Supporting Information

Nitrogen-doped biomass carbon fibers with surface encapsulated Co nanoparticles for electrocatalytic overall water-splitting

Shihuan Hong,^a Ning Song,^a Jingxue Sun,^b Gang Chen,^b Hongjun Dong^a and Chunmei Li^{*a}

^aInstitute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.

^bMIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, PR China.

1. Experimental section

Chemicals. Platinum on carbon (Pt/C ,5% wt %, AR), ruthenium (IV) oxide (RuO₂, 99.9%, AR) was purchased from Shanghai Macklin Biochemical Co., LTD. 2,2' -Bipyridyl ($C_{10}H_8N_2$, 99%, AR), nickel chloride hexahydrate (NiCl₂·6H₂O, 98%, AR), potassium hydroxide (KOH, 99%, AR), sodium chlorite (NaClO₂, 80%, AR) were purchased from Aladdin Chemical Reagents Co., LTD. Iron(II) chloride tetrhydrate (FeCl₂·4H₂O, 98%, AR), cobalt(II) nitrate hexahydrate(Co(NO₃)₂·6H₂O, 98.5%, AR) were purchased from Aladent Co.,Ltd. Nafion (5 wt %, AR) were purchased from Alfa Aesar. Cotton fibre was purchased from a farm in Changji City, Xinjiang Province, China. Deionized (DI) water was employed as solvent.

Pretreatment of cotton. Add the cotton fibers to the NaClO₂ (1 wt%) solution and magnetically stir for 10 minutes. The resulting suspension was refluxed at 120 °C for 4 hours to remove the wax protective layer on the surface. After filtration, it was washed several times with distilled water and dried at 60 °C overnight to obtain treated cotton fibers.

Synthesis of the samples. Firstly, 6.7 mmol Co $(NO_3)_2 \cdot 6H_2O$ was dissolved in 10 ml absolute ethanol. Then, the above metal ion solution was slowly dropped into another 20ml of anhydrous ethanol solution containing 4mmol 2,2 '- bipyridine and stirred under ambient conditions for 10 min. After that, 0.9g NaClO₂ treated cotton was put into 20ml mixed solution until the cotton absorbed all the solutions and dried at 60 °C. Then, the cotton was heated to 800 °C in a tubular furnace at a heating rate of 5 °C min⁻¹ and kept in a high purity argon gas stream for 4 hours. After calcination, the sample was stirred with 1wt% HCl for 3 days, washed with ethanol and deionized water 3 times, and finally dried at 60°C overnight to obtain the target product Co/N-BCFs. For comparison, Fe/N-BCFs and Ni/N-BCFs are prepared by the same method, adding the same molar mass of FeCl₂·4H₂O and NiCl₂·6H₂O instead of Co (NO₃)₂·6H₂O. BCFs samples were prepared from NaClO₂ treated cotton in a tubular furnace at 800 °C for 4 h under an argon atmosphere with a temperature ramp of 5 °C min⁻¹.

Preparation the working electrode. Typically, the ink was prepared by dispersing 5 mg of samples into 1ml mixture containing 960 μ L ethanol and 40 μ L Nafion (5 wt %) with an ultrasonic treatment for 30 min. Then, as-made ink of all the catalysts was dropped onto carbon paper (0.25×0.25 cm⁻²) to afford a loading density of 2.4 mg cm⁻². After drying, the working electrodes were obtained. Electrochemical tests were carried out by using a VERSTAT-3 (Princeton Applied Research, America) electrochemical workstation with a conventional three-electrode system at room temperature, in which sample coated carbon paper electrode, the Hg/HgO electrode and platinum sheet served as the working, reference, and counter electrode, respectively. 1 M KOH solution was used as the electrolyte.

Materials characterization. X-ray diffraction (XRD) was recorded by a D/MAX-2500 diffractometer (Rigaku, Japan) with a Cu Kα radiation source from 10–80°. Scanning electron microscopy (SEM) images were analyzed by JSM-7800F. Transmission electron microscopy (TEM) images were conducted on JEM-2800 electron microscope with an accelerating voltage of 200 kV. In addition, the chemical state of the sample was studied by the X-ray photoelectron spectroscopy (XPS) (Thermo Scientific K-Alpha), All XPS spectra were corrected using the C 1s line at 284.6 eV. Curve fitting and background subtraction were accomplished. Raman spectra were recorded on a Thermo Fisher DXR instrument with an Ar laser source of 532 nm in a macroscopic configuration. The Brunauer-EmmettTeller (BET) specific surface area and average pore diameter distribution were recorded by using a Micromeritics TriStar II3020 instrument. The ICP measurement was performed on Shimadzu ICPE-9820.

