S109

7.4.4 (5-Ethoxy-3-(ethoxycarbonyl)-5-oxopent-1-en-2-yl)triphenylphosphonium triflate (3i) from TPPT and diethyl 2-vinylidenesuccinate (1i)

S111

S112

8 References

- (S1) For a freely accessible database of *E*, *N*, and *s*_N parameters, see: https://www.cup.lmu.de/oc/mayr/DBintro.html.
- (S2) D. S. Allgäuer, H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A. R. Ofial and H. Mayr, J. Am. Chem. Soc., 2017, **139**, 13318-13329.
- (S3) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
- (S4) B. J. Cowen, L. B. Saunders and S. J. Miller, J. Am. Chem. Soc., 2009, 131, 6105-6107.
- (S5) G. Himbert, D. Fink and K. Diehl, *Chem. Ber.*, 1988, **121**, 431-441.
- (S6) L. M. Conner, Y. Xu and K. M. Brown, J. Am. Chem. Soc., 2015, **137**, 3482-3485.
- (S7) Y. Gao, J. Zhang, W. Shan, W. Fei, J. Yao and W. Yao, Org. Lett., 2021, 23, 6377-6381.
- (S8) T. Liu, C. He, F. Wang, X. Shen, Y. Li, M. Lang, G. Li, C. Huang and F. Cheng, Synthesis, 2021, 53, 518-526.
- (S9) H. Panchal, C. Clarke, C. Bell, S. N. Karad, W. Lewis and H. W. Lam, Chem. Commun., 2018, 54, 12389-12392.
- (S10) R. W. Lang and H. J. Hansen, Org. Synth., 1984, 6, 202.
- (S11) E. Lee, J. Bang, J. Kwon and C.-M. Yu, J. Org. Chem., 2015, 80, 10359-10363.
- (S12) a) H. Clavier, K. Le Jeune, R. De Innocenzo, A. Tenaglia and G. Buono, Org. Lett., 2011, 13, 308-311. b) D. Mal and S. Jana, J. Org. Chem., 2016, 81, 11857-11865.
- (S13) W. Chen, J. C. L. Walker and M. Oestreich, J. Am. Chem. Soc., 2019, 141, 1135-1140.
- (S14) H. Guo, Q. Xu and O. Kwon, J. Am. Chem. Soc., 2009, 131, 6318-6319.
- (S15) Y.-R. Chen, G. M. Reddy, S.-H. Hong, Y.-Z. Wang, J.-K. Yu and W. Lin, Angew. Chem. Int. Ed., 2017, 56, 5106-5110.
- (S16) a) L. L. Tolstikova, A. V. Bel'skikh and B. A. Shainyan, *Russ. J. Gen. Chem.*, 2011, **81**, 474-480., b) V. V. Levin and A. D. Dilman, *Chem. Commun.*, 2021, **57**, 749-752.
- (S17) C. Mao, Z. Wang, Z. Wang, P. Ji and J.-P. Cheng, J. Am. Chem. Soc., 2016, 138, 5523-5526.
- (S18) A ³¹P NMR chemical shift of +25.5 ppm for **3f** with a phenyltetrazole counteranion was reported in: D. Virieux, A. F. Guillouzic and H.-J. Cristau, *Tetrahedron*, 2006, **62**, 3710-3720.
- (S19) (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.

- (S20) (a) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728. (b) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650-654.
- (S21) G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz and R. S. Paton. *GoodVibes*: automated thermochemistry for heterogeneous computational chemistry data [version 1; peer review: 2 approved with reservations]. *F1000Research* 2020, **9**: 291 (https://doi.org/10.12688/f1000research.22758.1).
- (S22) T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. v. R. Schleyer, J. Comput. Chem., 1983, 4, 294-301.
- (S23) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- (S24) (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, **132**, 154104. (b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456-1465.
- (S25) (a) E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041. (b) J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3094.
- (S26) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09 Revision D.01*, Gaussian, Inc., Wallingford CT, **2013**.