Supporting Information for :

Radical Modulated Regioselective Difunctionalization of Vinyl Enynes: Tunable Access to Naphthalen-1(2H)-ones and Tetra-substituted Allenes

Xiao-Yu Xie,^[a] Yun-Fang Xu, ^[a] Yang Li, ^[a] Xiao-Dong Wang, ^[a] Jie

Zhu,^{*[a]} and Lei Wu,^{*[a,b]}

^[a]Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. E-mail: <u>zhujie@njau.edu.cn</u>; <u>rickywu@njau.edu.cn</u>.

^[b]College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P. R. China

----Table of Contents----

1. General Information ····································
2. General Procedures for Substrates Preparation
3. General Procedures for the Radical Cascade Reactions4
4. Optimization of the Reaction Conditions
5. Mechanistic Studies
5.1 Radical Intermediates Capture
5.2 Fluorescence Sensing for the Detection of •OH······12
5.3 EPR Aanlysis 15
5.4 Structure Simulation for [A]-TEMPO and [B]-TEMPO16
6. Synthetic Applications 22
7. X-Ray Crystallography Data of 2a ······24
8. Characterizations of Substrates and Products
9. ¹ H-NMR, ¹³ C-NMR, ¹⁹ F-NMR, ³¹ P-NMR and HRMS Spectra for
Substrates and Products

1. General Information

Solvents and reagents were reagent grade and used without purification unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). All ¹H-NMR (400 MHz or 600 MHz) spectra were recorded on a Bruker-DMX 400 or 600 using CDCl₃ solution in the presence of tetramethylsilane (TMS) as an internal standard and are reported in ppm (δ). Coupling constants are reported in Hertz (Hz). Spectral splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; and br, broad. High resolution mass spectroscopic data of the products were collected on a Waters Micromass GCT instrument using EI (70 eV) or an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS using ESI.

2. General Procedures for Substrates Preparation

2.1 Synthesis of Vinyl Enynes

The vinyl enyne substrates (1) were prepared according to a procedure reported in our previous work, please see more details in: X.-D. Wang, J.-J. Wu, X. Sun, W.-C. Yang, J. Zhu, L. Wu, *Adv. Synth. Catal.* **2018**, *360*, 3518-3525.

To a 10 mL vial was added allenylphosphine oxides (0.3 mmol), alkynes (0.6 mmol), potassium carbonate (0.6 mmol), DMSO (3 mL) and Pd@UIO-67 (1 mol%, 30 mg), respectively. The reaction was then allowed to react at 100 °C for a certain time until the complete consuming of starting materials monitored by TLC. The reaction mixture was extracted with EtOAc (1 mL×3). The combined organic extract was washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (1:1) as the eluent to afford the vinyl enynes (1). After being finished, the purity and structure of compounds were confirmed by NMR.

3. General Procedures for the Radical Cascade Reactions

3.1 General Procedures for the Radical Reactions Accessing Naphthalen-1(2H)-ones

To a 10 mL vial was added vinyl enyne (0.1 mmol, 1.0 equiv), NBS (0.4 mmol, 4.0 equiv), Then 2 mL solvent ($CH_2Cl_2/water$) (v:v=10:1) was injected into the vial. The reaction mixture was stirred at room temperature for 12 hours. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/ethylacetate (3:1) to afford the target product (**2a**).

3.2 General Procedures for the Radical Reactions Accessing *Tetra*-substituted Allenes

To a 10 mL vial was added vinyl enyne (0.1 mmol, 1.0 equiv), NBS (0.2 mmol, 2.0 equiv), TEMPO (0.2 mmol, 2.0 equiv). Then 2 mL solvent (CH₂Cl₂/water) (v:v=10:1) was injected into the vial. The reaction mixture was stirred at room temperature for 12 hours. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/ethylacetate (5:1) to afford the target product (**3a**).

4. Optimization of the Reaction Conditions^a

0	^p h		Ar Br
P Ph ₂ Ph Ph	solvent	$ H_{Br}^{H_2}$ +	Ph
1a	rt, 12 h	Ph 2a	ОН 3а

entrv	solvent	Radical Scavenger	vield (2a , %)	vield (3a , %)
		(2 equiv.)	<u> </u>	5
1^b	DCM:H ₂ O (10:1)	/	31	<5
2^{c}	DCM:H ₂ O (10:1)	/	47	<5
3	DCM:H ₂ O (10:1)	/	84	0
4	DCE:H ₂ O (10:1)	/	69	0
5	CH ₃ CN:H ₂ O(10:1)	/	10	0
6	EtOAc:H ₂ O (10:1)	/	57	0
7	MeOH:H ₂ O (10:1)	/	13	0
8	THF:H ₂ O (10:1)	/	21	0
9	DMF:H ₂ O (10:1)	/	0	0
10	anhydrous DCM	/	0	0
11	DCM:H ₂ O (20:1)	/	65	0
12	DCM:H ₂ O (5:1)	/	78	0
13^d	DCM:H ₂ O (10:1)	/	<5	0
14^e	DCM:H ₂ O (10:1)	/	0	0
15	DCM:H ₂ O (10:1)	TEMPO	59	<5
16 ^b	DCM:H ₂ O (10:1)	TEMPO f	12	64
17 ^b	DCM:H ₂ O (10:1)	ТЕМРО	0	93
18^{b}	DCM:H ₂ O (10:1)	4-OH-TEMPO	0	27
19 ^b	DCM:H ₂ O (10:1)	4-oxo-TEMPO	60	<5
20^{b}	DCM:H ₂ O (10:1)	BHT	<5	48
21^{b}	DCM:H ₂ O (10:1)	AIBN	48	<5
22^g	DCM:H ₂ O (10:1)	/	84	0
23^h	DCM:H ₂ O (10:1)	/	57	0

^{*a*} Reaction conditions: 1,3-enyne (**1a**, 0.10 mmol), NBS (4 equiv.), solvent (2.0 mL), rt, 12 h, isolated yield. ^{*b*} 2 equiv. of NBS was used. ^{*c*} 3 equiv. of NBS was used. ^{*d*} DBNPA (4 equiv.) instead of NBS. ^{*e*} KBr (4 equiv.) instead of NBS. ^{*f*} 1 equiv. of TEMPO was used. ^{*g*} under N₂ atmosphere. ^{*h*} 8 h.

5. Mechanistic Studies

5.1 Radical Intermediates Capture

eq.a: Radical Intermediates Capture by TEMPO

m/z	Intensity	Relative	Charge	e Composition
524.17645	554913.1	4.66	1.00	
601.09125	1153936.8	9.68	0.00	C ₃₆ H ₂₇ O ₂ Br P
602.09509	564638.8	4.74	0.00	
<u>603.09473</u>	11920732.0	100.00	1.00	C ₃₆ H ₂₇ O ^[18] O Br P
604.09790	4715449.0	39.56	1.00	
605.09363	11170870.0	93.71	1.00	
606.09637	4184530.0	35.10	1.00	
607.09949	834745.1	7.00	1.00	
622.06744	421121.2	3.53	0.00	$C_{38}H_{24}O_2BrP$
623.06757	808321.2	6.78	0.00	C ₃₈ H ₂₃ O ^[18] O Br P
623.56873	568198.1	4.77	0.00	
624.06787	447473.8	3.75	2.00	
625.07581	457593.3	3.84	2.00	
923.11090	392496.2	3.29	0.00	
923.61267	445367.7	3.74	2.00	
924.11169	947320.6	7.95	2.00	
924.61279	926225.4	7.77	2.00	
925.11206	1044060.2	8.76	2.00	
925.61249	831069.7	6.97	2.00	
926.11237	651229.6	5.46	2.00	

eq.e: Radical Intermediates Capture by TEMPO

5.2 Fluorescence Sensing for the Detection of •OH

According to the Liu's work, dihydroquinoline was used as probe to detect the hydroxyl radicals. And no desired product of **2a** was detected. The HR-MS showed that the product caused by the hydroxyl radicals was detected. Standard condition: **1a** (0.1 mmol), NBS (0.4 mmol), DCM/H₂O (10:1, 2 mL). Reference: Wu, Y.; Huang, W.; Peng, D.; Huang, X.; Gu, S.; Wu, S.; Deng, T.; Liu, F. Synthesis of Dihydroquinolines as Scaffolds for Fluorescence Sensing of Hydroxyl Radical. *Org. Lett.* **2021**, *23*, 135-139.

According to the Liu's work, dihydroquinoline was used as probe to detect the hydroxyl radicals. The fluorescence image demonstrated obvious color change due to the generation of •OH, the HR-MS showed that the product caused by the hydroxyl radicals was detected. Standard condition: **NBS** (0.8 mmol), DCM/H₂O (10:1, 2 mL).

Figure S1. The fluorescence image of dihydroquinoline probe added after the completion of the reaction (left) and the standard condition with dihydroquinoline probe added (right).

The fluorescence sensing under Ar atmosphere was further performed to rule out the influence of O_2 . The HR-MS showed that the product caused by the hydroxyl radicals was detected which confirmed that the •OH radical was produced from water.

Standard condition: **NBS** (0.4 mmol), DCM/H₂O (10:1, 2 mL) at room temperature under argon atmosphere.

Spectrum from 2.wiff (sample 1) - Sample002, +TOF MS (90 - 1000) from 0.116 min

5.3 EPR Analysis

The EPR signals were acquired at 60 seconds after mixing the reactants and the radical trapping agents. When using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as capture agents, the DMPO trapped radicals were detected, while no signal was observed without NBS. Standard condition: DMPO (0.5 mmol), NBS (0.8 mmol), DCM/H₂O (10:1, 2 mL) at room temperature. This signal may be caused by the co-existence of hydroxyl radical, bromine radical and amide radical.

5.4 Structure Simulation for [A]-TEMPO and [B]-TEMPO

Structure Simulation were carried out on Gaussian 09 package with opt b3lyp method at 6-31G(d) basis set.

Reference: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X.
Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.
N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.

