Pd-Catalyzed annulation of imidazo[1,2-a]pyridines with coumarins and indoles: Synthesis of benzofuran and indole fused

heterocycles Rashmi Semwal, Gaurav Badhani and Subbarayappa Adimurthy*

^aAcademy of Scientific & Innovative Research, Ghaziabad; CSIR–Central Salt & Marine Chemicals

Research Institute, G. B. Marg, Bhavnagar-364 002. Gujarat (INDIA).

E-mail: <u>adimurthy@csmcri.res.in</u>

S.No	Content	Page Numbers
1	Experimental Section	\$2-\$3
2	Optimization table for 3a and 5a	S4-S5
3	Mechanism for 5a	S5
4	Crystal structure data for 3aa and 5e	S6-S8
5	Photo physical data	S9-S10
6	Characterization data	S11-S29
7	References	S-29
8	¹ H, ¹³ C & ¹⁹ F NMR spectra	\$30-\$83

Table of Content

Experimental Section:

General: All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. ¹H and ¹³C {H} NMR spectra were recorded at 600/500, and 150/125 MHz, respectively. The spectra were recorded in CDCl₃ as solvent. Multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. and coupling constants (J) were given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard for ¹H NMR. ¹⁹F NMR (564 MHz) chemical shifts were reported in ppm (δ) (CF₃COOH as an outside standard). The peaks around delta values of ¹H NMR (7.26), and ¹³C {H} NMR (77.0) are deuterated solvent chloroform, [δ value around (1.5) in ¹H NMR is of water]. Mass spectra were obtained using electron impact (EI) ionization method. Progress of the reactions were monitored by thin layer chromatography (TLC). All products were purified through column chromatography using silica gel 100-200 mesh size using hexane/ethyl acetate as eluent, unless otherwise indicated.

General procedure for the synthesis of 2-phenylimidazo[1,2-a]pyridine (1a)¹:

470 mg (5.0 mmol) of 2-aminopyridine, 1200 mg (10 mmol) of acetophenone, CuI 5 mol% (47 mg; 0.25 mmol), BF₃·Et₂O (45–50% purity); 10 mol%, (0.5 mmol) and DMF (2 mL) were placed in a 25-mL double-necked round-bottomed flask. The mixture was heated in oil bath at 60 °C for 24 h under an oxygen atmosphere (balloon). After completion of the reaction, it was allowed to attain to room temperature and then the mixture was poured into 20 mL of sodium carbonate solution. The product was extracted with DCM (50 mL X 3) and dried with anhydrous Na₂SO₄. Removal of the solvent under reduced pressure and the left residue that was purified through column chromatography using silica gel (30% EtOAc/hexane) to afford **1a**; yield: 0.799 g (82%) experimental data also matched with reported literature and the same method was applied for all the reported starting substrates.¹

General procedure for the synthesis of 1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3a): To a reaction tube equipped with a magnetic stir bar, added 2-phenylimidazo[1,2-a]pyridine (**1a**) (39 mg, 0.20 mmol), coumarin (**2a**) (58.4 mg, 0.40 mmol), Copper(II) trifluoroacetate hydrate (115.8 mg, 0.40 mmol), 1,10 Phenanthroline monohydrate (19.8 mg, 0.50 mmol) and Pd(OAc)₂(8.96 mg, 0.02 mmol) and charged with 4° MS in 1.5 mL of dry DMF solvent. The mixture was heated in an oil bath at 130 °C in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed under vacuum. The crude residue left out was purified by silica gel column chromatography using 15 % EtOAc/hexane to afford **3a** (49.2 mg; 80 % yield).

General procedure for the synthesis of 6-methyl-1-phenyl-6Himidazo[5',1',2':3,4,5]indolizino[1,2-b]indole (5a): To a reaction tube equipped with a magnetic stir bar, added 2-phenylimidazo[1,2-a]pyridine (1a) (39 mg, 0.20 mmol), 1-methyl-1H-indole (4a) (52.4 mg, 0.40 mmol), Copper(II) trifluoroacetate hydrate (115.8 mg, 0.40 mmol), 1,10 Phenanthroline monohydrate (19.8 mg, 0.50 mmol), Pd(OAc)₂ (8.96 mg, 0.02 mmol) and Cs₂CO₃ (130 mg; 0.40 mmol) in 1.5 mL of dry DMF solvent. The mixture was heated in an oil bath at 130 °C in a closed tube. Reaction was monitored by TLC, after completion of the reaction; it was allowed to attain room temperature. Then the mixture was poured into 20 mL of water and the product was extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed under vacuum. The crude residue was purified by silica gel column chromatography using 30 % EtOAc/hexane to afford 5a (46.8 mg; 75 % yield).

Table S1: Optimization conditions for 3a^a

	(^N ^N , ↑ 1a ^{Ph}	2a catalys additive solvent	t, oxidant e, 4 A [°] MS , 130 °C, 30 hr 3a	N [*] N Ph
S. No.	Catalyst	Oxidant	Additive (mmol)	Yield (%)
1	Pd(OAc) ₂	Cu(OAc) _{2.} H ₂ O	-	trace
2	Pd(OAc) ₂	Cu(OAc) _{2.} H ₂ O	KOtBu(0.40)	25
3	Pd(OAc) ₂	Cu(OAc) _{2.} H ₂ O	NaOtBu(0.40)	30
4	Pd(OAc) ₂	Cu(OAc) _{2.} H ₂ O	DMAP(0.40)	35
5	Pd(OAc) ₂	Cu(OAc) _{2.} H ₂ O	Cs ₂ CO ₃ (0.40)	nr
6	Pd(OAc) ₂	Cu(OAc) ₂ H ₂ O	DBU(0.40)	nr
7	Pd(OAc) ₂	Cu(TFA) _{2.} H ₂ O	KOtBu(0.40)	40
8	Pd(OAc) ₂	Cu(TFA) _{2.} H ₂ O	NaOtBu(0.40)	42
9	Pd(OAc) ₂	Cu(TFA) _{2.} H ₂ O	DMAP(0.40)	35
10	Pd(OAc) ₂	Cu(TFA) _{2.} H ₂ O	Cs ₂ CO ₃ (0.40)	nr
11	Pd(OAc) ₂	Cu(TFA) _{2.} H ₂ O	DBU(0.40)	nr
12	PdCl ₂ (PPh ₃) ₂	Cu(TFA) ₂ H ₂ O	phen(0.05)	nr
13	PdCl ₂	Cu(TFA) _{2.} H ₂ O	phen(0.05)	nr
14	PdBr ₂	Cu(TFA) ₂ H ₂ O	phen(0.05)	nr
15	Pdl_2	Cu(TFA) _{2.} H ₂ O	phen(0.05)	nr
16	Pd(TFA) ₂	Cu(TFA) _{2.} H ₂ O	phen(0.05)	50
17	-	Cu(TFA) _{2.} H ₂ O	phen(0.05)	nr

^aReaction Conditions 1a (0.20 mmol), 2a (0.40 mmol), catalyst (0.02 mmol), Oxidant (0.40 mmol), Additive, 4 A° MS, DMF (1.5 ml) 130 °C, 30 hr.