Electrochemical measurements. All electrochemical properties were collected using a threeelectrode electrochemical system at room temperature. The electrocatalytic HER, OER and full water splitting activity were characterized in 1M KOH with a scan rate of 5 mV s⁻¹, and the electropotential for water oxidation was evaluated at 10 mA cm⁻² current density ($E_{j=10}$). Furthermore, the HER and OER potentials were converted to standard reversible hydrogen electrode (RHE) scale according to the equation: E (vs. RHE) = E (vs. Hg/HgO) + 0.059*pH + 0.098 V. The polarization curves of the HER and OER were iR-corrected. The Tafel slopes were calculated according to the Tafel equation: η =blogj +a, where η is the overpotential, b is the Tafel slope, j is the current density and a is the Tafel intercept relative to the exchange current density j_0 . Electrochemical impedance spectroscopy (EIS) measurements were carried out in the frequency range of 10⁵ to 0.01 Hz with AC amplitude of 10 mV. The double layer capacitance (C_{dl}) was determined by cyclic voltammetry curves measured by scan rates of 60, 70,80, 90 and 100 mV s⁻¹. Notably, the generated H₂ and O₂ gases during overall water splitting were quantitatively collected by the water drainage method.

Fig. S1. SEM images of (a, b) BCFs and (c, d) Co/N-BCFs.

Fig. S2. (a, c) N₂ sorption isotherms and (b, d) pore size distributions of BCFs and Co/N-BCFs.

Fig. S3. SEM-EDS spectrum of Co/N-BCFs.

Fig. S4. SEM and corresponding elemental mapping images of Co/N-BCFs.

Fig. S5. HAADF-TEM image of Co/N-BCFs.

Fig. S6. XRD spectra of BCFs and Co/N-BCFs.

Fig. S8. HER corresponding overpotentials at 10 mA cm⁻² for Co/N-BCFs, Fe/N-BCFs, Ni/N-BCFs, BCFs and Pt/C.

Fig. S9. Nyquist plots of Co/N-BCFs, Fe/N-BCFs, Ni/N-BCFs, BCFs and Pt/C with the fitting curves

for HER.

Fig. S10. Cyclic voltammograms of (a) Co/N-BCFs, (b)Fe/N-BCFs, (c) Ni/N-BCFs, and (d) BCFs in the region of 0.8 - 0.9 V (vs. RHE) at different scan rates, (e) Double-layer capacitance (C_{dl}) of Co/N-BCFs, Fe/N-BCFs, Ni/N-BCFs and BCFs.

Fig. S11. (a) TEM image of Co/N-BCFs and (b) High-resolution XPS spectrum of Co 2p after HER electrolysis.

Fig. S12. OER corresponding overpotentials at 10 mA cm⁻² for Co/N-BCFs, Fe/N-BCFs, Ni/N-

Fig. S13. Nyquist plots of Co/N-BCFs, Fe/N-BCFs, Ni/N-BCFs, BCFs and Pt/C with the fitting curves for OER.

Fig. S14. Cyclic voltammograms of (a) Co/N-BCFs, (b)Fe/N-BCFs, (c) Ni/N-BCFs, and (d) BCFs in the region of 1.15 - 1.35 V (vs. RHE) at different scan rates, (e) Double-layer capacitance (C_{dl}) of Co/N-BCFs, Fe/N-BCFs, Ni/N-BCFs and BCFs.

Fig. S15. (a) TEM image of Co/N-BCFs and (b) High-resolution XPS spectrum of Co 2p after OER electrolysis.

Fig. S16. The overpotentials at 10 mA cm⁻² for Co/N-BCFs|| Co/N-BCFs, Fe/N-BCFs|| Fe/N-BCFs, Ni/N-BCFs|| Ni/N-BCFs, BCFs|| BCFs and Pt/C||RuO₂ in overall water splitting.

Fig. S17. (a) Faradic efficiency measurement device based on water splitting; (b) The variations of amount of H_2 and O_2 with time.

Table S1. Comparison of HER performance of Co/N-BCFs and metal-nitrogen doped carbon-
based catalysts in literatures.