[A]-TEMPO:

Center	Atomic	Atomic	Coord	inates (Angsti	coms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.451476	0.186357	-0.796780
2	6	0	-1.022554	0.195561	-0.647261
3	6	0	-1.085797	0.416820	-1.965799
4	1	0	-0.188443	0.548790	-2.562463
5	1	0	-2.032381	0.498613	-2.491143
6	6	0	0.405301	1.370708	1.268426
7	6	0	-0.351608	2.647852	0.802564
8	6	0	-0.215723	3.213131	-0.474104
9	6	0	-1.077908	3.364163	1.764860
10	6	0	-0.794423	4.444737	-0.780693

Standard orientation:

11	1	0	0.349814	2.696065	-1.241223
12	6	0	-1.650914	4.601065	1.462889
13	1	0	-1.176484	2.946898	2.759888
14	6	0	-1.513161	5.148891	0.186955
15	1	0	-0.675694	4.856805	-1.779683
16	1	0	-2.201210	5.137502	2.232031
17	1	0	-1.953815	6.113846	-0.050142
18	6	0	1.812975	1.924472	1.643097
19	6	0	2.153472	2.028118	3.000936
20	6	0	2.692237	2.499799	0.713569
21	6	0	3.348613	2.622023	3.407513
22	1	0	1.469824	1.638029	3.743366
23	6	0	3.892300	3.087925	1.116912
24	1	0	2.443885	2.516605	-0.337820
25	6	0	4.234486	3.145973	2.467563
26	1	0	3.580857	2.677329	4.468253
27	1	0	4.549731	3.519037	0.365750
28	1	0	5.165849	3.609725	2.782253
29	8	0	-0.141269	0.872793	2.453905
30	1	0	-1.078190	0.593982	2.282727
31	15	0	-2.642205	-0.068749	0.218696
32	6	0	-3.874983	0.963054	-0.668291
33	6	0	-3.960274	2.313374	-0.294532
34	6	0	-4.753570	0.467977	-1.643849
35	6	0	-4.892011	3.153783	-0.901385
36	1	0	-3.304700	2.703158	0.475473
37	6	0	-5.684309	1.313883	-2.249839
38	1	0	-4.730176	-0.579597	-1.924146
39	6	0	-5.753312	2.657985	-1.882127
40	1	0	-4.943248	4.197434	-0.604001
41	1	0	-6.360646	0.917169	-3.002316
42	1	0	-6.480555	3.314519	-2.352661
43	6	0	-3.194296	-1.793209	-0.038183
44	6	0	-3.775524	-2.426172	1.069782
45	6	0	-3.140861	-2.466295	-1.267137
46	6	0	-4.299387	-3.713919	0.946371
47	1	0	-3.802205	-1.903001	2.020544
48	6	0	-3.672673	-3.750174	-1.388615
49	1	0	-2.674631	-1.997392	-2.128709
50	6	0	-4.253016	-4.374722	-0.282107
51	1	0	-4.743380	-4.200163	1.810705
52	1	0	-3.626777	-4.265117	-2.344433
53	1	0	-4.663473	-5.376418	-0.377556
54	8	0	-2.607540	0.275382	1.693245

Rotational co	onstants (GHZ):	0.07	25495 0.0)565059	0.0456624
96	7	0	1.375954	-2.111256	0.635617
95	1	0	1.401231	-2.282526	-2.045354
94	1	0	-0.313024	-2.163647	-1.616629
93	1	0	0.334961	-3.692087	-2.220594
92	6	0	0.559138	-2.816266	-1.600179
91	1	0	-0.808069	-4.621245	-0.398912
90	1	0	-1.076254	-3.325458	0.769606
89	1	0	-0.080302	-4.721867	1.199421
88	6	0	-0.335437	-4.031087	0.393632
87	1	0	1.398956	-2.840723	4.045985
86	1	0	0.610613	-3.934472	2.912234
85	1	0	0.057384	-2.252596	3.055910
84	6	0	0.936131	-2.902358	3.053927
83	1	0	3.225235	-1.373739	3.397615
82	1	0	1.821272	-0.441877	2.864613
81	1	0	3.208852	-0.650137	1.775226
80	6	0	2.590397	-1.134669	2.535795
79	1	0	1.983765	-5.292694	1.594351
78	1	0	3.572686	-5.328118	0.849547
77	1	0	2.871523	-3.766622	-0.912847
76	1	0	1.750139	-5.128805	-0.891443
75	1	0	3.910975	-2.935232	1.253091
74	1	0	3.487926	-3.696237	2.786027
73	6	0	2.696383	-4.689202	1.018673
72	6	0	2.093770	-4.260183	-0.315035
71	6	0	3.097870	-3.438570	1.793417
70	6	0	0.895235	-3.287479	-0.175727
69	6	0	1.953091	-2.415643	1.994549
68	8	0	0.263937	-1.173986	0.823369
67	6	0	0.332420	0.123333	0.132961
66	1	0	6.550821	0.536336	-4.869174
65	1	0	6.833547	0.977457	-2.438569
64	1	0	4.306533	-0.044270	-5.767900
63	6	0	5.695624	0.476586	-4.201521
62	1	0	4.877248	0.845258	-0.914079
61	6	0	5.854172	0.724572	-2.835703
60	1	0	2.355953	-0.184618	-4.243782
59	6	0	4.434643	0.150702	-4.706564
58	6	0	4.761723	0.649744	-1.975405
57	6	0	3.336498	0.072030	-3.853863
56	6	0	3.485842	0.321627	-2.475792
55	6	0	2.367020	0.242142	-1.591057

[B]-TEMPO:

Standard orientation:

Q

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.631471	-0.550030	0.319495
2	6	0	-2.640718	-1.179594	1.573454
3	6	0	-3.216390	-0.529488	2.674813
4	6	0	-2.702545	-2.580885	1.506277
5	6	0	-3.841118	-1.265141	3.681998
6	1	0	-3.176568	0.551000	2.737914
7	6	0	-3.327283	-3.315198	2.515472
8	1	0	-2.264276	-3.088325	0.651365
9	6	0	-3.899146	-2.658680	3.606049
10	1	0	-4.280885	-0.747989	4.530994
11	1	0	-3.368241	-4.399100	2.446564
12	1	0	-4.385781	-3.228322	4.393477
13	6	0	0.659994	-0.671413	0.105159
14	6	0	1.590321	0.316689	0.747434
15	6	0	1.621030	0.499564	2.074412
16	1	0	1.033395	-0.130297	2.737366
17	1	0	2.209217	1.284711	2.541699
18	6	0	1.262241	-1.816447	-0.756367
19	6	0	0.200127	-2.412524	-1.704744
20	6	0	-0.393652	-1.565251	-2.655165
21	6	0	-0.148982	-3.766553	-1.710995
22	6	0	-1.312365	-2.058502	-3.578136
23	1	0	-0.137712	-0.509281	-2.669403
24	6	0	-1.075490	-4.262297	-2.634782
25	1	0	0.305500	-4.446202	-0.998624
26	6	0	-1.660611	-3.412241	-3.570362
27	1	0	-1.757235	-1.384306	-4.305633
28	1	0	-1.330830	-5.319004	-2.621487
29	1	0	-2.378745	-3.797654	-4.289540
30	6	0	1.882345	-2.863376	0.186695
31	6	0	3.150813	-3.389696	-0.087550

32	6	0	1.193844	-3.324473	1.317256
33	6	0	3.715150	-4.354484	0.749524
34	1	0	3.690681	-3.032466	-0.955832
35	6	0	1.757414	-4.290437	2.151819
36	1	0	0.211613	-2.926084	1.551449
37	6	0	3.022626	-4.809538	1.871954
38	1	0	4.701700	-4.750067	0.520657
39	1	0	1.205946	-4.633208	3.023769
40	1	0	3.463804	-5.559970	2.523038
41	8	0	2.341709	-1.307735	-1.538073
42	1	0	2.049663	-0.489998	-1.997933
43	15	0	2.539959	1.403743	-0.403965
44	6	0	2.474461	3.091076	0.300507
45	6	0	1.504021	3.964765	-0.211559
46	6	0	3.345220	3.539288	1.304423
47	6	0	1.394824	5.262013	0.289712
48	1	0	0.855849	3.623977	-1.013007
49	6	0	3.229225	4.836051	1.806760
50	1	0	4.127364	2.885818	1.681214
51	6	0	2.252387	5.696984	1.302484
52	1	0	0.644877	5.935993	-0.115771
53	1	0	3.908796	5.176899	2.583253
54	1	0	2.167138	6.708472	1.690766
55	6	0	4.302998	0.925360	-0.360082
56	6	0	5.084073	1.298043	-1.464447
57	6	0	4.897739	0.240138	0.706931
58	6	0	6.446175	1.001955	-1.491080
59	1	0	4.616277	1.802756	-2.304843
60	6	0	6.262548	-0.051822	0.677303
61	1	0	4.295280	-0.086861	1.548768
62	6	0	7.037792	0.330840	-0.418485
63	1	0	7.044408	1.289774	-2.351376
64	1	0	6.716180	-0.588644	1.506111
65	1	0	8.099279	0.098618	-0.440993
66	8	0	1.943734	1.382236	-1.797896
67	6	0	-1.933055	-0.443088	0.481476
68	8	0	-2.634685	0.237366	-0.515557
69	6	0	-3.227985	2.524076	-0.164443
70	6	0	-4.933417	0.686141	-0.821026
71	6	0	-4.426922	3.441166	0.175847
72	6	0	-6.064752	1.673328	-0.452656
73	6	0	-5.681753	3.140828	-0.642828
74	1	0	-4.106181	4.481917	0.041238
75	1	0	-4.665198	3.317718	1.241040

Rotational con	nstants (GHZ):	0.07	53917 0.	0514120	0.0394871
96	1	0	-3.835558	0.046104	-2.597599
95	1	0	-4.686293	1.582488	-2.837469
94	1	0	-5.595120	0.073432	-2.793840
93	6	0	-4.742828	0.604723	-2.354656
92	1	0	-6.312705	-0.982464	-0.765866
91	1	0	-5.441481	-0.729577	0.762761
90	1	0	-4.617409	-1.471368	-0.621362
89	6	0	-5.345639	-0.712053	-0.325997
88	1	0	-3.341833	2.997802	-2.327950
87	1	0	-1.865165	2.155666	-1.829178
86	1	0	-2.096547	3.867920	-1.436807
85	6	0	-2.605343	2.900992	-1.528248
84	1	0	-1.879113	3.806217	0.950176
83	1	0	-1.244330	2.173433	0.718774
82	1	0	-2.529927	2.465600	1.906687
81	6	0	-2.153159	2.745433	0.917736
80	7	0	-3.712545	1.103545	-0.048287
79	1	0	-5.515632	3.364523	-1.703785
78	1	0	-6.505244	3.789350	-0.318186
77	1	0	-6.335491	1.512276	0.599601
76	1	0	-6.947571	1.415367	-1.050787

6. Synthetic Applications6.1 Scale-up Experiments

To a 50 mL vial was added vinyl enyne (1.0 mmol, 1.0 equiv), NBS (4.0 mmol, 4.0 equiv), Then 10 mL solvent (CH₂Cl₂/water) (v:v=10:1) was injected into the vial. The reaction mixture was stirred at room temperature for 12 hours. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/ethylacetate (3:1) to afford the target product (**2a**) in 69% yield.

To a 10 mL vial was added vinyl enyne (1.0 mmol, 1.0 equiv), NBS (2.0 mmol, 2.0 equiv), TEMPO (2.0 mmol, 2.0 equiv). Then 10 mL solvent ($CH_2Cl_2/water$) (v:v=10:1) was injected into the vial. The reaction mixture was stirred at room temperature for 12 hours. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using petroleum ether/ethylacetate (5:1) to afford the target product (**3a**) in 82% yield.

6.2 Further Transformations

Synthetic application of **2a** was then explored. To a 10 mL flask equipped with **2a** (0.2 mmol), 2,2':6',2"-Terpyridine (12 mol%), (+)-Diisopinocampheylborane (8 eq.), Co(acac)₂ (10 mol%) and 2 mL anhydrous CH₂Cl₂. The reaction mixture was then heated to 40 °C in an oil bath for 18 hours under argon atmosphere. After all the volatiles were removed under vacuum, the crude product was purified on flash chromatography (eluent: 1:4 (v/v) of ethyl acetate/petroleum ether) to afford **4a** in 66% yield, and the compounds were characterized by NMR and MS, see details as follows.

To a 10 mL flask equipped with **2a** (0.2 mmol), Lawesson's reagent (1.2 equiv) and 2 mL anhydrous toluene. The reaction mixture was then heated to 120 °C in an oil bath for 24 hours under argon atmosphere. After all the volatiles were removed under vacuum, the crude product was purified on flash chromatography (eluent: 1:2 (v/v) of ethyl acetate/petroleum ether) to afford **4b** in 43% yield, and the compounds were characterized by NMR and MS, see details as follows.