Table S2: Optimization conditions for 5a^a

^aReaction Conditions **1a** (0.20 mmol), **4a** (0.40 mmol), Catalyst Pd(OAc)₂ (0.02 mmol), Oxidant Cu(TFA)₂.H₂O(0.40 mmol), Additive phen (0.05 mmol), Base (0.40 mmol), ^bReaction under N₂ atm, ^cReaction under O₂ atm, 130 °C, 36 h.

Further we explored this reaction conditions with the indole derivatives (Table S2). Initially we applied same reaction condition with the indole derivatives which is same for the coumarin derivatives. But unfortunately we did not get any annulated product. After adding base to the reaction, the reaction proceeds. So base is major requirement for obtaining the annulated product. Then we optimized the reaction with different bases such as K_2CO_3 , NaHCO₃, Na₂CO₃, DBU and NaH but we did not get affective yield for the annulated product (entry 1 to 5). Upon changing the base to the Cs₂CO₃ we got 75% of the desired annulated product (entry 6). Again when we performed the reaction in presence of nitrogen and oxygen atmosphere, it does not improve the yield of reaction (entry 7 and 8).

Scheme S1: Mechanistic pathway for 5a

Fig. S1. Thermal ellipsoid plot for the crystal structure 3aa

Single crystal XRD of 3aa CCDC:2124566

Fig. S2 Thermal ellipsoid plot for the crystal structure 5e

Single crystal XRD of 5e (CCDC: 2124567)

Crystal Data and Refinement Parameters

Experimental: X-ray part

Crystal of suitable size was selected for the organic compound, immersed in partone oil and then mounted on the tip of a glass fiber using epoxy resin. Intensity data for all four crystals were collected at 100 and 150 K using graphite monochromatised MoK α ($\alpha = 0.71073$ Å) radiation on diffractometer equipped with CCD area detector. The data integration and reduction were processed.¹ An empirical absorption correction was applied to the collected reflections.² The structures were solved by direct methods³ and refined on F² by the full-matrix least-squares technique ⁴ package. Graphics are generated.^{5,6} Non-hydrogen atoms were refined anisotropically till convergence is reached and the hydrogen atoms of the organic compound is stereochemically fixed. Crystallographic parameters for the compound is given in Table S4.

1. Sheldrick, G. M.; SAINT 5.1 ed.; Siemens Industrial Automation Inc.: Madison, WI, 1995.

2. SADABS, Empirical Absorption Correction Program; University of Göttingen: Göttingen, Germany 1997.

3. Sheldrick, G. M.; SHELXTL Reference Manual: Version 5.1; Bruker AXS: Madison, WI 1997.

4. Sheldrick, G.M. SHELXL-97: Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany (1997).

5. A.L.Spek, Acta Cryst. 2009, D65, 148-155

6. Mercury 1.3, Supplied with Cambridge Structural Database; CCDC: Cambridge, U.K., (2003).

Identification code	3 aa	5e	
Empirical formula	C ₂₂ H ₁₄ ClN ₃	C ₂₂ H ₁₃ FN ₂ O	
Formula weight	355.81	340.34	
Temperature/K	150(2)	100(2)	
Crystal system	monoclinic	Monoclinic	
Space group	Pc	$P2_1/n$	
a/Å	17.667(2)	11.213(4)	
b/Å	13.2247(15)	7.512(2)	
c/Å	7.1270(7)	18.352(6) 90	
$lpha/^{\circ}$	90		
β/°	98.212(5)	95.058(11)	
γ/°	90	90	
Volume/Å ³	1648.1(3)	1539.7(9)	
Z	4	4	
$\rho_{calc}g/cm^3$	1.434	1.468	
μ/mm^{-1}	0.242	0.100	
F(000)	736.0	704.0	
Crystal size/mm ³	$0.226\times0.125\times0.027$	$0.206 \times 0.111 \times 0.024$	
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	
2 Θ range for data collection/°	3.862 to 55.152	4.102 to 47.194	
Index ranges	$-22 \le h \le 22, -17 \le k \le 17, -7 \le l \le 9$	$\begin{array}{l} \textbf{-12} \leq h \leq 12, \textbf{-8} \leq k \leq 8, \textbf{-20} \leq 1 \\ \leq 18 \end{array}$	
Reflections collected	33131	17598	
Independent reflections	7145 [$R_{int} = 0.1367, R_{sigma} = 0.1106$]	2315 [$R_{int} = 0.1495, R_{sigma} = 0.0953$]	
Data/restraints/parameters	7145/2/471	2315/0/236	
Goodness-of-fit on F ²	0.999	1.085	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = \overline{0.0548}, WR_2 = 0.1116$ $R_1 = 0.0607, WR_2 = 0.0000000000000000000000000000000000$		
Final R indexes [all data]	$R_1 = 0.1066, wR_2 = 0.1328$	$R_1 = \overline{0.1202, wR_2 = 0.1928}$	
Largest diff. peak/hole / e Å-3	0.30/-0.34	0.26/-0.32	

 Table S3. Crystal Data and Refinement Parameters for Compounds 3aa and 5e

Photo Physical Data

Due to the highly fluorescence characteristic nature of the annulated products, we studied the photo physical properties of the hetero fused derivatives by recording the uv-visible and fluorescence spectra at low concentration of 10 μ M in DCM solution of the selected fluorophores. All the spectra were recorded by exciting at the respective wavelength and the fluorophore molecules showed emission spectra in the visible region 506-580 nm. These scaffolds may find applications as chemo sensors in the fields of molecular imaging, bioorganic chemistry, molecular recognition, analytical chemistry, materials chemistry and as well as in medicinal chemistry and biology.²

Fig. S3 Normalized (a) absorption and (b) emission spectra of selected annulated products

Fig. S4 Digital photograph of the fluorescent imidazopyridines in DCM under UV light

Table S4. Spectral properties of selected imidazopyridines in DCM at room temperature (10 μM solution):

Comp	λabs(max) nm	λex(max) nm	λem(max) nm	Δ stokes nm
3a	394	394	539	145
3g	398	398	506	108
3n	390	390	527	137
30	403	403	514	111
3ae	408	408	580	172
3af	398	398	567	169
5a	430	430	552	122
5g	430	430	565	135

Characterization data:

1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3a):

(Eluent: 15% EtOAc/hexane); 80% yield (49.2 mg); yellow solid, Mp: 208-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.59 (d, J = 8.1 Hz, 2H), 8.08 – 7.98 (m, 4H), 7.80 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.50 – 7.42 (m, 2H).¹³C NMR (150 MHz, CDCl₃) δ 159.6, 150.9, 147.6, 141.1, 132.9, 130.0, 129.1, 128.0, 127.0, 124.8, 124.5, 124.0, 122.9, 119.9, 115.1, 112.7, 111.0, 110.7, 110.6. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₁H₁₃N₂O: 309.1023; Found: 309.1018.

