Supporting Information for

Mismatch binding ligand upregulated back-splicing reaction producing circular RNA in a cellular model

Lu Ni, ${ }^{\text {a }}$ Takeshi Yamada, ${ }^{a}$ Asako Murata, ${ }^{a}$ Kazuhiko Nakatani ${ }^{a}$
${ }^{a}$ Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047. JAPAN

Table of Contents

Experimental Procedures 3
General information 3
SPR assay 3
Plasmid construct preparation 3
Reverse-transcription quantitative PCR (RT-qPCR experiments) 3
Ribonuclease \mathbf{R} (RNase \mathbf{R}) treatment 4
Supplementary Figures 4
Figure S15
Figure S2 6
Figure S3 6
Figure S4 7
Figure S5 8
Table S1 8
Table S2 9
Table S3 9
References 10

Experimental Procedures

General information:

Surface plasmon resonance (SPR) measurements were conducted using BIAcore T200 instrument (GE Healthcare). All oligonucleotides were purchased from Invitrogen. The original plasmid construct used in these experiments: pcDNA3.1(+) ZKSCAN1 nt 400-1782 delta440-500 delta1449-1735, was a gift from Jeremy Wilusz (Addgene plasmid \# 60633 ; http://n2t.net/addgene:60633 ; RRID:Addgene_60633). ${ }^{[1]}$ Escherichia coli (E. coli) strain DH5 α was used to amplify plasmid DNA and the amplified plasmid DNA was extracted and purified using NucleoBond® Xtra Midi EF (Macherey-Nagel). HeLa cells (RIKEN BRC, RCB0007) were used for transfection and were maintained at $37{ }^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ in Dulbecco's modified eagle's medium (Sigma, D6429) supplemented with 10% (v / v) fetal bovine serum (MP Biomedicals) and penicillin-streptomycin (Gibco). The chemical compounds described in the paper, NCD and QCD, were synthesized as previously reported. ${ }^{[2]}$ FuGENE HD ${ }^{\text {TM }}$ transfection reagent (Promega) was used for plasmid transfection. For RT-qPCR experiments, cell lysis and reverse transcription was conducted using Superprep® II cell lysis \& RT kit (TAKARA), and real-time PCR (qPCR) experiments were conducted using StepOne real-time PCR system (Applied Biosystem) using GoTaq® qPCR master mix (Promega). For Ribonuclease R (RNase R) treatment, cell lysis and total RNA extraction were conducted using ISOGEN (Nippon gene Co.), RNase R was purchased from Epicenter Technologies, and the reverse transcription was conducted using ReverTra Ace® qPCR RT Master Mix with gDNA remover (TOYOBO).

SPR assay:

1) Sensor preparation: For the SPR assay, RNA containing the partial intronic sequence containing 5^{\prime}-GGA-3'/5'-GGA-3' and 5^{\prime} '-UCC-3'/5'-GGA-3' was immobilized onto the sensor chip SA (Cytiva) where the surface was coated with streptavidin. The surface of the sensor chip was first washed three times with 50 mM NaOH and 1 M NaCl for 60 sec with a flow rate of $30 \mu \mathrm{~L} \mathrm{~min}^{-1}$. Then the biotin-labeled RNAs, biotin-TEG-5'-GCUGAGAU GGA AGGCGUGAGCUUUUGCUCACACCU GGA AUCCCAGC-3' and biotin-TEG-5'- GCUGAGAU UCC AGGCGUGAGCUUUUGCUCACACCU GGA AUCCCAGC-3' (The 5'-GGA-3'/5'-GGA-3' and 5'-UCC-3'/5'-GGA-3' regions are underlined), were immobilized onto the surface under the following conditions: $1 \mu \mathrm{M}$ RNA in 10 mM HEPES, 500 $\mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$, the flow rate of $5 \mu \mathrm{~L} \mathrm{~min}^{-1}$ for the flow of 60 sec . The amount of RNA immobilized on the sensor chip SA was 1217 RU and 1075 RU respectively.
2) SPR analysis protocol: SPR analysis for the binding of NCD and QCD to the RNA-immobilized surface was conducted on BIAcore T-200 and carried out by subsequently flowing $0.0625,0.125,0.25,0.5$, and $1 \mu \mathrm{M}$ of each compound for 60 sec of contacting time in HBS-EP+ buffer (10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM}$ EDTA, $0.05 \% \mathrm{v} / \mathrm{v}$ Surfactant P20, pH 7.4) (Cytiva) with the flow rate of $30 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$ at $25^{\circ} \mathrm{C}$ followed by dissociation of bound compounds by flowing running buffer for 120 sec . Surface regeneration was carried out after the assay of each compound using $1.2 \mathrm{mM} \mathrm{NaOH}, 0.2 \mathrm{M} \mathrm{NaCl}$, and 0.1 mM EDTA solution, with a contact time of 180 sec and a flow rate of $30 \mu \mathrm{~L} \mathrm{~min}^{-1}$. Kinetic parameters of the binding of NCD and QCD to the RNA-immobilized surface were obtained by using the single-cycle kinetics method.