Synthetic application of the product **3a** was explored as well. To a 10 mL flask equipped with **3a** (0.2 mmol), PhB(OH)₂ (0.24 mmol, 1.2 equiv), Ag₂O (0.4 mmol, 2.0 equiv), Pd(PPh₃)₄ (0.01 mmol, 0.05 equiv), THF (2.4 mL) and distillated water (0.24 mL). The reaction mixture was stirred at RT for 5 hours under argon atmosphere. After all the volatiles were removed under vacuum, the crude product was purified on flash chromatography (eluent: 1:5 (v/v) of ethyl acetate/petroleum ether) to afford **4c** in 54% yield, and the compounds were characterized by NMR and MS, see details as follows.

7. X-Ray Crystallography Data of 2a

Crystal **2a** (the ellipsoid contour percent probability level is 50%) was obtained in solvent CH_2Cl_2/n -hexane=1:5 through natural volatilization at room temperature.

Table 1 Crystal data and structure refinement for 2a.

Identification code	2a
Empirical formula	$C_{36}H_{26}BrO_2P$
Formula weight	601.44
Temperature/K	295(2)
Crystal system	monoclinic
Space group	I2/a
a/Å	19.891(4)
b/Å	9.6242(19)
c/Å	29.836(12)
α/°	90
β/°	95.97(3)
$\gamma/^{\circ}$	90
Volume/Å ³	5681(3)
Z	8
$\rho_{calc}g/cm^3$	1.406

μ/mm^{-1}	1.536
F(000)	2464.0
Crystal size/mm ³	$0.110\times0.090\times0.070$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	² 5.34 to 54.88
Index ranges	$-24 \le h \le 25, -12 \le k \le 12, -38 \le l \le 38$
Reflections collected	65371
Independent reflections	6418 [$R_{int} = 0.0542$, $R_{sigma} = 0.0289$]
Data/restraints/parameters	6418/0/361
Goodness-of-fit on F ²	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0429, wR_2 = 0.0930$
Final R indexes [all data]	$R_1 = 0.0623, wR_2 = 0.1007$
Largest diff. peak/hole / e Å-3	0.39/-0.41

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3aa. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

Atom	x	у	Z	U(eq)
Br1	426.0(2)	4363.5(2)	1105.6(2)	50.38(10)
P1	-1396.9(3)	6224.1(6)	1227.8(2)	32.10(14)
01	-1052.5(9)	6732.7(19)	1664.3(5)	43.7(4)
O2	-835.4(8)	9137.1(16)	915.1(6)	39.1(4)
C1	-1657.8(12)	4424(2)	1271.2(8)	34.8(5)
C2	-1322.1(13)	3634(3)	1616.8(8)	43.7(6)
C3	-1486.9(14)	2243(3)	1672(1)	51.6(7)
C4	-1980.1(14)	1622(3)	1380.5(10)	52.0(7)
C5	-2322.4(13)	2393(3)	1040.1(10)	50.2(7)
C6	-2170.9(13)	3790(3)	985.5(9)	44.2(6)
C7	-2160.4(11)	7192(2)	1045.5(8)	37.1(5)
C8	-2276.6(14)	7922(3)	644.1(10)	56.0(7)
C9	-2853.7(17)	8744(4)	559.1(12)	70.8(9)
C10	-3308.9(15)	8840(4)	871.1(15)	73.6(11)
C11	-3200.8(16)	8125(4)	1268.3(15)	74.8(10)
C12	-2628.4(15)	7295(3)	1357.0(11)	58.5(8)
C13	215.6(11)	7428(2)	493.0(7)	30.7(5)
C14	-130.6(13)	8038(3)	111.8(8)	40.7(6)
C15	201.5(14)	8396(3)	-256.5(9)	49.0(6)
C16	884.0(14)	8181(3)	-253.7(9)	49.1(6)
C17	1234.0(13)	7604(3)	120.8(9)	49.6(6)
C18	906.2(12)	7227(3)	495.2(8)	40.5(6)
C19	1063.5(11)	5919(2)	1963.1(7)	31.2(5)

25

767.4(14)	5031(3)	2250.9(8)	42.1(6)
1162(2)	4206(3)	2557.5(9)	62.6(9)
1851(2)	4282(3)	2578.9(11)	74.5(11)
2153.8(17)	5174(4)	2301.7(11)	71.4(10)
1762.5(13)	5999(3)	1992.8(9)	50.7(7)
103.3(11)	9138(2)	1468.1(7)	29.1(4)
32.2(12)	10556(2)	1566.0(8)	35.8(5)
403.6(13)	11139(3)	1935.3(8)	42.7(6)
842.2(13)	10317(3)	2210.9(8)	43.5(6)
920.3(12)	8915(3)	2116.4(8)	39.5(5)
557.4(11)	8297(2)	1739.2(7)	29.4(4)
-828.7(11)	6280(2)	784.5(7)	30.2(5)
-977.3(14)	5583(3)	405.8(9)	47.7(6)
-345.8(11)	8525(2)	1093.0(7)	28.3(4)
-160.7(10)	7077(2)	909.3(7)	28.2(4)
297.3(11)	6277(2)	1258.6(7)	29.7(4)
627.2(10)	6798(2)	1633.9(7)	28.8(4)
	767.4(14) 1162(2) 1851(2) 2153.8(17) 1762.5(13) 103.3(11) 32.2(12) 403.6(13) 842.2(13) 920.3(12) 557.4(11) -828.7(11) -977.3(14) -345.8(11) -160.7(10) 297.3(11) 627.2(10)	$\begin{array}{cccc} 767.4(14) & 5031(3) \\ 1162(2) & 4206(3) \\ 1851(2) & 4282(3) \\ 2153.8(17) & 5174(4) \\ 1762.5(13) & 5999(3) \\ 103.3(11) & 9138(2) \\ 32.2(12) & 10556(2) \\ 403.6(13) & 11139(3) \\ 842.2(13) & 10317(3) \\ 920.3(12) & 8915(3) \\ 557.4(11) & 8297(2) \\ -828.7(11) & 6280(2) \\ -977.3(14) & 5583(3) \\ -345.8(11) & 8525(2) \\ -160.7(10) & 7077(2) \\ 297.3(11) & 6277(2) \\ 627.2(10) & 6798(2) \end{array}$	767.4(14) $5031(3)$ $2250.9(8)$ $1162(2)$ $4206(3)$ $2557.5(9)$ $1851(2)$ $4282(3)$ $2578.9(11)$ $2153.8(17)$ $5174(4)$ $2301.7(11)$ $1762.5(13)$ $5999(3)$ $1992.8(9)$ $103.3(11)$ $9138(2)$ $1468.1(7)$ $32.2(12)$ $10556(2)$ $1566.0(8)$ $403.6(13)$ $11139(3)$ $1935.3(8)$ $842.2(13)$ $10317(3)$ $2210.9(8)$ $920.3(12)$ $8915(3)$ $2116.4(8)$ $557.4(11)$ $8297(2)$ $1739.2(7)$ $-828.7(11)$ $6280(2)$ $784.5(7)$ $-977.3(14)$ $5583(3)$ $405.8(9)$ $-345.8(11)$ $8525(2)$ $1093.0(7)$ $-160.7(10)$ $7077(2)$ $909.3(7)$ $297.3(11)$ $6277(2)$ $1258.6(7)$ $627.2(10)$ $6798(2)$ $1633.9(7)$

 $\label{eq:constraint} \begin{array}{l} Table \ 3 \ Anisotropic \ Displacement \ Parameters \ (\AA^2 \times 10^3) \ for \ 3aa. \ The \ Anisotropic \ displacement \ factor \ exponent \ takes \ the \ form: \ -2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+\ldots]. \end{array}$

Atom	U ₁₁	\mathbf{U}_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
Br1	74.1(2)	23.68(13)	50.42(16)	-5.59(11)	-7.44(13)	12.08(11)
P1	37.6(3)	30.0(3)	28.7(3)	-2.7(2)	3.7(2)	-4.5(2)
01	52.9(10)	46.3(10)	31.9(8)	-7.3(7)	4.0(7)	-9.5(8)
O2	42.6(9)	29.9(9)	43.0(9)	-1.1(7)	-4.4(7)	7.7(7)
C1	36.6(12)	32.2(12)	36.4(12)	-0.5(10)	8.0(9)	-4.4(10)
C2	45.6(14)	43.9(15)	40.8(13)	4.7(11)	1.1(11)	-4.0(11)
C3	53.5(16)	44.1(15)	57.5(16)	14.5(13)	7.1(13)	5.4(12)
C4	55.5(17)	31.1(13)	71.4(18)	4.8(13)	16.6(14)	-1.4(12)
C5	45.7(15)	39.1(14)	65.2(17)	-6.3(13)	2.1(13)	-8.6(12)
C6	43.2(14)	37.0(13)	50.9(15)	0.9(12)	-1.7(11)	-3.8(11)
C7	35.9(12)	31.0(12)	44.7(13)	-8.2(10)	5.6(10)	-2.2(9)
C8	50.5(16)	65.4(19)	51.4(16)	-1.4(14)	2.0(13)	16.0(14)
C9	61(2)	70(2)	78(2)	-5.6(18)	-13.6(17)	21.0(17)
C10	37.5(16)	62(2)	118(3)	-33(2)	-6.3(18)	9.5(14)
C11	45.1(17)	71(2)	113(3)	-27(2)	30.9(19)	-1.8(16)
C12	57.1(17)	53.1(18)	69.2(19)	-7.1(15)	25.6(15)	-6.6(14)
C13	36.9(12)	23.1(10)	32.6(11)	-0.8(9)	5.6(9)	-0.1(9)
C14	44.4(14)	41.6(14)	36.8(12)	5.2(10)	7.3(10)	6.8(11)
C15	64.5(17)	43.8(15)	39.5(13)	10.9(12)	9.4(12)	9.0(13)

C16	63.7(18)	43.3(15)	43.6(14)	1.7(12)	21.4(13)	-2.2(13)
C17	41.2(14)	57.8(17)	52.2(15)	-2.8(13)	15.7(12)	-1.9(13)
C18	38.6(13)	46.6(15)	36.1(12)	0.4(11)	3.4(10)	0.4(11)
C19	39.5(12)	25.7(11)	27.7(10)	0.0(8)	0.2(9)	4.6(9)
C20	58.7(16)	32.6(13)	35.0(12)	2(1)	4.9(11)	-4.8(11)
C21	120(3)	31.0(14)	34.6(14)	6.1(11)	-1.7(16)	1.4(16)
C22	114(3)	56(2)	45.8(17)	-3.5(15)	-25.9(18)	42(2)
C23	55.3(19)	89(3)	66(2)	-7(2)	-14.3(15)	31.7(18)
C24	40.6(14)	64.3(18)	47.0(15)	4.7(13)	3.6(11)	6.5(13)
C25	34.4(11)	24.4(11)	29(1)	-0.6(8)	6.3(9)	-1.9(8)
C26	42.8(13)	25.5(11)	39.5(12)	-0.1(10)	6(1)	2.2(10)
C27	54.1(15)	25.4(11)	49.2(14)	-8.3(11)	8.6(12)	-4.4(11)
C28	51.7(15)	37.8(14)	39.6(13)	-9.9(11)	-2.9(11)	-9.8(11)
C29	44.0(13)	35.6(12)	37.0(12)	-1.8(10)	-4.2(10)	-0.5(10)
C30	32.3(11)	25.9(11)	30.3(10)	1.4(9)	3.6(8)	-0.6(9)
C31	34.5(11)	25.2(11)	30.4(11)	-1.2(9)	1.3(9)	-0.7(9)
C32	47.7(15)	54.9(16)	41.6(14)	-15.2(12)	9.3(11)	-14.5(12)
C33	34.9(11)	21.4(10)	28.8(10)	2.8(8)	5.0(9)	1.6(9)
C34	34.1(11)	22.9(10)	27.3(10)	-1.9(8)	1.6(8)	1.7(8)
C35	38.4(12)	15.8(10)	34.6(11)	-0.7(8)	2.4(9)	3.5(8)
C36	32.4(11)	25.3(11)	29.1(10)	2.4(9)	4.2(8)	1.4(9)