7-methoxybenzofuro[3'',2'':3',4']naphtho[1',2':4,5]imidazo[1,2-a]pyridine (3b):

(Eluent: 20% EtOAc/hexane); 60% yield (40.5 mg); yellow solid, Mp: 255-257 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, J = 9.2 Hz, 2H), 8.01 (d, J = 5.8 Hz, 4H), 7.79 (d, J = 7.9 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.18 (d, J = 8.1 Hz, 2H), 3.95 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.3, 159.8, 129.7, 126.9, 125.7, 124.7, 124.5, 124.1, 120.0, 114.7, 112.8, 110.5, 110.4, 55.5. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₅N₂O₂: 339.1129; Found: 339.1143.

1-(4-ethylphenyl)benzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3c):

(Eluent: 15% EtOAc/hexane); 73% yield (49.0 mg); yellow solid, Mp: 215-217 °C; δ ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 7.9 Hz, 2H), 8.00 (p, J = 7.5, 7.0 Hz, 4H), 7.77 (d, J = 7.9 Hz, 1H), 7.48 (d, J = 7.9 Hz, 2H), 7.44 (q, J = 7.3 Hz, 2H), 2.80 (q, J = 7.9 Hz, 2H), 1.37 (s, 3H).¹³C NMR (150 M Hz, CDCl₃) δ 159.7, 151.1, 148.1, 146.6, 141.3, 130.4, 128.8, 128.1, 126.9, 124.8, 124.5, 124.1, 123.1, 120.0, 115.0, 112.8, 110.8, 110.6, 110.5, 28.9, 15.4. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₃H₁₇N₂O: 337.1336; Found: 337.1348.

1-(4-fluorophenyl)benzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3d):

Eluent: 15% EtOAc/hexane); 63% yield (41.0 mg); yellow solid, Mp:270-272 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.51 (dd, J = 8.6, 5.3 Hz, 2H), 8.03 – 7.92 (m, 4H), 7.78 – 7.73 (m, 1H), 7.45 (p, J = 7.2, 6.6 Hz, 2H), 7.31 (t, J = 8.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 164.7 (d, $J_{C,F}$ = 249 Hz), 163.0, 159.7, 150.8, 146.6, 141.1, 129.9 (d, $J_{C,F}$ = 7.5 Hz), 129.3, 127.1, 124.9, 124.6, 124.2, 123.0, 120.0, 116.4 (d, $J_{C,F}$ = 21 Hz), 115.2, 112.7, 111.1, 110.8, 110.3; ¹⁹F NMR (564 MHz, CDCl₃) δ -110.21 (s, 1F); HRMS-ESI (m/z) [M+Na]⁺ calcd. For C₂₁H₁₁FN₂ONa: 349.0748; Found: 349.0738.

4-(benzofuro[3,2-a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3e):

(Eluent: 30% EtOAc/hexane); 65% yield (43.2 mg); yellow solid, Mp:215-217 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 8.0 Hz, 2H), 8.07 (q, J = 5.2, 4.7 Hz, 3H), 8.01 (d, J = 5.8 Hz, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 7.8 Hz, 1H), 7.52 – 7.46 (m, 2H).¹³C NMR (150 MHz, CDCl₃) δ 159.8, 150.7, 144.7, 141.1, 137.2, 132.9, 128.2, 127.8, 125.4, 125.1, 124.4, 122.8, 120.2, 118.8, 116.1, 112.9, 112.8, 112.2, 111.7.HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₂N₃O: 334.0975; Found: 334.0983.

1-(2-fluorophenyl)benzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3f)

(Eluent: 10% EtOAc/hexane); 65% yield (42.3 mg); yellow solid, Mp:255-257 °C ; ¹H NMR (600 MHz, CDCl₃) δ 8.68 – 8.62 (m, 1H), 8.08 (d, J = 5.5 Hz, 1H), 8.03 (d, J = 3.3 Hz, 2H), 7.98 (d, J = 7.5 Hz, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.50 (q, J = 7.2, 6.1 Hz, 1H), 7.45 (dd, J = 9.8, 6.4 Hz, 2H), 7.39 (q, J = 9.9, 8.8 Hz, 2H).; ¹³C NMR (150 MHz, CDCl₃) δ 161.8 (d, $J_{C,F}$ = 252 Hz), 159.6, 152.0, 140.4 (d, $J_{C,F}$ = 25.5 Hz), 131.4, 131.3, 130.1, 127.2, 125.1, 124.8, 124.7, 124.6, 124.0, 122.7, 121.4, 121.4, 121.4, 119.9, 116.3 (d, $J_{C,F}$ = 21 Hz), 115.7, 112.9, 111.3, 110.6; ¹⁹F NMR (564 MHz, CDCl₃) δ -113.28 (s, 1F); HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₁H₁₂FN₂O: 327.0929; Found: 327.0950.

4-methyl-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3g) :

(Eluent: 15% EtOAc/hexane); 69% yield (44.4 mg); yellow solid, Mp:215-217 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.55 (dd, J = 7.8, 1.4 Hz, 2H), 7.97 (dd, J = 7.3, 1.9 Hz, 1H), 7.84 (d, J = 16.3 Hz, 2H), 7.81 – 7.76 (m, 1H), 7.64 (t, J = 7.7 Hz, 2H), 7.54 – 7.49 (m, 1H), 7.49 – 7.41 (m, 2H), 2.87 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.7, 151.3, 147.5, 141.2, 138.7, 133.1, 129.8, 129.2, 128.0, 124.4, 124.1, 123.2, 119.9, 114.6, 112.8, 112.2, 111.4, 110.4, 23.0. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₂H₁₄N₂NaO: 345.0999; Found: 345.0978.

1-(4-ethylphenyl)-4-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3h) :

(Eluent: 10% EtOAc/hexane); 73% yield (51.1 mg); yellow solid, Mp:210-212 °C ; ¹H NMR (600 MHz, CDCl3) δ 8.46 (d, J = 7.9 Hz, 2H), 7.96 (d, J = 7.6 Hz, 1H), 7.83 (s, 1H), 7.80 (s, 1H), 7.77 (d, J = 7.4 Hz, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.46 – 7.39 (m, 2H), 2.85 (s, 3H), 2.79 (q, J = 7.4 Hz, 2H), 1.35 (t, J = 7.5 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.6, 151.2, 147.8, 146.4, 141.2, 138.5, 130.5, 128.7, 128.0, 124.2, 124.2, 124.0, 123.1, 119.8, 114.3, 112.7, 111.9, 111.1, 110.1, 28.9, 23.0, 15.4. Anal. calcd for C₂₄H₁₈N₂O: C, 82.26; H, 5.18; N, 7.99; found: C, 95.88; H, 14.29; N, 4.97.