Plasmid construct preparation:

The desired mutation was introduced via PCR mutagenesis into the region coding for the circZKSCAN1 expressing pre-mRNA of the original construct (pcDNA3.1(+) ZKSCAN1 nt 400-1782 delta440-500 delta1449-1735, p-UAC). The specific location of the introduced mutation is shown in Fig. S1A. First, a guanine point mutation was introduced into one of the complementary intronic sequences (Fig. S1A, yellow arrow 1000-1035 nt region), using the primers (5'-GTA GCT CAC ACC TGG AAT CCC AGC AGC GG3^{\prime}) and (5^{\prime} - CCG CTG CTG GGA TTC CAG GTG TGA GCT AC-3') and PfuUltra High-fidelity DNA polymerase (Agilent) to produce the intermediate construct. The PCR product was then treated with Dpnl before it was transformed into E. coli DH5 α cells for amplification and isolated, as described above in General information. Additional nucleotide mutation was then further introduced into the intermediate construct in the other complementary intronic sequence (Fig. S1A, yellow arrow 1-40 nt region). For p-GGA plasmid, the primer pair (5^{\prime}-GAA TTC AAA GTG CTG AGA TGG AAG GCG TGA GCC ACC ACC-3') and (5^{\prime} '- GGT GGT GGC TCA CGC CTT CCA TCT CAG CAC TTT GAA TTC-3') was used, while for p-UCC plasmid, the primer pair (5^{\prime} - GAA TTC AAA GTG CTG AGA TTC CAG GCG TGA GCC ACC ACC- 3^{\prime}) and (5^{\prime} ' GGT GGT GGC TCA CGC CTG GAA TCT CAG CAC TTT GAA TTC-3') was used. The respective constructs were then amplified via E. coli DH5 α cells and collected as described previously, and the final sequence of the region coding for pre-mGGA and pre-mUCC are shown in Fig. S1C and D.

Reverse-transcription quantitative PCR (RT-qPCR experiments):

The HeLa cells were plated in a 96 -well plate at a density of 1×10^{4} cells/well and were incubated for 4 hrs to allow the cells to adhere to the well bottom. It was then transfected with p-GGA and p-UCC expressing plasmid obtained previously using Fugene $\mathrm{HD}^{\mathrm{TM}}$ with the ratio (FuGENE : plasmid $=5: 2, \mathrm{v} / \mathrm{w}$) according to the manufacturer's instructions. After 24 hrs incubation under $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$, the medium was exchanged with fresh medium containing NCD or QCD (NCD: $0,0.5,1,3$, and $5 \mu \mathrm{M}$; QCD: $5 \mu \mathrm{M}$), and the cells were further incubated for 24 hrs. The transfected cells were lysed and the total RNA was reverse transcribed into cDNA using the Superprep® II cell lysis \& rt kit according to the manufacturer's instructions. The resulting cDNA was diluted 5 -fold before performing qPCR analysis.
qPCR experiments were conducted with StepOne real-time PCR system (Applied Biosystem) and GoTaq® qPCR master mix (Promega) using the cDNA as the template. Each $10 \mu \mathrm{l}$ reaction contained $1 \mu \mathrm{l}$ of the cDNA solution, $0.2 \mu \mathrm{l}$ each of forward- and reverse- primers $(10 \mu \mathrm{M}), 0.1 \mu \mathrm{l}$ of $100 \times$ CXR dye, and $5 \mu \mathrm{l}$ of GoTaq® qPCR Master Mix. A negative control without cDNA template or samples without reverse transcriptase was included in each assay. The primers used for the detection of beta-actin and the various target circRNAs are listed below in Table S1.