Table 4 Bond Lengths for 2a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C35	1.921(2)	C16	C17	1.371(4)
P1	01	1.4897(17)	C17	C18	1.398(3)
P1	C1	1.817(2)	C19	C20	1.386(3)
P1	C7	1.816(2)	C19	C24	1.386(3)
P1	C31	1.828(2)	C19	C36	1.502(3)
O2	C33	1.212(3)	C20	C21	1.390(4)
C1	C2	1.394(3)	C21	C22	1.369(5)
C1	C6	1.400(3)	C22	C23	1.373(5)
C2	C3	1.392(4)	C23	C24	1.392(4)
C3	C4	1.378(4)	C25	C30	1.405(3)
C4	C5	1.379(4)	C25	C26	1.406(3)
C5	C6	1.392(4)	C25	C33	1.480(3)
C7	C12	1.386(4)	C26	C27	1.380(3)
C7	C8	1.387(4)	C27	C28	1.383(4)
C8	C9	1.395(4)	C28	C29	1.391(3)
C9	C10	1.368(5)	C29	C30	1.404(3)

C10	C11	1.368(5) C30	C36	1.486(3)
C11	C12	1.393(5) C31	C32	1.321(3)
C13	C18	1.386(3) C31	C34	1.546(3)
C13	C14	1.396(3) C33	C34	1.556(3)
C13	C34	1.553(3) C34	C35	1.520(3)
C14	C15	1.383(3) C35	C36	1.335(3)
C15	C16	1.372(4)		

Table 5 Bond Angles for 2a.

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom			Angle/°
O 1	P1	C1	111.09(11)	C21	C20	C19	120.9(3)
01	P1	C7	112.79(11)	C22	C21	C20	119.6(3)
C1	P1	C7	105.93(11)	C21	C22	C23	120.3(3)
01	P1	C31	111.11(10)	C22	C23	C24	120.4(3)
C1	P1	C31	106.40(10)	C19	C24	C23	119.9(3)
C7	P1	C31	109.21(11)	C30	C25	C26	120.8(2)
C2	C1	C6	118.4(2)	C30	C25	C33	120.50(19)
C2	C1	P1	117.02(18)	C26	C25	C33	118.5(2)
C6	C1	P1	124.58(19)	C27	C26	C25	120.2(2)
C3	C2	C1	120.8(2)	C26	C27	C28	119.6(2)
C4	C3	C2	120.2(3)	C27	C28	C29	120.7(2)
C3	C4	C5	119.7(3)	C28	C29	C30	121.0(2)
C4	C5	C6	120.7(3)	C25	C30	C29	117.6(2)
C5	C6	C1	120.2(2)	C25	C30	C36	120.41(19)
C12	C7	C8	118.7(2)	C29	C30	C36	121.9(2)
C12	C7	P1	115.8(2)	C32	C31	C34	124.6(2)
C8	C7	P1	125.27(19)	C32	C31	P1	120.24(18)
C7	C8	C9	120.3(3)	C34	C31	P1	114.90(14)
C10	C9	C8	120.3(3)	O2	C33	C25	122.14(19)
C9	C10	C11	120.0(3)	O2	C33	C34	119.32(19)
C10	C11	C12	120.3(3)	C25	C33	C34	118.47(18)
C7	C12	C11	120.4(3)	C35	C34	C31	110.64(17)
C18	C13	C14	117.8(2)	C35	C34	C13	110.75(17)
C18	C13	C34	121.70(19)	C31	C34	C13	112.89(17)
C14	C13	C34	120.34(19)	C35	C34	C33	111.05(17)
C15	C14	C13	121.1(2)	C31	C34	C33	107.48(17)
C16	C15	C14	120.8(2)	C13	C34	C33	103.80(16)
C15	C16	C17	118.9(2)	C36	C35	C34	126.32(19)
C16	C17	C18	121.1(2)	C36	C35	Br1	119.53(16)
C13	C18	C17	120.3(2)	C34	C35	Br1	114.07(14)

C20	C19	C24	118.9(2)	C35	C36	C30	119.53(19)
C20	C19	C36	119.9(2)	C35	C36	C19	122.51(19)
C24	C19	C36	121.2(2)	C30	C36	C19	117.96(18)

10 ³) for 2a.	0			× ×
Atom	x	у	z	U(eq)
H2A	-984	4041	1813	52
H3A	-1263	1731	1906	62
H4A	-2082	686	1413	62
H5A	-2658	1975	845	60
H6A	-2411	4305	759	53
H8A	-1969	7864	431	67
H9A	-2929	9229	289	85
H10A	-3692	9392	813	88
H11A	-3511	8193	1480	90
H12A	-2560	6807	1627	70
H14A	-592	8207	105	49
H15A	-41	8787	-509	59
H16A	1106	8424	-502	59
H17A	1697	7459	126	60
H18A	1152	6841	747	49
H20A	299	4986	2239	51
H21A	958	3606	2747	75
H22A	2117	3727	2782	89
H23A	2623	5226	2320	86
H24A	1970	6604	1807	61
H26A	-266	11104	1381	43
H27A	359	12079	1998	51
H28A	1088	10707	2462	52
H29A	1217	8379	2306	47
H32A	-669	5548	192	57
H32B	-1390	5126	353	57

Table 6 Hydrogen Atom Coordinates (Å $\times 10^4$) and Isotropic Displacement Parameters (Å² \times

8. Characterizations of Substrates and Products

8.1 Substrates

All the vinyl enyne substrates were prepared according to the procedures reported by our previous works: L. Wu et. al., *Adv. Synth. Catal.* **2018**, *360*, 3518-3525; L. Wu et. al., *Org. Lett.* **2019**, *21*, 6383-6387.

For new compounds, please see characterizations as follows:

(3-(diphenylmethylene)-5-(4-ethylphenyl)pent-1-en-4-yn-2-yl)diphenylphosphine oxide (1c)

White solids, *m.p.*: 173.5-175.3 °C (136.0 mg, 85% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.81-7.78 (m, 4H), 7.52-7.49 (m, 2H), 7.45-7.39 (m, 6H), 7.29-7.24 (m, 3H), 7.21-7.19 (m, 3H), 7.05-7.04 (m, 2H), 6.96 (d, J = 5.0 Hz, 2H), 6.60 (d, J = 35.0 Hz, 2H), 6.08 (d, J = 15.0 Hz, 1H), 6.00 (d, J = 20.0 Hz, 1H), 2.56 (q, J = 10.0 Hz, 2H), 1.17 (t, J = 5.0 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 152.0 (d, J = 7.0 Hz), 144.6, 142.9, 142.1, 141.7, 140.7, 136.1 (d, J = 7.9 Hz), 132.6, 132.3 (d, J = 9.8 Hz), 131.9 (d, J = 2.7 Hz), 131.8, 131.3, 130.3 (d, J = 22.9 Hz), 128.4 (d, J = 12.2 Hz), 128.0, 128.0, 127.6 (d, J = 6.3 Hz), 127.5, 120.3, 118.1 (d, J = 8.9 Hz), 96.4, 89.4, 28.9, 15.5. ³¹**P NMR** (202 MHz, CDCl₃) δ 28.4 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₈H₃₂OP⁺: 535.2185, Found: 535.2160.

(3-(diphenylmethylene)-5-(4-propylphenyl)pent-1-en-4-yn-2-yl)diphenylphosphin e oxide (1d)

White solids, *m.p.*: 136.7-138.4 °C (136.5 mg, 83% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.80-7.77 (m, 4H), 7.52-7.49 (m, 2H), 7.44-7.41 (m, 4H), 7.39-7.38 (m, 2H), 7.29-7.24 (m, 3H), 7.20-7.18 (m, 3H),

7.03-7.02 (m, 2H), 6.93 (d, J = 12.0 Hz, 2H), 6.59 (d, J = 6.0 Hz, 2H), 6.07 (d, J = 36.0 Hz, 1H), 6.01 (d, J = 18.0 Hz, 1H), 2.50 (t, J = 6.0 Hz, 2H), 1.60-1.54 (m, 2H), 0.89 (t, J = 6.0 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 151.8 (d, J = 6.9 Hz), 143.0, 142.9, 142.2, 141.6, 140.6, 135.9 (d, J = 7.8 Hz), 132.6, 132.2 (d, J = 9.8 Hz), 131.9, 131.8 (d, J = 2.8 Hz), 131.1, 130.2 (d, J = 32.2 Hz), 128.3 (d, J = 12.1 Hz), 127.9 (d, J = 32.4 Hz), 127.6 (d, J = 70.9 Hz), 127.5, 120.2, 118.0 (d, J = 9.0 Hz), 96.3, 89.4, 37.9, 24.3, 13.7. ³¹**P NMR** (243 MHz, CDCl₃) δ 27.6 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₉H₃₄OP⁺: 549.2342, Found: 549.2314.

(3-(diphenylmethylene)-5-(4-isopropylphenyl)pent-1-en-4-yn-2-yl)diphenylphosp hine oxide (1e)

White solids, *m.p.*: 163.8-165.5 °C (123.3 mg, 75% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.86-7.81 (m, 4H), 7.57-7.52 (m, 2H), 7.49-7.42 (m, 6H), 7.34-7.28 (m, 3H), 7.24-7.22 (m, 3H), 7.08-7.06 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.65 (d, J = 8.0 Hz, 2H), 6.12 (d, J = 32.0 Hz, 1H), 6.05 (d, J = 16.0 Hz, 1H), 2.89-2.80 (m, 1H), 1.23 (s, 3H), 1.21 (s, 3H) . ¹³C NMR (101 MHz, CDCl₃) δ 151.9 (d, J = 6.9 Hz), 149.1, 142.9, 142.0, 141.6, 140.6, 136.0 (d, J = 7.4 Hz), 132.7, 132.2 (d, J = 9.9 Hz), 131.8 (d, J = 2.8 Hz), 131.7, 131.2, 130.2 (d, J = 19.3 Hz), 128.3 (d, J = 12.2 Hz), 127.9, 127.7 (d, J = 32.7 Hz), 127.4, 126.1, 120.4, 118.0 (d, J = 9.1 Hz), 96.3, 89.3 (d, J = 2.4 Hz), 34.1, 23.8. ³¹P NMR (162 MHz, CDCl₃) δ 27.7 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₉H₃₄OP⁺: 549.2342, Found: 549.2316.

(5-(4-butylphenyl)-3-(diphenylmethylene)pent-1-en-4-yn-2-yl)diphenylphosphine oxide (1f)

White solids, *m.p.*: 121.3-124.2 °C (118.0 mg, 70% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹H NMR (600 MHz, CDCl₃) δ 7.80-7.77 (m, 4H), 7.51-7.49 (m, 2H), 7.44-7.38 (m, 6H), 7.28-7.23 (m, 3H), 7.19-7.18 (m, 3H), 7.03-7.02 (m, 2H), 6.94 (d, J = 6.0 Hz, 2H), 6.59 (d, J = 6.0 Hz, 2H), 6.07 (d, J = 36.0 Hz, 1H), 6.01 (d, J = 18.0 Hz, 1H), 2.52 (t, J = 6.0 Hz, 2H), 1.55-1.50 (m, 2H), 1.33-1.27 (m, 2H), 0.90 (t, J = 6.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.8 (d, J = 6.8 Hz), 143.2, 142.9, 142.3, 141.6, 140.6, 135.9 (d, J = 8.0 Hz), 132.6, 132.2 (d, J = 9.8 Hz), 131.9, 131.8 (d, J = 2.7 Hz), 131.1, 130.2 (d, J = 32.6 Hz), 128.3 (d, J = 12.2 Hz), 128.0, 127.9, 127.7 (d, J = 47.4 Hz), 127.4, 120.2, 118.0 (d, J = 8.8 Hz), 96.3, 89.4 (d, J = 2.3 Hz), 35.6, 33.3, 22.3, 13.9. ³¹P NMR (243 MHz, CDCl₃) δ 27.6 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₄₀H₃₆OP⁺: 563.2498, Found: 563.2470.