5-methyl-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3i)

(Eluent: 15% EtOAc/hexane); 67% yield (43.1 mg); yellow solid, Mp:210-212 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 7.2 Hz, 2H), 7.97 (d, J = 7.8 Hz, 1H), 7.86 (s, 1H), 7.83 (s, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.64 (t, J = 7.5 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.48 – 7.41 (m, 2H), 2.87 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 151.4, 147.6, 141.2, 138.6, 133.1, 129.8, 129.2, 128.0, 124.4, 124.1, 123.2, 119.9, 114.6, 112.8, 112.2, 111.4, 110.4, 23.0. HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₂H₁₄N₂ONa: 345.0989; Found: 345.0999.

1-(4-methoxyphenyl)-5-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3j)

ϽМе

(Eluent:30% EtOAc/hexane); 69% yield (48.5 mg); yellow solid, Mp: 270-272 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 8.5 Hz, 2H), 7.93 – 7.88 (m, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.71 – 7.64 (m, 2H), 7.41 – 7.34 (m, 2H), 7.13 (d, J = 8.1 Hz, 2H), 3.94 (s, 3H), 3.00 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 161.0, 159.6, 149.9, 147.1, 139.9, 129.3, 128.8, 125.9, 124.2, 124.0, 123.8, 123.0, 121.3, 120.0, 114.7, 114.5, 112.6, 110.3, 109.8, 55.4, 18.6. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₃H₁₇N₂O₂: 353.1285; Found: 353.1282.

1-(4-chlorophenyl)-5-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3k)

(Eluent: 10% EtOAc/hexane); 61% yield (43.4 mg); yellow solid, Mp: 200-202 °C, ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 8.0 Hz, 2H), 8.00 – 7.93 (m, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.74 (dd, J = 8.7, 4.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.47 – 7.41 (m, 2H), 3.06 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.7, 149.9, 145.5, 139.7, 135.5, 131.7, 129.3, 128.9, 124.6, 124.4, 124.1, 122.9, 122.1, 120.1, 115.3, 112.8, 111.2, 110.4, 18.7. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₄ClN₂O: 357.0790; Found: 357.0795.

1-(4-ethylphenyl)-3-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3l):

(Eluent: 10% EtOAc/hexane); 67% yield (46.9 mg); yellow solid, Mp: 230-237 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 7.9 Hz, 2H), 7.98 (d, J = 6.8 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.78 (t, J = 6.9 Hz, 2H), 7.53 – 7.40 (m, 4H), 3.03 (s, 3H), 2.79 (d, J = 7.6 Hz, 2H), 1.35 (t, J = 7.5 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.7, 146.8, 146.2, 141.0, 130.7, 128.7, 128.0, 127.6, 124.3, 123.9, 123.3, 123.1, 122.2, 119.9, 114.9, 112.7, 110.7, 28.9, 16.2, 15.4. Anal. calcd for C₁₄H₁₈N₂O: C, 82.26; H, 5.18; N, 7.99; found: C, 63.40; H, 7.547; N, 7.73.

4-(3-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3m):

(Eluent: 10% EtOAc/hexane); 66% yield (45.8 mg); yellow solid, Mp: 210-212 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, J = 8.4 Hz, 2H), 8.00 – 7.96 (m, 1H), 7.93 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 8.1 Hz, 2H), 7.82 – 7.75 (m, 2H), 7.47 (dt, J = 6.2, 2.8 Hz, 2H), 3.00 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.7, 150.1, 143.3, 140.8, 137.5, 132.8, 128.2, 128.1, 124.9, 124.2, 123.8, 123.5, 122.9, 120.1, 118.9, 116.0, 112.8, 112.4, 111.9, 111.8, 16.2. HRMS-ESI (m/z) [M+H+Na]⁺calcd. For C₂₃H₁₄N₃NaO: 371.1030; Found: 371.1046.

1-(2-fluorophenyl)-3-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3n) :

(Eluent: 20% EtOAc/hexane); 63% yield (42.8 mg); yellow solid, Mp: 218-220 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.69 – 8.64 (m, 1H), 7.98 – 7.92 (m, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.51 – 7.45 (m, 1H), 7.45 – 7.33 (m, 4H), 3.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.6 (d, $J_{C,F} = 252$ Hz), 159.5, 151.5, 140.1, 138.9, 131.0 (d, $J_{C,F} = 9.0$ Hz), 130.2, 127.6, 124.7, 124.4, 123.8, 123.3, 122.9, 122.6, 121.7, 121.6, 119.8, 116.0 (d, $J_{C,F} = 22.5$ Hz), 115.6, 112.8, 110.7, 16.2; ¹⁹F NMR (564 MHz, CDCl₃) δ -112.56 (s, 1F); HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₄FN₂O: 341.1085. Found: 341.1085.

5-chloro-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3o):

(Eluent: 15% EtOAc/hexane); 77% yield (52.6 mg); yellow solid; Mp: 255-257 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.52 – 8.48 (m, 2H), 8.00 (s, 2H), 7.95 – 7.90 (m, 1H), 7.79 – 7.74 (m, 1H), 7.67 – 7.61 (m, 2H), 7.56 – 7.51 (m, 1H), 7.49 – 7.42 (m, 2H).; ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 151.7, 149.2, 140.8, 133.6, 132.4, 130.4, 129.2, 128.1, 125.0, 124.4, 124.3, 122.6, 120.0, 115.1, 112.9, 111.6, 111.2, 110.8. Anal. calcd for C₂₁H₁₁ClN₂O: C, 73.58; H, 3.23; N, 8.17; found: C, 62.72; H, 9.362; N, 8.01.

4-chloro-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3p) :

(Eluent: 10% EtOAc/hexane); 79% yield (54.0 mg); yellow solid, Mp: 270-272 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 7.1 Hz, 2H), 8.14 – 8.09 (m, 1H), 7.88 (s, 2H), 7.72 (dd, J = 6.1, 3.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.42 (h, J = 3.4 Hz, 2H).; ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 150.4, 148.8, 139.8, 132.5, 130.3, 129.2, 128.0, 127.6, 125.1, 124.2, 122.9, 122.3, 121.1, 118.0, 115.0, 112.6, 111.2. Anal. calcd for C₂₁H₁₁ClN₂O: C, 73.58; H, 3.23; N, 8.17; found: C, 61.02; H, 9.340; N, 7.56.

8-methoxy-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3q) :

(Eluent: 30% EtOAc/hexane); 72% yield (48.6 mg); yellow solid; Mp: 235-237 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, J = 7.8 Hz, 2H), 7.99 (d, J = 7.9 Hz, 1H), 7.97 – 7.89 (m, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.62 (t, J = 7.4 Hz, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.28 (s, 1H), 7.01 (d, J = 8.3 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.8, 157.9, 150.6, 147.2, 141.0, 133.1, 129.8, 129.1, 127.9, 126.7, 124.7, 119.9, 116.2, 115.2, 112.1, 111.0, 110.8, 110.7, 98.0, 77.2, 77.0, 76.8, 55.8. HRMS-ESI (m/z) [M+H]⁺ calcd. For C₂₂H₁₅N₂O₂: 339.1129; Found: 339.1123.