Relative fold change of circRNA was calculated using the comparative $\Delta \Delta C_{t}$ method ${ }^{[3]}$ and beta-actin was used as endogenous control. Of the 9 data points obtained for each sample; the outliers at the minimum and maximum values were omitted. The qPCR products were analyzed by 8% (29:1, acylamide/bis-acrylamide) polyacrylamide gel electrophoresis to check the amplicon size. The specificity of primer pairs was also verified with the presence of a single peak in the melting curve after PCR amplification and sequencing of the amplicon.

Ribonuclease \mathbf{R} (RNase \mathbf{R}) treatment:

HeLa cells plated in a 24 -well plate (5×10^{4} cells/well) were first transfected with the p-GGA expression plasmid and treated in the same manner as described above. Total RNA was extracted using the ISOGEN RNA extraction kit, according to manufacturer's instructions. The obtained total RNA was then treated with DNase I, followed by ethanol precipitation. The RNA pellet was dissolved in water, and 360 ng of the total RNA was then incubated for 15 min at $37^{\circ} \mathrm{C}$ with or without 1 U RNase R. The resulting solution was directly subjected to reverse transcription using ReverTra Ace® qPCR RT Master Mix with gDNA remover, according to manufacturer's instructions. The expression was then analyzed by $q P C R$ as mentioned above, the experiment was conducted 3 independent times.

Supplementary Figures

A

Plasmid	Resulting RNA transcript	
p-UAC	pre-mUAC	Resulting circRNA
p-GGA	pre-mGGA	
p-UCC	pre-mUCC	

B

aagtgctgagatTACaggcgtgagccaccacccccgqceCACTTTTTGTAAAGGTACGTACTAATGACTTTTTTTTTATACTTCAGGAATA GTAAAGAAACACATCATAAAACCTCCCAGGACATAAAGGTGAGCACAGACCCTGTTTGGATCAAGTCAGTTCCTGGAGCCTGAATGATGACT <-3' -TGGAGGGTCCTGTATTTCCACTC-5' : circZKSCAN1_Rev
GCTGAATCACGGGAAGCCACGGGTCTGTCCCCACAGGCTGCACAGGAGAAGGATGGTATCGTAATAGTGAAGGTGGAAGAGGAAGATGAGGA AGACCACATGTGGGGGCAGGATTCCACCCTACAGGACACGCCTCCTCCAGACCCAGAGATATTCCGCCAACGCTTCAGGCGCTTCTGTTACC AGAACACTTTTGGGCCCCGAGAGGCTCTCAGTCGGCTGAAGGAACTTTGTCATCAGTGGCTGCGGCCAGAAATAAACACCAAGGAACAGATC CTGGAGCTTCTGGTGCTAGAGCAGTTTCTTTCCATCCTGCCCAAGGAGCTCCAGGTCTGGCTGCAGGAATACCGCCCCGATAGTGGAGAGGA GGCCGTGACCCTTCTAGAAGACTTGGAGCTTGATTTATCAGGACAACAGGTAAAAAGAGGTGAAACCTATTATGTGTGAGCAGGGCACAGAC GTTGAAACTGGAGCCAGGAGAAGTATTGGCAGGCTTTAGGTTATTAGGTGGTTACTCTGTCTTAAAAATGTTCTGGCTTTCTTCCTGCATCC ACTGGCATACTCATGGTCTGTTTTTAAATATTTTAATTCCCATTTACAAAGTGATTTACCCACAAGCCCAACCTGTCTGTCTTCAGGTCCCA circZKSCAN1_Fw: 5' -CAGTTCAGGAGTCCTCGAGCC-3' ->
GGTCAAGTTCATGGACCTGAGATGCTCGCAAGGGGGATGGTGCCTTCTGGATCCAGTTCAGGAGTCCTCGAGCCTTGACCTTCATCACGAGGC CACCCAGTCCCACTTCAAACATTCGTCTCGGAAACCCCGCCTCTTACAGTCACGAGGTAAGAAGCAAGGAAAAGAATTAggctcggcacggt agctcacacctGTAatccca