(3-(diphenylmethylene)-5-(4-(trifluoromethyl)phenyl)pent-1-en-4-yn-2-yl)diphen ylphosphine oxide (11)

White solids, *m.p.*: 173.1-174.8 °C (130.9 mg, 76% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.83-7.78 (m, 4H), 7.57-7.53 (m, 2H), 7.49-7.42 (m, 6H), 7.39 (d, J = 8.0 Hz, 2H), 7.35-7.31 (m, 3H), 7.28-7.26 (m, 3H), 7.20-7.19 (m, 2H), 6.72 (d, J = 8.0 Hz, 2H), 6.06 (d, J = 40.0 Hz, 1H), 5.90 (d, J = 16.0 Hz, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 154.0 (d, J = 7.0 Hz), 142.3 (d, J = 94.1 Hz), 140.9 (d, J = 98.3 Hz), 136.1 (d, J = 8.4 Hz), 132.5, 132.1 (d, J = 9.9 Hz), 131.9 (d, J = 2.7 Hz), 131.5, 131.3, 130.2 (d, J = 17.1 Hz), 129.5 (d, J = 32.5 Hz), 128.4 (d, J = 12.2 Hz), 128.3, 127.9, 127.7, 127.6, 126.7, 125.2, 124.8 (q, J = 3.7 Hz), 122.5, 117.4 (d, J = 8.7 Hz), 94.2, 92.1. ³¹P NMR (162 MHz, CDCl₃) δ 28.0 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₇H₂₇F₃OP⁺: 575.1746, Found: 575.1743.

1-(4-(3-(diphenylmethylene)-4-(diphenylphosphoryl)pent-4-en-1-yn-1-yl)phenyl)e than-1-one (1m)

White solids, *m.p.*: 167.8-169.3 °C (90.4 mg, 55% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.81-7.75 (m, 4H), 7.71 (d, J = 8.0 Hz, 2H), 7.55-7.51 (m, 2H), 7.47-7.41 (m, 6H), 7.30-7.28 (m, 3H), 7.26-7.23 (m, 3H), 7.18-7.16 (m, 2H), 6.69 (d, J = 8.0 Hz, 2H), 6.05 (d, J = 40.0 Hz, 1H), 5.88 (d, J = 16.0 Hz, 1H), 2.52 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.3, 153.9 (d, J = 6.9 Hz), 142.7, 141.8, 141.4, 140.4, 136.1 (d, J = 8.5 Hz), 135.8, 132.5, 132.1 (d, J = 9.9 Hz), 132.0 (d, J = 2.8 Hz), 131.5, 131.2, 130.3 (d, J = 16.1 Hz), 128.4 (d, J = 12.2 Hz), 128.3, 127.9, 127.9, 127.8 (d, J = 4.0 Hz), 127.6, 117.5 (d, J = 8.7 Hz), 94.9, 93.2 (d, J = 2.3 Hz), 26.6. ³¹**P NMR** (162 MHz, CDCl₃) δ 28.0 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₈H₃₀O₂P⁺: 549.1978, Found: 549.1973.

(5-(3,5-dichlorophenyl)-3-(diphenylmethylene)pent-1-en-4-yn-2-yl)diphenylphos phine oxide (1p)

White solids, *m.p.*: 191.5-192.9 °C (117.1 mg, 68% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.76 (m, 4H), 7.60-7.56 (m, 2H), 7.51-7.46 (m, 4H), 7.42-7.40 (m, 2H), 7.34-7.32 (m, 3H), 7.28-7.26 (m, 3H), 7.21-7.16 (m, 3H), 6.42 (d, J = 4.0 Hz, 2H), 6.01 (d, J = 40.0 Hz, 1H), 5.85 (d, J = 20.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 154.3 (d, J = 6.9 Hz), 142.6, 141.7, 141.2, 140.4, 136.1 (d, J = 8.6 Hz), 134.3, 132.4, 132.1, 132.0, 131.4, 130.2 (d, J = 17.6 Hz), 129.1, 128.5 (d, J = 12.2 Hz), 128.1 (d, J = 17.5 Hz), 127.8, 127.7, 125.6,

117.2 (d, J = 8.7 Hz), 93.0, 91.9. ³¹**P** NMR (162 MHz, CDCl₃) δ 27.9 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₆H₂₆Cl₂OP⁺: 575.1093, Found: 575.1055.

(5-(3,5-dimethylphenyl)-3-(diphenylmethylene)pent-1-en-4-yn-2-yl)diphenylphos phine oxide (1q)

White solids, *m.p.*: 197.1-198.8 °C (104 mg, 65% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H** NMR (600 MHz, CDCl₃) δ 7.81-7.77 (m, 4H), 7.52-7.49 (m, 2H), 7.44-7.39 (m, 6H), 7.29-7.24 (m, 3H), 7.19-7.18 (m, 3H), 7.03-7.02 (m, 2H), 6.80 (s, 1H), 6.27 (s, 2H), 6.05 (d, J = 36.0 Hz, 1H), 6.00 (d, J = 18.0 Hz, 1H), 2.16 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 151.9 (d, J = 7.1 Hz), 142.9, 142.2, 141.6, 140.6, 137.3, 135.9 (d, J = 7.7 Hz), 132.6, 132.2 (d, J = 9.8 Hz), 132.0, 131.8 (d, J = 2.8 Hz), 130.2 (d, J = 27.6 Hz), 130.0, 128.8, 128.3 (d, J = 12.0 Hz), 127.7 (d, J = 48.6 Hz), 127.6 (d, J = 73.7 Hz), 122.6, 118.0 (d, J = 8.9 Hz), 96.6, 89.2 (d, J = 2.5 Hz), 21.0. ³¹P NMR (243 MHz, CDCl₃) δ 27.5 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₈H₃₂OP⁺: 535.2185, Found: 535.2166.

(3-(di-o-tolylmethylene)-5-phenylpent-1-en-4-yn-2-yl)diphenylphosphine oxide (1r)

White solids, *m.p.*: 193.2-194.7 °C (104.1 mg, 65% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.87-7.82 (m, 4H), 7.58-7.54 (m, 2H), 7.50-7.46 (m, 4 H), 7.24-7.13 (m, 7H), 7.11-7.05 (m, 4H), 6.51 (d, J = 4.0 Hz, 2H), 5.98 (d, J = 40.0 Hz, 1H), 5.84 (d, J = 12.0 Hz, 1H), 2.38 (s, 3H), 2.11 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.0 (d, J = 7.5 Hz), 142.4, 141.5, 140.1, 139.9, 137.0, 136.7, 135.0 (d, J = 8.2 Hz), 132.2 (d, J = 9.9 Hz), 131.9 (d, J = 2.8 Hz), 131.1, 131.0, 130.7, 130.4, 130.3, 128.4 (d, J = 12.3 Hz), 128.0, 127.8, 127.7 (d, J = 9.8 Hz),

125.5, 124.9, 122.9, 121.3 (d, J = 8.6 Hz), 96.7, 89.3 (d, J = 2.0 Hz), 20.7, 20.6. ³¹P NMR (162 MHz, CDCl₃) δ 28.1 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₈H₃₂OP⁺ : 535.2185, Found: 535.2183.

(3-(di-m-tolylmethylene)-5-phenylpent-1-en-4-yn-2-yl)diphenylphosphine oxide (1s)

White solids, *m.p.*: 184.2-185.7 °C (88.1 mg, 55% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.82-7.78 (m, 4H), 7.53-7.49 (m, 2H), 7.45-7.42 (m, 4 H), 7.25 (s, 1H), 7.18-7.17 (m, 2H), 7.16-7.15 (m, 1H), 7.13-7.11 (m, 2H), 7.10-7.07 (m, 2H), 7.01 (d, J = 5.0 Hz, 1H), 6.91 (d, J = 5.0 Hz, 1H), 6.75 (s, 1H), 6.66-6.64 (m, 2H), 6.10-5.99 (m, 2H), 2.29 (s, 3 H), 2.25 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.9 (d, J = 7.1 Hz), 142.8, 142.0, 141.6, 140.7, 137.4, 137.0, 136.1 (d, J = 7.8 Hz), 132.7, 132.3 (d, J = 9.7 Hz), 131.9 (d, J = 2.8 Hz), 131.2, 130.7 (d, J = 7.2 Hz), 128.8, 128.5, 128.4, 128.1, 127.9, 127.8, 127.6, 127.5, 127.4, 123.2, 117.6 (d, J = 8.9 Hz), 95.9, 90.1 (d, J = 2.4 Hz), 21.6, 21.5. ³¹P NMR (202 MHz, CDCl₃) δ 28.2 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₈H₃₂OP⁺: 535.2185, Found: 535.2187.

 $(3- (diphenylmethylene)-5-phenylpent-1-en-4-yn-2-yl) di-p-tolylphosphine \\ oxide$

White solids, *m.p.*: 173.5-175.5 °C (125.0 mg, 78% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.73-7.68 (m, 4H), 7.45-7.44 (m, 2H), 7.32-7.24 (m, 10 H), 7.20-7.14 (m, 5H), 6.68 (d, J = 8.0 Hz, 2H), 6.07-5.93 (m, 2H), 2.40 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.2 (d, J = 6.9 Hz), 143.4, 142.5, 142.2 (d, J = 2.8 Hz), 141.6, 140.7, 135.5 (d, J = 8.0 Hz), 132.2 (d, J = 10.2 Hz), 131.2, 130.3 (d, J = 15.6 Hz), 129.4, 129.1 (d, J = 12.6 Hz), 128.4, 127.9, 127.8 (d, J = 3.1 Hz), 127.5, 127.4, 123.1, 118.1 (d, J = 8.9 Hz), 95.8, 89.9 (d, J = 2.2 Hz),

21.6. ³¹**P** NMR (162 MHz, CDCl₃) δ 27.8 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₈H₃₂OP⁺: 535.2185, Found: 535.2161.