8-methoxy-1-(4-methoxyphenyl)benzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3r):

(Eluent: 40% EtOAc/hexane); 73% yield (53.7 mg); yellow liquid, Mp: 230-232 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.52 – 8.47 (m, 2H), 7.97 (d, J = 3.3 Hz, 3H), 7.84 (d, J = 8.3 Hz, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.16 (d, J = 8.6 Hz, 2H), 7.07 (dd, J = 8.4, 2.2 Hz, 1H), 3.95 (d, J = 2.3 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 161.1, 160.8, 157.9, 150.6, 147.4, 141.2, 129.5, 126.6, 125.8, 124.5, 120.0, 116.4, 114.9, 114.6, 112.0, 110.4, 110.3, 110.2, 98.1, 55.9, 55.4. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₃H₁₇N₂O₃: 369.1234; Found: 369.1239.

1-(4-fluorophenyl)-8-methoxybenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3s) :

(Eluent: 20% EtOAc/hexane); 73% yield (51.9 mg); yellow solid, Mp: 234-237 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.48 – 8.43 (m, 2H), 7.98 – 7.87 (m, 3H), 7.75 (d, J = 8.2 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.02 (dd, J = 8.2, 2.3 Hz, 1H), 3.93 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 164.6 (d, $J_{C,F}$ = 249 Hz), 160.7, 158.0, 150.3, 146.0, 141.0, 129.8 (d, $J_{C,F}$ = 9.0 Hz), 129.3, 126.8, 124.6, 120.0, 116.3 (d, $J_{C,F}$ = 22.5 Hz), 115.2, 112.1, 110.9, 110.7, 110.4, 98.0, 55.8; ¹⁹F NMR (564 MHz, CDCl₃) δ -110.47 (s, 1F); HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₄FN₂O₂: 357.1034; Found: 357.1025.

. 1-(2-fluorophenyl)-8-methoxybenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3t) :

(Eluent: 30% EtOAc/hexane); 64% yield (45.5 mg); yellow solid, Mp: 225-227 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (t, J = 7.6 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.99 – 7.91 (m, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.52 – 7.44 (m, 1H), 7.40 – 7.33 (m, 2H), 7.29 (s, 1H), 7.04 – 6.99 (m, 1H), 3.91 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 161.6 (d, $J_{C,F}$ = 250 Hz), 159.9, 158.0, 151.4, 140.2, 139.7, 131.2, 131.1, 130.0, 126.8, 124.8 (d, $J_{C,F}$ = 21.0 Hz), 121.5, 121.4, 119.9, 116.1, 115.9 (d, $J_{C,F}$ = 7.5 Hz), 115.7, 112.2, 111.1, 110.5, 97.9, 55.8; ¹⁹F NMR (564 MHz, CDCl₃) δ -113.43 (s, 1F); HRMS-ESI (m/z) [M+Na]⁺calcd. For C₂₂H₁₃FN₂O₂Na: 379.0854; Found: 379.0845.

8-methoxy-5-methyl-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3u)

(Eluent: 30% EtOAc/hexane); 72% yield (50.6 mg); yellow solid, Mp:257-258 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.54 – 8.49 (m, 2H), 7.81 – 7.76 (m, 3H), 7.62 (t, J = 7.7 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.32 (d, J = 2.3 Hz, 1H), 7.05 (dd, J = 8.1, 2.3 Hz, 1H), 3.94 (s, 3H), 2.84 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 160.7, 157.9, 150.9, 147.0, 141.0, 138.3, 133.2, 129.7, 129.1, 127.9, 124.2, 119.9, 116.4, 114.6, 112.2, 112.1, 111.3, 110.5, 98.1, 55.9, 23.0. HRMS-ESI (m/z) [M+Na]+calcd. For C₂₃H₁₆N₂NaO₂: 375.1104; Found: 375.1098.

5,7-dimethyl-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3v):

(Eluent: 20% EtOAc/hexane); 70% yield (47.0 mg); yellow solid; Mp:227-228 °C; ¹H NMR (600 MHz, CDCl₃) δ ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 12.3 Hz, 2H), 7.68 (s, 1H), 7.64 – 7.57 (m, 3H), 7.50 (t, J = 7.0 Hz, 1H), 7.19 (d, J = 8.3 Hz, 1H), 2.82 (s, 3H), 2.54 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 158.0, 151.4, 147.2, 141.0, 138.5, 133.7, 133.1, 129.7, 129.1, 127.9, 125.4, 124.3, 123.0, 119.9, 114.4, 112.1, 112.0, 111.2, 110.4, 23.0, 21.5. Anal. calcd for C₂₃H₁₆N₂O: C, 82.12; H, 4.79; N, 8.33; found: C, 64.36; H, 4.83 N, 7.83.

1-(4-methoxyphenyl)-5,7-dimethylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3w):

(Eluent: 25% EtOAc/hexane); 69% yield (50.5 mg); yellow solid, Mp:207-209 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 8.1 Hz, 1H), 7.80 – 7.73 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 3.94 (s, 3H), 3.11 (s, 3H), 2.57 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 161.0, 158.2, 158.2, 150.4, 150.4, 147.1, 140.0, 133.6, 129.4, 128.9, 125.9, 125.4, 124.3, 123.1, 121.4, 120.2, 114.6, 112.2, 110.3, 55.4, 21.6, 18.8. Anal. calcd for C₂₄H₁₈N₂O₂: C, 78.67; H, 4.95; N, 7.65; found: C, 73.84; H, 6.43; N, 14.23.

1-(4-chlorophenyl)-5,7-dimethylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3x)

(Eluent: 15% EtOAc/hexane); 70% yield (51.8 mg); yellow solid, Mp: 215-217 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 7.9 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.54 (d, J = 7.9 Hz, 3H), 7.18 (d, J = 8.3 Hz, 1H), 3.00 (s, 3H), 2.53 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 158.0, 150.0, 145.2, 139.6, 135.4, 133.6, 131.7, 129.3, 129.2, 128.9, 125.6, 124.3, 122.7, 121.9, 120.1, 115.1, 112.2, 111.0, 110.4, 21.5, 18.7. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₃H₁₆ClN₂O: 371.0946; Found: 371.0975.

1-(4-ethylphenyl)-7-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3y) :

(Eluent: 15% EtOAc/hexane); 79 % yield (55.3 mg); yellow solid, Mp: 215-217 °C; ¹H NMR (600 MHz, CDCl₃) δ ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 7.3 Hz, 2H), 8.04 – 7.96 (m, 3H), 7.78 (s, 1H), 7.64 (d, J = 9.0 Hz, 1H), 7.48 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 8.6 Hz, 1H), 2.79 (d, J = 7.9 Hz, 2H), 2.57 (s, 3H), 1.35 (d, J = 16.0 Hz, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 158.1, 151.3, 147.9, 146.6, 141.2, 133.8, 130.5, 128.7, 128.1, 126.9, 125.5, 124.9, 123.0, 120.1, 115.0, 112.2, 110.7, 110.5, 28.9, 21.5, 15.4. Anal. calcd for C₂₄H₁₈N₂O: C, 82.26; H, 5.18; N, 7.99; found: C, 62.93; H, 9.036; N, 7.85.