Electrocatalysts	Electrolytes	E _{j10} (mV vs. RHE)	References
Co/N-BCFs	1.0M KOH	47	This work
CoFe ₂ O _{4/} SWNTs	1.0M KOH	263	ACS Appl. Energy Mater. 2019, 2, 1026–1032
Co@Co ₃ O ₄ -NC	1.0M KOH	221	J. Mater. Chem. A, 2017,5, 9533-9536
Co ₃ Fe ₇ @NCNTFs	1.0M KOH	197	Chem. Asian J,2020.7, 1728-1735
Co-SCN/RGO	1.0M KOH	150	ACS Sustainable Chem. Eng, 2019, 7, 15373-15384
C@Mo ₂ C/Co	1.0M KOH	146	Int J. Hydrogen Energ, 45 (2020) 22629-22637
Co-CeO ₂ @CNF	1.0M KOH	92	Materials 2020, 13, 856
CoN-400/CC	1.0M KOH	97	Electrochimica Acta, 273 (2018) 229-238
N, Co-CNTs	1.0M KOH	151	Appl. Catal. B-Environ, 2021, 283, 119643
Fe-Ni ₃ C-2%	1.0M KOH	292	Angew. Chem. Int. Ed. 2017, 56, 12566–12570
Co ₆ W ₆ C@NC	1.0M KOH	59	Small, 2020, 16, 1907556

		,	
Electrocatalysts	Electrolytes	E _{j10} (mV vs. RHE)	References
Co/N-BCFs	1.0M KOH	339	This work
CoFe ₂ O ₄ /SWNTs	1.0M KOH	310	ACS Appl. Energy Mater. 2019, 2, 1026–1032
N, Co-CNTs	1.0M KOH	308	Appl. Catal. B-Environ, 2021, 283, 119643
Fe-Ni₃C-2%	1.0M KOH	275	Angew. Chem. Int. Ed. 2017, 56, 12566–12570
CoMoN _x -500 NSAs/NF	1.0M KOH	231	Adv. Sci. 2020, 7, 1901833
Co ₆ W ₆ C@NC	1.0M KOH	286	Small, 2020, 16, 1907556
Co ₉ S ₈ /NC	0.1M KOH	400	RSC Adv., 7 (2017) 19181-19188.
RuNi-NCNFs	1.0M KOH	290	ACS Sustainable Chem. Eng., 6 (2018) 1527-1531.
Co-N-C	0.1M KOH	250	ACS Appl. Mater. Interfaces, 2019, 11, 39809-39819
Co/β Mo ₂ C@NCNTs	1.0M KOH	356	Angew. Chem. Int. Ed.,2019, 58, 4923-
Co/CNFs	1.0M KOH	320	Energy Environ. Sci. 2016, 9 (2), 478

 Table S2. Comparison of OER performance of Co/N-BCFs samples and metal-nitrogen doped carbon-based catalysts in literatures.

 Table S3 Comparison of water splitting performances of Co/N-BCFs samples and metal-nitrogen

 doped carbon-based catalysts in literatures.

Electrocatalysts	Electrolyt	E _{j10} (V)	References
	e		
Co/N-BCFs	1.0M KOH	1.31	This work
CoFe ₂ O _{4/} SWNTs	1.0M KOH	1.72	ACS Appl. Energy Mater. 2019, 2, 1026–1032
Co@Co ₃ O ₄ -NC	1.0M KOH	1.75	J. Mater. Chem. A, 2017,5, 9533-9536
Co ₃ Fe ₇ @NCNTFs	1.0M KOH	1.64	Chem. Asian J,2020.7, 1728-1735
Co-SCN/RGO	1.0M KOH	1.63	ACS Sustainable Chem. Eng. 2019, 7, 15373-
			15384
C@Mo ₂ C/Co	1.0M KOH	1.67	Int J. Hydrogen Energ, 45 (2020) 22629-22637
CoN-400/CC	1 M KOH	1.58	Electrochimica Acta, 273 (2018) 229-238
N, Co-CNTs	1.0M KOH	1.69	Appl. Catal. B-Environ, 2021, 283, 119643
Fe-Ni ₃ C-2%	1.0M KOH	1.56	Angew. Chem. Int. Ed. 2015, 54, 6251–6254
Co ₆ W ₆ C@NC	1.0M KOH	1.59	Small, 2020, 16, 1907556
CoMoN _x -500	1.0M KOH	1.55	Chem. Eng. J, 2021, 411, 128433
NSAs/NF			

Fig. S18 (a) OER polarization curves, (b) HER polarization curves and (c) Polarization curves for overall water-splitting of Co/N-BCFs in acidic medium.