C
aaagtgctgagatGGAaggcgtgagccaccacccccgqccCACTTTTTGTAAAGGTACGTACTAATGACTTTTTTTTTTATACTTCAGGAATA GTAAAGAAACACATCATAAAACCTCCCAGGACATAAAGGTGAGCACAGACCCTGTTTGGATCAAGTCAGTTCCTGGAGCCTGAATGATGACT GCTGAATCACGGGAAGCCACGGGTCTGTCCCCACAGGCTGCACAGGAGAAGGATGGTATCGTAATAGTGAAGGTGGAAGAGGAAGATGAGGA AGACCACATGTGGGGGCAGGATTCCACCCTACAGGACACGCCTCCTCCAGACCCAGAGATATTCCGCCAACGCTTCAGGCGCTTCTGTTACC AGAACACTTTTGGGCCCCGAGAGGCTCTCAGTCGGCTGAAGGAACTTTGTCATCAGTGGCTGCGGCCAGAAATAAACACCAAGGAACAGATC СTGGAGCTTCTGGTGCTAGAGCAGTTTCTTTCCATCCTGCCCAAGGAGCTCCAGGTCTGGCTGCAGGAATACCGCCCCGATAGTGGAGAGGA GGCCGTGACCCTTCTAGAAGACTTGGAGCTTGATTTATCAGGACAACAGGTAAAAAGAGGTGAAACCTATTATGTGTGAGCAGGGCACAGAC GTTGAAACTGGAGCCAGGAGAAGTATTGGCAGGCTTTAGGTTATTAGGTGGTTACTCTGTCTTAAAAATGTTCTGGCTTTCTTCCTGCATCC ACTGGCATACTCATGGTCTGTTTTTAAATATTTTAATTCCCATTTACAAAGTGATTTACCCACAAGCCCAACCTGTCTGTCTTCAGGTCCCA GGTCAAGTTCATGGACCTGAGATGCTCGCAAGGGGGATGGTGCCTCTGGATCCAGTTCAGGAGTCCTCGAGCCTTGACCTTCATCACGAGGC CACCCAGTCССАСТТСАААСАТTCGTCTCGGAAACCCCGCCTCTTACAGTCACGAGGTAAGAAGCAAGGAAAAGAATTAggctcggcacggt agctcacacctGGAatcccagca

D
aaagtgctgagatTCCaggcgtgagccaccacccccggccCACTTTTTGTAAAGGTACGTACTAATGACTTTTTTTTTATACTTCAGGAATA GTAAAGAAACACATCATAAAACCTCCCAGGACATAAAGGTGAGCACAGACCCTGTTTGGATCAAGTCAGTTCCTGGAGCCTGAATGATGACT GCTGAATCACGGGAAGCCACGGGTCTGTCCCCACAGGCTGCACAGGAGAAGGATGGTATCGTAATAGTGAAGGTGGAAGAGGAAGATGAGGA AGACCACATGTGGGGGCAGGATTCCACCCTACAGGACACGCCTCCTCCAGACCCAGAGATATTCCGCCAACGCTTCAGGCGCTTCTGTTACC AGAACACTTTTTGGGCCCCGAGAGGCTCTCAGTCGGCTGAAGGAACTTTGTCATCAGTGGCTGCGGCCAGAAATAAACACCAAGGAACAGATC СTGGAGCTTCTGGTGCTAGAGCAGTTTCTTTCCATCCTGCCCAAGGAGCTCCAGGTCTGGCTGCAGGAATACCGCCCCGATAGTGGAGAGGA GGCCGTGACCCTTCTAGAAGACTTGGAGCTTGATTTATCAGGACAACAGGTAAAAAGAGGTGAAACCTATTATGTGTGAGCAGGGCACAGAC GTTGAAACTGGAGCCAGGAGAAGTATTGGCAGGCTTTAGGTTATTAGGTGGTTACTCTGTCTTAAAAATGTTCTGGCTTTCTTCCTGCATCC ACTGGCATACTCATGGTCTGTTTTTAAATATTTTAATTCCCATTTACAAAGTGATTTTACCCACAAGCCCAACCTGTCTGTCTTCAGGTCCCA GGTCAAGTTCATGGACCTGAGATGCTCGCAAGGGGGATGGTGCCTCTGGATCCAGTTCAGGAGTCCTCGAGCCTTGACCTTCATCACGAGGC CACCCAGTCССАСТТСАААСАТTCGTCTCGGAAACCCCGCCTCTTACAGTCACGAGGTAAGAAGCAAGGAAAAGAATTAggctcggcacggt agctcacacctGGAatcccagca