1-(4-methoxyphenyl)-7-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3z) :

(Eluent: 30% EtOAc/hexane); 67 % yield (47.1 mg); yellow solid, Mp: 218-220 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 8.3 Hz, 2H), 7.98 – 7.91 (m, 3H), 7.73 (s, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.5 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 3.94 (s, 3H), 2.55 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 161.2, 158.1, 151.1, 147.8, 141.3, 133.7, 129.6, 126.7, 125.7, 125.4, 124.7, 123.1, 120.0, 114.6, 112.1, 110.3, 110.2, 110.1, 55.4, 21.5. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₃H₁₇N₂O₂: 353.1285; Found: 353.1291.

1-(2-fluorophenyl)-7-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3aa):

(Eluent: 15% EtOAc/hexane); 60% yield (40.8 mg); yellow solid, Mp: 218-220 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.61 (t, J = 7.4 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.67 (s, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.48 (q, J = 7.0 Hz, 1H), 7.40 – 7.32 (m, 2H), 7.17 (d, J = 8.2 Hz, 1H), 2.52 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 161.7 (d, *J_{C,F}* = 252.0 Hz), 160.0, 158.0, 152.1, 140.3 (d, *J_{C,F}* = 43.5 Hz), 133.5, 131.3 (d, *J_{C,F}* = 7.5 Hz), 130.1, 127.0, 125.6, 125.1, 124.7, 124.7, 122.6, 121.5, 121.4, 119.9, 116.1 (d, *J_{C,F}* = 21.0 Hz), 115.6, 112.7, 112.6, 112.2, 111.1, 110.3,

21.5; ¹⁹F NMR (564 MHz, CDCl₃) δ -113.78 (s, 1F); HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₄FN₂O: 341.1085; Found: 341.1090.

1-(4-fluorophenyl)-7-methylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3ab)

(Eluent: 10% EtOAc/hexane); 68% yield (46.2 mg); yellow solid, Mp: 210-212 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.53 (dd, J = 8.6, 5.2 Hz, 2H), 8.00 (td, J = 5.6, 2.4 Hz, 3H), 7.78 (s, 1H), 7.64 (d, J = 9.1 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.24 (d, J = 8.9 Hz, 2H), 2.57 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 164.7 (d, $J_{C,F}$ = 249.0 Hz), 163.0, 158.2, 151.1, 146.4, 141.1, 133.9, 129.9 (d, $J_{C,F}$ = 9.0 Hz), 129.3, 127.1, 125.7, 125.0, 122.9, 120.2, 116.4 (d, $J_{C,F}$ = 22.5 Hz), 115.2, 112.2, 111.0, 110.7, 110.5, 21.5; ¹⁹F NMR (564 MHz, CDCl₃) δ -110.30 (s, 1F); HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₄FN₂O: 341.1085; Found: 341.1086.

7-methyl-1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3ac) :

(Eluent: 10% EtOAc/hexane); 68% yield (43.7 mg); yellow solid, Mp: 210-212 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.69 – 8.64 (m, 1H), 7.98 – 7.92 (m, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.51 – 7.45 (m, 1H), 7.45 – 7.33 (m, 4H), 3.02 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 161.6, 159.9, 159.5, 151.5, 140.1, 138.9, 131.0, 131.0, 130.2, 127.6, 124.7, 124.4, 123.8, 123.3, 122.9, 122.6, 121.7, 121.6, 119.8, 116.0, 115.9, 115.6, 112.8, 110.7, 16.2. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₅N₂O:323.1179; Found: 323.1177.

1-(4-ethylphenyl)-4,7-dimethylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3ad) :

(Eluent: 10% EtOAc/hexane); 73% yield (53.1 mg); yellow solid, Mp: 205-207 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 7.4 Hz, 2H), 7.81 (d, J = 12.7 Hz, 2H), 7.76 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 7.7 Hz, 2H), 7.22 (d, J = 8.6 Hz, 1H), 2.85 (s, 3H), 2.78 (q, J = 7.5 Hz, 2H), 2.57 (s, 3H), 1.34 (d, J = 15.9 Hz, 4H).; ¹³C NMR (150 MHz, CDCl₃) δ 158.1, 151.6, 147.6, 146.4, 141.2, 138.5, 133.7, 130.6, 128.7, 128.0, 125.3, 124.4, 123.2, 120.0, 114.3, 112.2, 111.9, 111.0, 28.9, 23.0, 21.5, 15.4. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₅H₂₁N₂O:365.1649; Found: 365.1648.

4-(3,7-dimethylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizin-1-yl)benzonitrile (3ae) :

(Eluent: 25% (EtOAc/hexane); 68% yield (49.0 mg) yellow solid, Mp: 230-232 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.57 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 7.5 Hz, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 1.7 Hz, 1H), 7.62 (d, J = 8.3 Hz, 1H), 7.26 – 7.23 (m, 1H), 2.99 (s, 3H), 2.57 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 158.1, 150.3, 143.2, 140.7, 137.6, 133.9, 132.8, 128.1, 128.1, 125.9, 123.7, 123.6, 122.8, 120.2, 119.0, 115.9, 112.3, 112.3, 112.0, 111.6, 21.5, 16.2. Anal. calcd for C₂₄H₁₅N₃O: C, 79.76; H, 4.18; N, 11.63; found: C, 57.78; H, 9.463; N, 8.83.

10-methoxy-1-phenylfuro[3',2':5,6]benzofuro[3,2-a]imidazo[5,1,2-cd]indolizine (3af) :

(Eluent: 15% (EtOAc/hexane); 60% yield (45.3 mg); yellow solid, Mp: 290-292 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, J = 7.5 Hz, 2H), 8.03 (dt, J = 9.7, 7.8 Hz, 3H), 7.74 (d, J = 2.7 Hz, 2H), 7.65 (t, J = 7.5 Hz, 2H), 7.53 (d, J = 7.3 Hz, 1H), 6.93 (d, J = 2.2 Hz, 1H), 4.57 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 151.5, 148.1, 147.7, 145.9, 143.5, 141.2, 133.0, 131.8, 130.0, 129.2, 128.1, 127.1, 127.0, 125.0, 121.5, 115.2, 111.1, 110.8, 110.7, 106.9, 103.5, 61.2. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₄H₁₅N₂O₃:379.1078; Found: 379.1078.

6-methyl-1-phenyl-6H-imidazo[5',1',2':3,4,5]indolizino[1,2-b]indole (5a) :

(Eluent: 30% (EtOAc/hexane); 75% yield (48.1 mg); yellow solid, Mp: 270-272 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.58 – 8.49 (m, 2H), 8.31 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.94 (dd, J = 18.3, 7.5 Hz, 2H), 7.69 (t, J = 7.6 Hz, 2H), 7.53 (dt, J = 24.2, 8.3 Hz, 3H), 7.42 – 7.33 (m, 1H), 4.21 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 145.6, 142.7, 139.7, 136.1, 135.0, 129.0, 128.9, 128.5, 124.9, 124.3, 121.5, 121.3, 120.2, 119.6, 117.0, 114.5, 111.6, 110.1, 108.2, 31.9. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₂H₁₆N₃:322.1325; Found: 322.1339.