(3-(diphenylmethylene)-5-phenylpent-1-en-4-yn-2-yl)bis(4-ethylphenyl)phosphin e oxide (1w)

White solids, *m.p.*: 144.3-146.1 °C (139.9 mg, 83% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.71-7.68 (m, 4H), 7.41 (d, J = 6.0 Hz, 2H), 7.28-7.24 (m, 7H), 7.21-7.20 (m, 3H), 7.15 (t, J = 6.0 Hz,1H), 7.10-7.07 (m, 4H), 6.65 (d, J = 6.0 Hz, 2H), 6.01(d, J = 42.0 Hz, 1H), 5.93 (d, J = 18.0 Hz, 1H), 2.66 (q, J = 6.0 Hz, 4H), 1.22 (t, J = 6.0 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 152.2 (d, J = 7.0 Hz), 148.4 (d, J = 2.7 Hz), 143.1, 142.5, 141.7, 140.7, 135.6 (d, J = 7.9 Hz), 132.3 (d, J = 10.2 Hz), 131.1, 130.3 (d, J = 27.6 Hz), 129.5, 128.8, 127.9, 127.8, 127.8, 127.5, 127.4, 123.1, 118.2 (d, J = 8.8 Hz), 95.8, 89.9 (d, J = 2.2 Hz), 28.9, 15.3. ³¹**P NMR** (243 MHz, CDCl₃) δ 28.1 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₄₀H₃₆OP⁺: 563.2498, Found: 563.2462.

bis(4-chlorophenyl)(3-(diphenylmethylene)-5-phenylpent-1-en-4-yn-2-yl)phosphi ne oxide (1x)

White solids, *m.p.*: 147.8-149.5 °C (130.9 mg, 76% yield). TLC ($\mathbf{R}_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.74-7.69 (m, 4H), 7.45-7.42 (m, 6H), 7.35-7.31 (m, 3H), 7.26-7.18 (m, 6H), 7.11-7.09 (m, 2H), 6.77-6.74 (m, 2H), 6.15 (d, J = 40.0 Hz, 1H), 6.04 (d, J = 16.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.6 (d, J = 7.0 Hz), 142.6, 141.7, 141.3, 140.4 (d, J = 1.7 Hz), 138.8 (d, J = 3.4 Hz), 136.5 (d, J = 7.9 Hz), 133.5 (d, J = 10.9 Hz), 131.0, 130.8, 130.2 (d, J = 20.0 Hz), 129.7, 128.8 (d, J = 12.9 Hz), 128.3 (d, J = 11.1 Hz), 128.1, 127.9, 127.7, 127.6, 122.7, 117.0 (d, J = 9.1 Hz), 96.1, 89.8 (d, J = 2.7 Hz). ³¹**P NMR** (162 MHz, CDCl₃)
δ 26.1 (s). **HRMS (ESI):** ($[M+Na]^+$) Calcd for C₃₆H₂₅Cl₂NaOP⁺: 597.0912, Found: 597.0905.

(3-(diphenylmethylene)-5-phenylpent-4-yn-2-yl)diphenylphosphine oxide (1y)

White solids, *m.p.*: 145.3-147.2 °C (118.9 mg, 78% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H** NMR (600 MHz, CDCl₃) δ 7.69-7.66 (m, 2H), 7.61-7.58 (m, 2H), 7.48-7.44 (m, 2 H), 7.41-7.33 (m, 9H), 7.26-7.25 (m, 3H), 7.21-7.20 (m, 3H), 7.12-7.10 (m, 2H), 6.86-6.85 (m, 2H), 3.76-3.71 (m, 1H), 1.65 (dd, J = 6.0 Hz, 12.0 Hz, 3H), ¹³C NMR (151 MHz, CDCl₃) δ 149.6 (d, J = 10.5 Hz), 141.3 (d, J = 2.4 Hz), 140.8 (d, J = 2.2 Hz), 132.7, 132.1, 131.7, 131.6 (d, J = 9.3 Hz), 131.3 (d, J = 8.2 Hz), 130.0, 129.3, 128.6 (d, J = 11.0 Hz), 128.5, 128.2, 128.1 (d, J = 5.9 Hz), 127.8 (d, J = 15.3 Hz), 127.5, 123.5, 119.0 (d, J = 6.9 Hz), 96.4, 88.7 (d, J = 4.1 Hz), 39.2 (d, J = 6.7.8 Hz), 13.6 (d, J = 3.3 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 33.6 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₆H₃₀OP⁺: 509.2029, Found: 509.2019.

(3-(diphenylmethylene)-5-(p-tolyl)pent-4-yn-2-yl)diphenylphosphine oxide (1z)

White solids, *m.p.*: 162.2-163.8 °C (117.5 mg, 75% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.69-7.66 (m, 2H), 7.61-7.58 (m, 2H), 7.48-7.44 (m, 2H), 7.41-7.36 (m, 4H), 7.33-7.32 (m, 3H), 7.25-7.24 (m, 2H), 7.21-7.19 (m, 3H), 7.12-7.10 (m, 2H), 7.08 (d, J = 6.0 Hz, 2H), 6.85-6.84 (m, 2H), 3.75-3.70 (m, 1H), 2.32 (s, 3H), 1.64 (dd, J = 6.0 Hz, 12.0 Hz, 3H), ¹³C NMR (151 MHz, CDCl₃) δ 149.1 (d, J = 10.5 Hz), 141.4 (d, J = 2.2 Hz), 140.9 (d, J = 2.2 Hz), 138.3, 132.7, 132.1, 131.6, 131.3 (d, J = 8.3 Hz), 130.0, 129.3, 129.0, 128.6 (d, J = 11.1 Hz), 128.5, 128.1 (d, J = 11.5 Hz), 127.7 (d, J = 17.9 Hz), 127.4, 120.5, 119.1 (d,

J = 6.9 Hz), 96.7, 88.1 (d, J = 4.0 Hz), 39.3 (d, J = 67.8 Hz), 21.6, 13.6 (d, J = 3.2 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 33.7 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₇H₃₂OP⁺: 523.2185, Found: 523.2183.

(5-(4-chlorophenyl)-3-(diphenylmethylene)pent-4-yn-2-yl)diphenylphosphine oxide (1aa)

White solids, *m.p.*: 137.8-139.6 °C (99.2 mg, 61% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=1:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.68-7.64 (m, 2H), 7.62-7.59 (m, 2H), 7.47-7.43 (m, 2H), 7.41-7.36 (m, 4H), 7.35-7.33 (m, 3H), 7.30-7.29 (m, 2H), 7.24-7.22 (m, 2H), 7.21-7.19 (m, 3H), 7.09-7.07 (m, 2H), 6.87-6.86 (m, 2H), 3.75-3.70 (m, 1H), 1.64 (dd, J = 6.0 Hz, 12.0 Hz, 3H), ¹³C NMR (151 MHz, CDCl₃) δ 149.9 (d, J = 10.3 Hz), 141.3, 140.7, 134.1, 132.9, 131.7 (d, J = 2.6 Hz), 131.6 (d, J = 2.7 Hz), 131.5 (d, J = 9.2 Hz), 131.3 (d, J = 8.2 Hz), 129.9, 129.3, 128.6 (d, J = 11.2 Hz), 128.5, 128.2 (d, J = 11.5 Hz), 127.9 (d, J = 17.4 Hz), 127.5, 122.1, 118.9 (d, J = 6.7 Hz), 95.2, 89.8, 39.1 (d, J = 68.1 Hz), 13.6 (d, J = 3.2 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 33.1 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₆H₂₉ClOP⁺: 543.1639, Found: 543.1633.

8.2 Products

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-2,4-diphenylnaphthalen-1(2H)-one (2a)

White solids, *m.p.*: 191.7-193.5 °C (50.4 mg, 84% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.94-7.90 (m, 3H), 7.79-7.76 (m, 2H), 7.73 (d, J = 6.0 Hz, 2H), 7.56-7.50 (m, 5H), 7.46-7.43 (m, 3H), 7.40-7.37 (m,

3H), 7.35-7.31 (m, 2H), 7.30-7.26 (m, 2H), 7.24-7.22 (m, 1H), 6.77 (d, J = 6.0 Hz, 1H), 6.07 (d, J = 12.0 Hz, 1H), 6.02 (d, J = 30.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 196.0, 148.0 (d, J = 94.5 Hz), 140.6 (d, J = 91.4 Hz), 138.2, 135.6 (d, J = 9.7 Hz), 135.3 (d, J = 7.4 Hz), 134.3, 133.9, 133.4 (d, J = 56.7 Hz), 132.4 (d, J = 9.6 Hz), 132.1 (d, J = 10.4 Hz), 131.7 (d, J = 2.2 Hz), 131.6 (d, J = 2.1 Hz), 129.8 (d, J = 9.6 Hz), 129.2 (d, J = 32.9 Hz), 128.8 (d, J = 25.7 Hz), 128.6, 128.5, 128.3 (d, J = 1.8 Hz), 128.2, 128.1 (d, J = 12.0 Hz), 127.9 (d, J = 5.1 Hz), 127.7, 69.7 (d, J = 9.4 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 30.5 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₆H₂₆BrNaO₂P⁺: 623.0746, Found: 623.0745.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-2-phenyl-4-(p-tolyl)naphthalen-1(2H)one (2b)

White solids, *m.p.*: 267.3-269.1 °C (47.9 mg, 78% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.93-7.89 (m, 3H), 7.79-7.76 (m, 2H), 7.72 (d, J = 12.0 Hz, 2H), 7.56-7.54 (m, 1H), 7.52-7.49 (m, 2H), 7.47-7.44 (m, 1H), 7.40-7.37 (m, 2H), 7.36-7.32 (m, 5H), 7.30-7.28 (m, 1H), 7.27-7.25 (m, 2H), 7.24-7.22 (m, 1H), 6.80 (d, J = 6.0 Hz, 1H), 6.07 (d, J = 6.0 Hz, 1H), 6.02 (d, J = 30.0 Hz, 1H), 2.45 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 196.1, 148.0 (d, J = 94.3 Hz), 140.9, 137.8 (d, J = 155.2 Hz), 137.6, 135.6 (d, J = 9.7 Hz), 135.4 (d, J = 7.6 Hz), 134.1 (d, J = 58.6 Hz), 133.9, 133.4 (d, J = 57.2 Hz), 132.4 (d, J = 9.4 Hz), 132.1 (d, J = 10.0 Hz), 131.7 (d, J = 2.1 Hz), 131.6 (d, J = 2.8 Hz), 130.0 (d, J = 56.8 Hz), 129.3 (d, J = 21.7 Hz), 129.1, 128.7 (d, J = 18.3 Hz), 128.5, 128.3 (d, J = 16.1 Hz), 128.2, 128.1 (d, J = 12.0 Hz), 127.8 (d, J = 17.7 Hz), 69.7 (d, J = 9.4 Hz), 21.5. ³¹**P NMR** (243 MHz, CDCl₃) δ 30.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₇H₂₉BrO₂P⁺: 615.1083, Found: 615.1077.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-4-(4-ethylphenyl)-2-phenylnaphthalen-1(2H)-one (2c)

White solids, *m.p.*: 266.7-268.5 °C (51.5 mg, 82% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.98-7.93 (m, 3H), 7.83-7.79 (m, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.61-7.52 (m, 3H), 7.49 (d, J = 8.0 Hz, 1H), 7.45-7.35 (m, 7H), 7.33-7.25 (m, 4H), 6.83 (d, J = 8.0 Hz, 1H), 6.12 (d, J = 4.0 Hz, 1H), 6.04 (d, J = 28.0 Hz, 1H), 2.80 (q, J = 8.0 Hz, 2H), 1.37 (t, J = 8.0 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 196.1, 147.9 (d, J = 94.5 Hz), 143.7, 140.9, 137.9 (d, J = 90.4 Hz), 135.7 (d, J = 9.8 Hz), 135.4 (d, J = 7.5 Hz), 134.2 (d, J = 36.9 Hz), 133.9, 133.2 (d, J = 36.0 Hz), 132.3 (d, J = 9.5 Hz), 132.1 (d, J = 10.2 Hz), 131.7 (d, J = 7.9 Hz), 130.1, 129.2 (d, J = 22.4 Hz), 128.8, 128.6, 128.5, 128.4 (d, J = 15.6 Hz), 128.2, 128.1, 128.0 (d, J = 13.2 Hz), 127.8 (d, J = 6.8 Hz), 69.7 (d, J = 9.2 Hz), 28.7, 15.4. ³¹**P** NMR (162 MHz, CDCl₃) δ 30.6 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₈H₃₁BrO₂P⁺: 629.1240, Found: 629.1242.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-2-phenyl-4-(4-propylphenyl)naphthale n-1(2H)-one (2d)