Figure S1. A) Specific mutation introduced to generate the pre-mGGA and pre-mUCC expressing construct p-GGA and p-UCC respectively, from the original design, p-UAC, previously reported by Wilusz et al., ${ }^{[1]}$ the yellow arrows denote the RCMs in intronic sequences, the mutated nucleotides are highlighted in red, and the length of the sequences is denoted underneath individual elements. B) Whole sequence of the region coding for the original circZKSCAN1 in p-UAC (top), and the predicted resulting pre-mUAC hairpin structure (bottom). The divergent primer alignment is also shown, the arrow indicate the direction of PCR amplification. C) The whole sequence of the region coding for the p-GGA (top) and the predicted resulting pre-mGGA hairpin structure (bottom). D) The whole sequence of the region coding for the p-UCC (top) and the predicted resulting pre-mUCC hairpin structure (bottom). Characters in blue denote the exon 2 region, and the ones highlighted in gray denote the exon 3 region. The yellow highlighted lower-case letters in bold denote the RCMs which is predicted to form the stem of the hairpin. The single nucleotide difference in exon 3 is highlighted in red, in reference genome, it is expected to be T instead of C . The introduced mutations are highlighted in bold uppercase red characters.

Figure S2. (A) PAGE of qPCR product obtained from cells transfected with p-GGA and p-UCC(left and right, 0 and $5 \mu \mathrm{M}$ NCD sample, and $5 \mu \mathrm{M}$ QCD sample and No-RT sample), and (B) the representative sequencing result of qPCR product obtained from cells transfected with p-GGA, ($5 \mu \mathrm{M}$ NCD sample, top), and \mathbf{p} UCC $(0 \mu \mathrm{M}$ NCD sample, bottom) the black triangle denotes the position of the junction site in circZKSCAN1

Figure S3. RNase R treatment of total RNA obtained from cells transfected with p-GGA ($5 \mu \mathrm{M}$ NCD) followed by RT-qPCR detection of beta-actin and circZKSCAN1. (****: p < 0.02, the significance of circZKSCAN1 RNase $R(+)$ sample was obtained against the beta-actin RNase $R(+)$ sample, using a two-tailed t-test, n=3)

Figure S4. The relative change in expression of other commonly studied endogenously expressed circRNAs under the two highest treated NCD concentration (3 and $5 \mu \mathrm{M}$) and QCD $(5 \mu \mathrm{M})$ in A) p-GGA transfected cells and B) p-UCC transfected cells. The relative expression of circZKSCAN1 as discussed in the main text, was included for comparison. (*: p < 0.05, fold change ≥ 2, the significance was obtained against their respective NCD $0 \mu \mathrm{M}$ treated sample, using a two-tailed t test, $n=4$)

Figure S5. Relative expression of circZKSCAN1 in cells transfected with p-GGA when compared to p-UCC. RQ value was obtained by normalizing the ΔC_{t} value against the p-UCC transfected cell (NCD 0 mM) sample, obtained from RT-qPCR. (**: $p<3 \times 10^{-6}, * * *: p<0.005$, the significance was obtained against the NCD 0 $\mu \mathrm{M}$ treated p -UCC transfected cell sample, using two-tailed t -test, $\mathrm{n}=7$).