1-(4-ethylphenyl)-6-methyl-6H-imidazo[5',1',2':3,4,5]indolizino[1,2-b]indole (5b) :

(Eluent: 30% (EtOAc/hexane); 69% yield (48.1 mg); yellow solid, Mp: 200-202 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 8.0 Hz, 2H), 8.35 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 7.4 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.52 (dd, J = 14.1, 7.7 Hz, 3H), 7.38 (t, J = 7.5 Hz, 1H), 4.24 (s, 3H), 2.83 (q, J = 7.7 Hz, 2H), 1.38 (t, J = 7.6 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ 145.7, 145.3, 142.6, 139.6, 135.9, 132.3, 128.5, 128.4, 124.6, 124.1, 121.4, 120.9, 120.0, 119.5, 116.6, 114.4, 111.2,

110.0, 107.9, 31.7, 28.9, 15.5. Anal. calcd for C₂₄H₁₉N₃: C, 82.49; H, 5.48; N, 12.03; found: C, 94.97; H, 8.786; N, 12.43.

1-(4-fluorophenyl)-6-methyl-6H-imidazo[5',1',2':3,4,5]indolizino[1,2-b]indole (5c) :

(Eluent: 30 % (EtOAc/hexane); 65% yield (44.0 mg); yellow solid, Mp: 240-242 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.49 – 8.43 (m, 2H), 8.20 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.95 – 7.87 (m, 2H), 7.55 (d, J = 8.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 – 7.33 (m, 3H), 4.18 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 164.2 (d, $J_{C,F}$ = 247.5 Hz), 162.6, 144.4, 142.7, 139.6, 136.1, 131.2, 130.2 (d, $J_{C,F}$ = 9.0 Hz), 125.0, 124.3, 121.2, 120.2, 119.5, 116.6, 116.3 (d, $J_{C,F}$ = 22.5 Hz), 114.3, 111.5, 110.2, 108.2, 31.9; ¹⁹F NMR (564 MHz, CDCl₃) δ -112.23 (s, 1F); Anal. calcd for C₂₂H₁₄FN₃: C, 77.86; H, 4.16; N, 12.38; found: C, 61.61; H, 13.344; N, 7.91.

4-(6-methyl-6H-imidazo[5',1',2':3,4,5]indolizino[1,2-b]indol-1-yl)benzonitrile (5d) :

(Eluent: 30 % (EtOAc/hexane); 64% yield (44.2 mg); yellow solid, Mp: 230-232 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.59 – 8.55 (m, 2H), 8.17 (d, J = 7.9 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 8.00 – 7.90 (m, 4H), 7.58 (d, J = 8.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 4.22 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 142.7, 142.3, 139.6, 139.3, 136.6, 132.7, 128.6, 125.9, 124.6, 121.8, 121.0, 120.6, 119.4, 119.0, 117.8, 112.5, 111.8, 110.4, 108.9, 32.0. Anal. calcd for C₂₃H₁₄N₄: C, 79.75; H, 4.07; N, 16.17; found: C, 87.72; H, 6.830; N, 13.33.

5-chloro-6-methyl-1-phenyl-6H-imidazo[5',1',2':3,4,5]indolizino[1,2-b]indole (5e) :

(Eluent: 30% (EtOAc/hexane); 63% yield (44.7 mg); yellow solid, Mp: 230-232 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.50 – 8.46 (m, 2H), 8.27 (d, J = 7.9 Hz, 1H), 8.01 (s, 1H), 7.93 (s, 1H), 7.69 (t, J = 7.7 Hz, 2H), 7.58 – 7.49 (m, 3H), 7.40 – 7.35 (m, 1H), 4.17 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 146.9, 142.9, 139.2, 135.4, 134.4, 131.2, 129.3, 129.1, 128.4, 124.9, 121.6, 120.6, 120.5, 119.4, 117.1, 115.6, 111.3, 110.2, 108.9, 31.9. Anal. calcd for C₂₂H₁₄ClN₃: C, 74.26; H, 3.97; N, 11.81; found: C, 63.32; H, 10.245; N, 7.94.

9-methoxy-6-methyl-1-phenyl-6H-imidazo[5',1',2':3,4,5]indolizino[1,2-b]indole (5f) :

(Eluent: 30% (EtOAc/hexane); 75% yield (52.6 mg); yellow solid, Mp: 220-222 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.47 – 8.36 (m, 2H), 7.96 (d, J = 8.0 Hz, 1H), 7.81 (td, J = 7.7, 1.5 Hz, 1H), 7.77 (dd, J = 7.5, 2.1 Hz, 1H), 7.66 – 7.59 (m, 3H), 7.54 – 7.48 (m, 1H), 7.32 (dd, J = 9.0, 1.9 Hz, 1H), 7.08 (dt, J = 8.9, 1.7 Hz, 1H), 4.01 (d, J = 2.4 Hz, 3H), 3.93 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 154.1, 144.7, 139.5, 137.8, 136.3, 135.0, 128.8, 128.4, 124.7, 121.2, 119.5, 116.8, 114.3, 113.8, 111.4, 110.8, 107.7, 103.0, 55.6, 31.8. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₃H₁₈N₃O:352.1445; Found: 352.1447.

1-(4-fluorophenyl)-9-methoxy-6-methyl-6H-imidazo[5',1',2':3,4,5]indolizino[1,2-b]indole (5g) :

(Eluent: 30% (EtOAc/hexane); 63% yield (46.4 mg); yellow solid, Mp: 260-262 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.38 (dd, J = 8.5, 5.6 Hz, 2H), 7.96 (d, J = 8.0 Hz, 1H), 7.82 (dt, J = 15.2, 7.4 Hz, 2H), 7.53 (d, J = 2.5 Hz, 1H), 7.36 (d, J = 9.0 Hz, 1H), 7.31 (t, J = 8.5 Hz, 2H), 7.10 (dd, J = 8.9, 2.5 Hz, 1H), 4.05 (s, 3H), 3.93 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 164.2 (d, *J*_{C,F} = 247.5 Hz), 154.2, 143.7, 139.6, 137.8, 136.5, 131.3, 130.1 (d, *J*_{C,F} = 7.5 Hz), 124.9, 121.4, 119.5, 116.6, 116.0 (d, *J*_{C,F} = 21.0 Hz), 114.3, 113.8, 111.4, 110.9, 107.9, 103.0, 55.7, 31.9; ¹⁹F NMR (564 MHz, CDCl₃) δ -112.32 (s, 1F); HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₃H₁₇FN₃O:370.1351; Found: 370.1350.