White solids, *m.p.*: 258.6-260.3 °C (57.1 mg, 89% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 8.00-7.95 (m, 3H), 7.86-7.81 (m, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.62-7.55 (m, 3H), 7.50 (d, J = 8.0 Hz, 1H), 7.46-7.43 (m, 2H), 7.40-7.31 (m, 7H), 7.28-7.25 (m, 2H), 6.85 (d, J = 8.0 Hz, 1H), 6.13 (d, J = 8.0 Hz, 1H), 6.06 (d, J = 28.0 Hz, 1H), 2.75 (t, J = 8.0 Hz, 2H), 1.84-1.75 (m, 2H), 1.07 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 148.0 (d, J = 94.2 Hz), 142.3, 140.9, 137.9 (d, J = 85.6 Hz), 135.6 (d, J = 9.7 Hz), 135.4 (d, J = 7.6 Hz), 134.4 (d, J = 35.8 Hz), 133.9, 133.3 (d, J = 34.6 Hz), 132.4 (d, J = 9.3 Hz), 132.2

(d, J = 10.2 Hz), 131.7 (d, J = 2.9 Hz), 131.6 (d, J = 2.8 Hz), 130.2, 129.3, 129.1, 128.8 (d, J = 16.1 Hz), 128.5, 128.3, 128.2, 128.1 (d, J = 12.0 Hz), 127.8 (d, J = 7.7 Hz), 69.8 (d, J = 9.2 Hz), 38.0, 24.5, 14.1. ³¹**P** NMR (162 MHz, CDCl₃) δ 30.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₉H₃₃BrO₂P⁺: 643.1396, Found: 643.1391.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-4-(4-isopropylphenyl)-2-phenylnaphth alen-1(2H)-one (2e)

White solids, *m.p.*: 228.2-230.0 °C (53.3 mg, 83% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 8.02-7.95 (m, 3H), 7.88-7.79 (m, 4H), 7.60-7.51 (m, 3H), 7.50-7.43 (m, 6H), 7.40-7.30 (m, 5H), 7.27-7.23 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.14 (d, J = 8.0 Hz, 1H), 6.07 (d, J = 28.0 Hz, 1H), 3.12-3.02 (m, 1H), 1.41 (s, 3H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.1, 148.4, 148.1 (d, J = 94.3 Hz), 140.9, 138.0 (d, J = 81.4 Hz), 135.6 (d, J = 9.6 Hz), 135.5 (d, J = 7.6 Hz), 134.4 (d, J = 34.9 Hz), 133.9, 133.4 (d, J = 33.9 Hz), 132.4 (d, J = 9.4 Hz), 132.2 (d, J = 10.2 Hz), 131.7 (d, J = 2.5 Hz), 131.6 (d, J = 2.6 Hz), 130.2, 129.3 (d, J = 18.6 Hz), 128.9, 128.6, 128.3, 128.2 (d, J = 2.3 Hz), 128.1, 127.8, 126.8 (d, J = 59.0 Hz), 69.8 (d, J = 9.2 Hz), 34.0, 24.1 (d, J = 11.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₉H₃₃BrO₂P⁺: 643.1396, Found: 643.1390.

3-bromo-4-(4-butylphenyl)-2-(1-(diphenylphosphoryl)vinyl)-2-phenylnaphthalen -1(2H)-one (2f)

White solids, *m.p.*: 247.5-249.3 °C (55.8 mg, 85% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.94-7.89 (m, 3H), 7.79-7.76

(m, 2H), 7.72 (d, J = 12.0 Hz, 2H), 7.55-7.53 (m, 1H), 7.51-7.49 (m, 2H), 7.46-7.44 (m, 1H), 7.40-7.37 (m, 2H), 7.34-7.31 (m, 5H), 7.29-7.25 (m, 3H), 7.23-7.20 (m, 1H), 6.79 (d, J = 12.0 Hz, 1H), 6.06 (d, J = 12.0 Hz, 1H), 6.01 (d, J = 36.0 Hz, 1H), 2.71 (t, J = 12.0 Hz, 2H), 1.73-1.68 (m, 2H), 1.47-1.41 (m, 2H), 0.98 (t, J = 12.0 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 196.0, 148.1 (d, J = 94.4 Hz), 142.5, 140.9, 138.4, 137.5, 135.5, 134.2 (d, J = 51.4 Hz), 133.8, 133.5 (d, J = 50.7 Hz), 132.4 (d, J = 9.5 Hz), 132.2 (d, J = 10.0 Hz), 131.6 (d, J = 10.2 Hz), 130.2, 129.3, 129.1 (d, J = 20.4 Hz), 128.8 (d, J = 16.6 Hz), 128.5, 128.4, 128.3, 128.2, 128.1 (d, J = 12.0 Hz), 127.8 (d, J = 9.7 Hz), 69.8 (d, J = 9.1 Hz), 35.6, 33.6, 22.6, 14.1. ³¹P NMR (243 MHz, CDCl₃) δ 30.6 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₄₀H₃₅BrO₂P⁺: 657.1553, Found: 657.1556.

3-bromo-4-(4-(tert-butyl)phenyl)-2-(1-(diphenylphosphoryl)vinyl)-2-phenylnapht halen-1(2H)-one (2g)

White solids, *m.p.*: 250.8-252.7 °C (48.5 mg, 74% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.97-7.92 (m, 3H), 7.84-7.79 (m, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.59-7.49 (m, 6H), 7.46-7.42 (m, 2H), 7.39-7.35 (m, 3H), 7.33-7.24 (m, 4H), 6.82 (d, J = 8.0 Hz, 1H), 6.11 (d, J = 8.0 Hz, 1H), 6.04 (d, J = 32.0 Hz, 1H), 1.44 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.1, 150.6, 148.5, 140.9, 137.7 (d, J = 125.1 Hz), 135.6, 135.4, 134.3 (d, J = 29.3 Hz), 133.8, 133.5, 132.4 (d, J = 9.4 Hz), 132.1 (d, J = 10.2 Hz), 131.6 (d, J = 7.4 Hz), 130.1, 128.9 (d, J = 13.9 Hz), 128.6, 128.5, 128.3, 128.2, 128.0, 127.8, 125.5 (d, J = 47.1 Hz), 69.8 (d, J = 9.2 Hz), 34.8, 31.5. ³¹**P NMR** (162 MHz, CDCl₃) δ 30.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₄₀H₃₅BrO₂P⁺: 657.1553, Found: 657.1555.

4-([1,1'-biphenyl]-4-yl)-3-bromo-2-(1-(diphenylphosphoryl)vinyl)-2-phenylnapht halen-1(2H)-one (2h)

White solids, *m.p.*: 157.7-159.6 °C (42.6 mg, 63% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹H NMR (600 MHz, CDCl₃) δ 7.94-7.91 (m, 3H), 7.81-7.78 (m, 3H), 7.76-7.73 (m, 3H), 7.72 (d, J = 6.0 Hz, 2H), 7.58-7.55 (m, 1H), 7.53-7.46 (m, 6H), 7.44-7.39 (m, 4H), 7.37-7.33 (m, 3H), 7.30-7.25 (m, 2H), 6.86 (d, J = 6.0 Hz, 1H), 6.08 (d, J = 12.0 Hz, 1H), 6.03 (d, J = 36.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 195.9, 148.0 (d, J = 94.0 Hz), 140.7, 140.6 (d, J = 4.6 Hz), 139.2, 138.1, 135.5, 135.4, 134.4, 133.9, 132.4 (d, J = 9.5 Hz), 132.1 (d, J = 10.1 Hz), 131.6 (d, J = 9.3 Hz), 130.1, 129.9 (d, J = 33.2 Hz), 128.9, 128.8 (d, J = 26.8 Hz), 128.5, 128.3 (d, J = 2.9 Hz), 128.2, 128.1 (d, J = 12.0 Hz), 127.9, 127.7 (d, J = 4.6 Hz), 127.5, 127.2, 127.1, 69.7 (d, J = 8.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 30.4 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₄₂H₃₁BrO₂P⁺: 677.1240, Found: 677.1241.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-4-(4-fluorophenyl)-2-phenylnaphthale n-1(2H)-one (2i)

White solids, *m.p.*: 229.5-231.3 °C (43.3 mg, 70% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.97-7.92 (m, 3H), 7.82-7.77 (m, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.60-7.52 (m, 3H), 7.51-7.49 (m, 1H), 7.47-7.41 (m, 3H), 7.40-7.31 (m, 5H), 7.30-7.21 (m, 3H), 6.80 (d, J = 4.0 Hz, 1H), 6.12 (d, J = 4.0 Hz, 1H), 6.04 (d, J = 24.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.9, 162.3 (d, J = 246.9 Hz), 147.8 (d, J = 94.5 Hz), 139.0 (d, J = 196.8 Hz), 136.1, 135.6 (d, J = 9.7 Hz), 135.1 (d, J = 7.6 Hz), 134.2 (d, J = 38.2 Hz), 133.9, 133.2 (d, J = 36.9 Hz), 132.2 (dd, J = 21.8, 9.8 Hz), 131.7 (dd, J = 5.9, 2.9 Hz), 131.2 (dd, J = 13.1, 8.1 Hz), 130.1, 129.5, 128.7, 128.6, 128.4 (d, J = 7.5 Hz), 128.3 (d, J = 5.8 Hz), 128.1 (d, J = 12.0 Hz), 127.7 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 12.0 Hz), 127.7 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 21.7 Hz), 69.70 (d, J = 21.7 Hz), 69.70 (d, J = 21.7 Hz), 127.7 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 51.8 Hz), 126.7 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 51.8 Hz), 126.7 (d, J = 51.8 Hz), 116.2 (d, J = 21.4 Hz), 115.6 (d, J = 21.7 Hz), 69.70 (d, J = 51.8 Hz), 126.7 (d, J = 51.8

= 9.2 Hz). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -116.2 (s). ³¹**P** NMR (162 MHz, CDCl₃) δ 30.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₆H₂₆BrFO₂P⁺: 619.0832, Found: 619.0836.

3-bromo-4-(4-chlorophenyl)-2-(1-(diphenylphosphoryl)vinyl)-2-phenylnaphthale n-1(2H)-one (2j)

White solids, *m.p.*: 260.7-262.6 °C (41.2 mg, 65% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.98-7.93 (m, 3H), 7.82-7.77 (m, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.62-7.49 (m, 6H), 7.46-7.41 (m, 3H), 7.39-7.34 (m, 4H), 7.33-7.27 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 6.13 (d, J = 4.0 Hz, 1H), 6.05 (d, J = 28.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 195.8, 147.8 (d, J = 94.3 Hz), 139.8, 138.2 (d, J = 81.4 Hz), 135.7 (d, J = 9.7 Hz), 135.1 (d, J = 7.6 Hz), 134.4, 133.9 (d, J = 9.8 Hz), 133.2 (d, J = 38.8 Hz), 132.3 (d, J = 9.4 Hz), 132.1 (d, J = 10.2 Hz), 131.7 (d, J = 7.4 Hz), 130.9 (d, J = 19.1 Hz), 130.0, 129.4, 129.3, 128.8, 128.6, 128.5 (d, J = 18.3 Hz), 128.3 (d, J = 5.4 Hz), 128.2 (d, J = 3.0 Hz), 128.0 (d, J = 7.0 Hz), 127.4, 69.7 (d, J = 9.1 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 30.6 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₆H₂₆BrClO₂P⁺: 635.0537, Found: 635.0540.