Table S1. Primers used for RT-qPCR

Probe name	Sequence
Beta_actin_mRNA_Fw	5'-CTCTTCCAGCCTTCCTTCCT-3'
Beta_actin_mRNA_Rev	5'-AGCACTGTGTTGGCGTACAG-3'
circZKSCAN1_Fw	5'-CAGTTCAGGAGTCCTCGAGCC-3'
circZKSCAN1_Rev	5'-CTCACCTTTATGTCCTGGGAGGT-3'
circHIPK3_Fw	5'-TATGTTGGTGGATCCTGTTCGGCA-3'
circHIPK3_Rev	5'-TGGTGGGTAGACCAAGACTTGTGA-3'
circEPHB4_Fw	5'-ATTCCCTCACAGCCTCATTAGGGT-3'
circEPHB4_Rev	5'-TGCCCGTCATGATTCTCACAGAGT-3'
circFOXO3_Fw	5'-GTGGGGAACTTCACTGGTGCTAAG-3'
circFOXO3_Rev	5'-GGGTTGATGATCCACCAAGAGCTCTT-3'
circPVT1_Fw	5'-GGTTCCACCAGCGTTATTC-3'
circPVT1_Rev	5'-CAACTTCCTTTGGGTCTCC-3'

p-GGA

N-GGA	$0 \mu \mathrm{M}$	$0.5 \mu \mathrm{M}$	$1 \mu \mathrm{M}$	$3 \mu \mathrm{M}$	$5 \mu \mathrm{M}$	$5 \mu \mathrm{M} \mathrm{QCD}$
Relative Quantity	0.764	0.643	1.140	4.331	7.051	1.052
(RQ values)	1.052	0.648	1.226	3.091	4.843	0.348
	1.239	1.012	1.241	3.319	4.312	1.063
	0.878	0.838	0.932	3.322	5.188	0.427
	1.918	0.657	1.182	2.586	7.687	0.297
	0.483	0.525	1.273	3.423	4.482	0.287
	0.497	0.485	2.466	2.663	5.529	6.931
	1.210	1.156	1.654	2.915	8.312	0.225
	1.129	1.713	2.652	3.112	3.092	0.795
Average (after	0.967	0.783	1.455	3.121	5.585	0.610
removing outliers)		0.250	0.212	0.442	0.246	1.202
Standard Deviation		0.193	0.037	$3.74 \mathrm{E}-09$	$8.61 \mathrm{E}-07$	0.325
p-value					0.054	

Table S2. The Relative Quantity values used for Fig. 4 A and B

Table S3. The formula and raw Ct values used to generate $R Q$ values in Table S2.
${ }^{[3]}$ Formula for:

$$
\Delta \mathrm{Ct}=\mathrm{C}_{\mathrm{t}(\text { (ircZKKSCAN1) }}-\mathrm{C}_{\mathrm{t}(\text { Beta-actin })} ; \quad \Delta \Delta \mathrm{C}_{\mathrm{t}}=\Delta \mathrm{C}_{\mathrm{t}}-\left(\mathrm{C}_{\mathrm{t}(\text { Average } 0 \mathrm{mM}} \text { NCD circZKSCAN1) }-\mathrm{C}_{\mathrm{t}(\text { Average Ct Beta-actin) })}\right) ; \mathrm{RQ}=2^{-\Delta \Delta \mathrm{Ct}}
$$