6-methyl-1-phenyl-6H-imidazo[5,1,2-cd]pyrido[3',2':4,5]pyrrolo[2,3-a]indolizine (5h) :

(Eluent: 40% (EtOAc/hexane); 60% yield (38.6 mg); yellow solid, Mp: 200-202 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.60 – 8.54 (m, 2H), 8.53 – 8.46 (m, 2H), 8.10 (d, J = 8.1 Hz, 1H), 8.04 (d, J = 7.5 Hz, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.69 (t, J = 7.7 Hz, 2H), 7.58 – 7.51 (m, 1H), 7.33 (dd, J = 7.8, 4.8 Hz, 1H), 4.33 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 152.0, 145.9, 144.9, 139.8, 135.0, 134.6, 129.2, 129.1, 128.2, 125.2, 121.1, 117.1, 116.1, 113.1, 112.2, 111.7, 109.1, 30.3. Anal. calcd for C₂₁H₁₄N₄: C, 78.24; H, 4.38; N, 17.38; found: C, 86.30; H, 8.368; N, 15.67.

3-(benzofuran-2-yl)imidazo[1,2-a]pyridine (9) :

(Eluent: 30% (EtOAc/hexane); 70% yield (32.7 mg); yellow solid, Mp: 190-192 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.78 (d, J = 6.9 Hz, 1H), 8.08 (s, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.62 (dd, J = 7.5, 1.4 Hz, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.36 – 7.26 (m, 3H), 7.02 – 6.93 (m, 2H).¹³C NMR (150 MHz, CDCl₃) δ 154.4, 146.8, 134.3, 128.5, 125.5, 125.1, 124.4, 123.4, 120.8, 118.3, 113.4, 111.1, 102.2.

3-(benzofuran-2-yl)-2-methylimidazo[1,2-a]pyridine (12) :

(Eluent: 30% (EtOAc/hexane); 45% yield (22.3 mg); brown solid, Mp: 200-202 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.74 (dd, J = 6.9, 1.2 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.57 (dt, J = 8.2, 1.0 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.26 – 7.23 (m, 1H), 6.92 – 6.86 (m, 2H), 2.67 (d, J = 1.0 Hz, 3H).

3-phenylimidazo[1,2-a]pyridine (18)³:

(Eluent: 15% (EtOAc/hexane); white solid, Mp 98-100 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 6.9 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.57 – 7.45 (m, 4H), 7.39 (t, J = 7.2 Hz, 1H), 7.16 (dd, J = 9.1, 6.6 Hz, 1H), 6.77 (t, J = 6.8 Hz, 1H).¹³C NMR (150 MHz, CDCl₃) δ 145.9, 132.2, 129.0, 128.0, 127.9, 127.8, 125.5, 124.1, 123.1, 118.0, 112.3.

3-(benzofuran-2-yl)-2-phenylimidazo[1,2-a]pyridine (20) :

(Eluent: 15% (EtOAc/hexane); yellow solid, Mp: 206-208 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 6.9 Hz, 1H), 7.81 (d, J = 7.2 Hz, 2H), 7.72 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.37 (dt, J = 12.9, 7.0 Hz, 4H), 7.31 (d, J = 8.9 Hz, 2H), 6.92 – 6.86 (m, 2H).¹³C NMR (150 MHz, CDCl₃) δ 155.0, 146.4, 145.9, 133.9, 128.6, 128.6, 128.4, 125.9, 125.3, 124.9, 123.4, 121.3, 117.8, 113.2, 112.0, 111.5, 107.6. HRMS-ESI (m/z) [M+H]⁺calcd. For C₂₁H₁₄N₂ONa:333.0999; Found: 333.0989.

1-phenylbenzofuro[3,2-a]imidazo[5,1,2-cd]indolizine and

1-phenylbenzofuro[2,3-a]imidazo[5,1,2-cd]indolizine (3a and 3a'):

(Eluent: 15% (EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.64 – 8.61 (m, 1H), 8.60 – 8.56 (m, 3H), 8.37 (d, J = 7.9 Hz, 1H), 8.23 – 8.16 (m, 5H), 8.13 – 8.09 (m, 1H), 8.04 – 7.98 (m, 1H), 7.83 – 7.79 (m, 2H), 7.75 (t, J = 7.8 Hz, 3H), 7.70 – 7.64 (m, 2H), 7.64 – 7.61 (m, 2H), 7.59 – 7.53 (m, 3H), 7.51 – 7.48 (m, 1H).

References:

- 1. D. C. Mohan, R. R. Donthiri, S. N. Rao, S. Adimurthy, *Adv. Synth. Catal.* 2013, **355**, 2217 222.
- 2. D. Cao, Z. Liu, P. Verwilst, S. Koo, P. angjili, J. S. Kim, W, Lin, Chem. Rev. 2019, 119, 10403.
- 3. D. A. Babar, H. B. Rode, Eur. J. Org. Chem. 2020, 1823–1827.

¹H NMR and ¹³C NMR Spectra

¹³C NMR of **3a**

¹³C NMR of **3b**

¹³C NMR of **3c**

 ^{13}C NMR of 3d

¹³C NMR of **3e**

¹³C NMR of **3f**

 $^{19}\mathrm{F}\,\mathrm{NMR}$ of 3f

¹³C NMR of **3g**

¹³C NMR of **3h**

 $<^{2.88}_{2.87}$

¹³C NMR of **3i**

¹³C NMR of **3j**

¹³C NMR of **3k**

¹³C NMR of **3**l

 13 C NMR of **3m**

¹³C NMR of **3n**

¹⁹F NMR of **3n**

¹³C NMR of **30**

C 8,48 8,48 8,48 8,112 8,111 8,111 8,111 8,111 8,111 8,111 8,111 7,7337 7,7337 7,7337 7,7337 7,7337 7,7337 7,7337 7,7337 7,7337 7,73

¹³C NMR of **3p**

 ^{13}C NMR of 3q

¹³C NMR of **3r**

¹³C NMR of **3s**

 19 F NMR of 3s

¹³C NMR of **3t**

 19 F NMR of 3t

 ^{13}C NMR of 3u

¹³C NMR of 3v

¹³C NMR of 3w

¹H NMR of 3x

¹³C NMR of 3x

¹³C NMR of **3y**

¹³C NMR of **3z**

¹³C NMR of **3aa**

¹⁹F NMR of **3aa**

¹³C NMR of **3ab**

19F NMR of **3ab**

¹³C NMR of **3ac**

8.44
8.44
8.44
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
7.82
<l

¹³C NMR of **3ad**

¹³C NMR of **3ae**

 ^{13}C NMR of **3af**

¹³C NMR of **5a**

¹³C NMR of **5**c

 $^{19}\mathrm{F}\,\mathrm{NMR}$ of $5\mathrm{c}$

 13 C NMR of **5d**

¹³C NMR of **5e**

¹³C NMR of **5f**

¹⁹F NMR of **5g**

¹³C NMR of **5h**

¹³C NMR of **9**

8,2,3 8,7,5 8,

 1 H NMR of **18**

¹H NMR of **20**

¹H NMR of **3a** and **3a'** (inseparable mixture)