$\frac{p-U C C}{\text { NCD conc. }}$	Batch 1 Beta-actin circZKSCAN1		$\Delta \mathrm{Ct}$	$\Delta \Delta \mathrm{Ct}$	RQ	Batch 2 Beta-actin circZKSCAN Ct Ct		$\Delta \mathrm{Ct}$	$\Delta \Delta \mathrm{Ct}$	RQ	\qquad		$\Delta \mathrm{Ct}$	$\Delta \Delta C t$	RQ
$0 \propto \mathrm{M}$	18.908	23.243	4.336	-0.179	1.132	18.821	21.448	2.627	0.452	0.731	18.839	24.340	5.501	-0.294	1.226
	19.233	24.746	5.512	0.998	0.501	18.898	21.203	2.305	0.129	0.914	18.650	25.897	7.247	1.451	0.366
	19.266	23.435	4.169	-0.345	1.270	18.909	20.909	2.000	-0.176	1.130	18.795	24.064	5.269	-0.527	1.441
$0.5 \propto \mathrm{M}$	19.103	23.099	3.996	-0.519	1.433	18.916	21.951	3.035	0.860	0.551	18.803	24.028	5.225	-0.571	1.486
	19.407	23.472	4.065	-0.449	1.365	18.925	21.306	2.382	0.206	0.867	18.715	24.942	6.227	0.432	0.741
	19.398	22.594	3.196	-1.318	2.493	18.885	20.898	2.013	-0.163	1.119	18.807	23.634	4.827	-0.968	1.956
$1 \propto \mathrm{M}$	19.222	23.906	4.685	0.171	0.889	18.962	21.859	2.897	0.722	0.606	18.783	23.746	4.963	-0.833	1.781
	19.398	24.016	4.619	0.104	0.930	18.935	21.439	2.504	0.328	0.797	18.826	24.335	5.509	-0.287	1.220
	19.396	23.272	3.876	-0.638	1.556	18.933	21.150	2.217	0.041	0.972	18.967	23.995	5.028	-0.768	1.703
$3 \propto \mathrm{M}$	19.042	24.003	4.961	0.447	0.734	18.890	21.078	2.189	0.013	0.991	18.946	24.577	5.631	-0.165	1.121
	19.310	23.507	4.197	-0.317	1.246	18.969	21.126	2.158	-0.018	1.013	18.929	23.988	5.059	-0.737	1.667
	19.416	24.545	5.129	0.615	0.653	18.967	21.543	2.576	0.400	0.758	18.902	24.711	5.809	0.013	0.991
$5 \propto M$	19.138	23.490	4.353	-0.161	1.118	18.950	21.907	2.956	0.781	0.582	18.996	27.017	8.021	2.225	0.214
	18.628	23.696	5.068	0.554	0.681	18.920	20.970	2.050	-0.126	1.091	19.219	25.995	6.776	0.980	0.507
	19.322	24.721	5.399	0.885	0.541	19.309	21.322	2.013	-0.163	1.120	19.422	25.060	5.638	-0.158	1.116
$5 \propto M$ QCD	19.634	24.650	5.016	0.502	0.706	19.486	22.751	3.265	1.089	0.470	19.220	25.397	6.177	0.381	0.768
	19.672	24.856	5.184	0.670	0.629	19.466	22.105	2.639	0.464	0.725	19.208	24.801	5.593	-0.203	1.151
	19.797	24.706	4.910	0.396	0.760	19.057	22.187	3.130	0.954	0.516	19.459	24.764	5.305	-0.491	1.405
Average Ct Beta actin	19.294					19.011					18.972				
Average Ct NCD $0 \propto M$	23.808					21.187					24.767				

References

[1] Liang, D.; Wilusz, J. E. Short Intronic Repeat Sequences Facilitate Circular RNA Production. Genes Dev. 2014, 28 (20), 2233-2247.
[2] a) T Peng, T.; Murase, T.; Goto, Y.; Kobori, A.; Nakatani, K. A New Ligand Binding to G-G Mismatch Having Improved Thermal and Alkaline Stability. Bioorganic Med. Chem. Lett. 2005, 15 (2), 259-262. b) Shibata, T.; Nagano, K.; Ueyama, M.; Ninomiya, K.; Hirose, T.; Nagai, Y.; Ishikawa, K.; Kawai, G.; Nakatani, K. Small Molecule Targeting r(UGGAA)n Disrupts RNA Foci and Alleviates Disease Phenotype in Drosophila Model. Nat. Commun. 2021, 12 (1), 236.
[3] Livak, K. J.; Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2- $\Delta \Delta C T$ Method. Methods 2001, 25 (4), 402-408.