4-(2-bromo-3-(1-(diphenylphosphoryl)vinyl)-4-oxo-3-phenyl-3,4-dihydronaphtha len-1-yl)benzonitrile (2k)

White solids, *m.p.*: 146.3-148.3 °C (38.8 mg, 62% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.96-7.90 (m, 3H), 7.89-7.83 (m, 2H), 7.79-7.74 (m, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.62-7.49 (m, 6H), 7.45-7.34 (m,

5H), 7.32-7.28 (m, 2H), 6.67 (d, J = 8.0 Hz, 1H), 6.12 (d, J = 4.0 Hz, 1H), 6.04 (d, J = 28.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.4, 147.5 (d, J = 94.2 Hz), 145.0, 138.2 (d, J = 223.3 Hz), 135.8 (d, J = 9.7 Hz), 134.8 (d, J = 7.5 Hz), 134.1 (d, J = 33.0 Hz), 133.5 (d, J = 100.0 Hz), 133.1 (d, J = 31.5 Hz), 132.4, 132.2 (d, J = 9.4 Hz), 132.0 (d, J = 10.3 Hz), 131.8, 130.5 (d, J = 18.3 Hz), 129.9, 129.4, 128.8, 128.6, 128.4 (d, J = 3.5 Hz), 128.2 (d, J = 1.8 Hz), 128.1, 127.0, 118.7, 112.0, 69.6 (d, J = 9.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.7 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₇H₂₆BrNO₂P⁺: 626.0879, Found: 626.0867.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-2-phenyl-4-(4-(trifluoromethyl)phenyl) naphthalen-1(2H)-one (2l)

White solids, *m.p.*: 257.6-259.4 °C (43.4 mg, 65% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹H NMR (500 MHz, CDCl₃) δ 7.95-7.91 (m, 3H), 7.84-7.75 (m, 4H), 7.73-7.71 (m, 2H), 7.60 (d, J = 10.0 Hz, 1H), 7.57-7.51 (m, 4H), 7.49-7.46 (m, 1H), 7.43-7.39 (m, 2H), 7.37-7.32 (m, 3H), 7.31-7.24 (m, 2H), 6.69 (d, J = 10.0 Hz, 1H), 6.09 (d, J = 10.0 Hz, 1H), 6.04 (d, J = 35.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 195.7, 147.8 (d, J = 94.1 Hz), 144.0, 139.8, 137.6, 135.8 (d, J = 9.6 Hz), 135.1 (d, J = 7.6 Hz), 134.2 (d, J = 43.9 Hz), 134.1, 133.4 (d, J = 42.5 Hz), 132.3 (d, J = 9.3 Hz), 132.1 (d, J = 10.2 Hz), 131.8 (t, J = 3.6 Hz), 130.3, 130.1 (t, J = 11.9 Hz), 129.4, 128.6 (d, J = 34.4 Hz), 128.3 (d, J = 5.5 Hz), 128.2, 127.3, 126.2 (d, J = 3.9 Hz), 125.7 (d, J = 4.0 Hz), 125.4, 123.2, 69.7 (d, J = 9.0 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -62.2 (s). ³¹P NMR (202 MHz, CDCl₃) δ 31.2 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₇H₂₆BrF₃O₂P⁺: 669.0800, Found: 669.0788.

4-(4-acetylphenyl)-3-bromo-2-(1-(diphenylphosphoryl)vinyl)-2-phenylnaphthalen -1(2H)-one (2m)

White solids, *m.p.*:185.4-187.2 °C (36.6 mg, 57% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate = 3:1). ¹**H** NMR (500 MHz, CDCl₃) δ 8.16-8.14 (m, 1H), 8.11-8.09 (m, 1H), 7.93-7.88 (m, 3H), 7.77-7.73 (m, 2H), 7.71-7.69 (m, 2H), 7.57-7.54 (m, 2H), 7.53-7.49 (m, 3H), 7.47-7.45 (m, 1H), 7.41-7.37 (m, 2H), 7.36-7.33 (m, 2H), 7.31-7.24 (m, 3H), 6.70-6.68 (m, 1H), 6.08 (d, J = 5 Hz, 1H), 6.01 (d, J = 30 Hz, 1H), 2.68 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 197.9, 195.7, 147.8 (d, J = 94.5 Hz), 145.2, 140.1, 137.1 (d, J = 119.6 Hz), 135.8 (d, J = 9.6 Hz), 135.1 (d, J = 7.3 Hz), 134.1 (d, J = 48.6 Hz), 134.0, 133.3 (d, J = 47.7 Hz), 132.3 (d, J = 9.2 Hz), 132.1 (d, J = 10.2 Hz), 131.8 (d, J = 6.1 Hz), 130.1 (d, J = 3.9 Hz), 129.6 (d, J = 4.3 Hz), 127.3, 69.7 (d, J = 9.2 Hz), 26.8. ³¹P NMR (202 MHz, CDCl₃) δ 31.2 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₈H₂₉BrO₃P⁺: 643.1032, Found: 643.1020.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-4-hexyl-2-phenylnaphthalen-1(2H)-one (20)

20

White solids, *m.p.*:102.7-103.8 °C (18.2 mg, 30% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate = 3:1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.88-7.83 (m, 3H), 7.78-7.74 (m, 2H), 7.55-7.53 (m, 2H), 7.52-7.48 (m, 3H), 7.46-7.40 (m, 4H), 7.28-7.22 (m, 5H), 6.08 (d, J = 20 Hz, 1H), 6.00 (d, J = 40 Hz, 1H), 2.91-2.88 (m, 2H), 1.82-1.73 (m, 1H), 1.67-1.64 (m, 1H), 1.56-1.50 (m, 2H), 1.41-1.35 (m, 4H), 0.93 (t, J = 5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 147.8, 138.1, 136.7, 135.6 (d, J = 8.7 Hz), 134.2, 132.4 (dd, J = 13.4, 9.8 Hz), 132.0, 131.6 (d, J = 10.8 Hz), 130.2, 129.6, 129.1, 128.4, 128.3 (d, J = 5.7 Hz), 128.1, 128.1, 127.9, 127.5, 124.9, 69.9, 34.2, 31.8, 29.8, 27.7, 22.8, 14.3. ³¹P NMR (202 MHz, CDCl₃) δ 31.0 (s).

3-bromo-4-(3,5-dichlorophenyl)-2-(1-(diphenylphosphoryl)vinyl)-2-phenylnaphth alen-1(2H)-one (2p)

White solids, *m.p.*: 209.3-210.7 °C (46.8 mg, 70% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate = 3:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.00-7.91 (m, 3H), 7.86-7.81 (m, 2H), 7.72-7.70 (m, 2H), 7.60-7.52 (m, 4H), 7.50-7.47 (m, 3H), 7.41-7.37 (m, 4H), 7.34-7.30 (m, 3H), 6.80 (d, J = 8 Hz, 1H), 6.14 (s, 1H), 6.07 (d, J = 20 Hz, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 195.4 (d, J = 1.9 Hz), 147.9 (d, J = 94.2 Hz), 142.8, 137.9 (d, J = 180.8 Hz), 135.5 (d, J = 9.7 Hz), 135.4 (d, J = 70.7 Hz), 134.8 (d, J = 7.5 Hz), 134.4, 134.0, 133.4 (d, J = 3.8 Hz), 132.3 (d, J = 9.3 Hz), 132.2 (d, J = 10.4 Hz), 131.9 (d, J = 2.8 Hz), 130.0, 129.7, 128.8 (d, J = 9.1 Hz), 128.7, 128.4 (d, J = 4.9 Hz), 128.3, 128.2, 128.1 (d, J = 2.9 Hz), 128.0 (d, J = 6.8 Hz), 127.1, 69.5 (d, J = 9.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.3 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₆H₂₅BrCl₂O₂P⁺: 669.0147, Found: 669.0132.

3-bromo-4-(3,5-dimethylphenyl)-2-(1-(diphenylphosphoryl)vinyl)-2-phenylnapht halen-1(2H)-one (2q)

White solids, *m.p.*: 222.3-223.7 °C (50.2 mg, 80% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.93-7.90 (m, 3H), 7.83-7.79 (m, 2H), 7.73 (d, J = 6.0 Hz, 2H), 7.55-7.44 (m, 4H), 7.40-7.38 (m, 2H), 7.35-7.32 (m, 2H), 7.31-7.25 (m, 2H), 7.23-7.21 (m, 1H), 7.05 (d, J = 18.0 Hz, 2H), 6.95 (s, 1H), 6.80 (d, J = 12.0 Hz, 1H), 6.08 (d, J = 6.0 Hz, 1H), 6.03 (d, J = 18.0 Hz, 1H), 2.43 (s, 3H), 2.38 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 196.0, 148.2 (d, J = 94.5 Hz), 141.2,

140.1, 138.4 (d, J = 35.4 Hz), 137.9, 135.4 (d, J = 4.4 Hz), 134.5, 133.8, 133.1, 132.4 (d, J = 9.4 Hz), 132.2 (d, J = 10.2 Hz), 131.6 (d, J = 10.6 Hz), 130.2, 129.4, 128.7, 128.5, 128.3 (d, J = 12.5 Hz), 128.2 (d, J = 4.2 Hz), 128.1 (d, J = 12.0 Hz), 127.8 (d, J = 8.1 Hz), 126.9 (d, J = 25.2 Hz), 69.7 (d, J = 9.3 Hz), 21.5 (d, J = 19.2 Hz). ³¹P **NMR** (243 MHz, CDCl₃) δ 30.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₈H₃₁BrO₂P⁺: 629.1240, Found: 629.1238.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-8-methyl-4-phenyl-2-(o-tolyl)naphthal en-1(2H)-one (2r)

Yellow oil, (35.2 mg, 56% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.77 (m, 2H), 7.74-7.68 (m, 3H), 7.56-7.51 (m, 3H), 7.49-7.43 (m, 6H), 7.40-7.35 (m, 2H), 7.31-7.29 (m, 1H), 7.25-7.22 (m, 2H), 7.21-7.19 (m, 1H), 7.13 (t, J = 8.0 Hz, 1H), 7.02 (d, J = 4.0 Hz, 1H), 6.53 (d, J = 4.0Hz, 1H), 6.12 (d, J = 20.0 Hz, 1H), 2.31 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 142.5, 140.7, 140.6, 138.8, 138.2 (d, J = 10.1 Hz), 132.8, 132.4, 132.2 (d, J =9.3 Hz), 131.6, 131.4 (d, J = 2.8 Hz), 131.3, 131.2 (d, J = 5.6 Hz), 129.9, 128.9, 128.8, 128.3, 128.2 (d, J = 4.1 Hz), 128.1, 128.0, 127.7, 126.0, 125.8, 72.2, 22.6, 21.6. ³¹P NMR (162 MHz, CDCl₃) δ 31.0 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₈H₃₁BrO₂P⁺: 629.1240, Found: 629.1226.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-7-methyl-4-phenyl-2-(m-tolyl)naphthal en-1(2H)-one

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-5-methyl-4-phenyl-2-(m-tolyl)naphthal en-1(2H)-one (2s+2s')

(Mixture which cannot be separated)

Yellow oil, (33.9 mg, 54% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.92 (m, 2H), 7.85-7.70 (m, 3H), 7.58-7.49 (m, 7H), 7.48-7.37 (m, 6H), 7.25-7.22 (m, 1H), 7.13-7.09 (m, 2H), 6.67 (d, J = 5.0 Hz, 1H), 6.10-5.79 (m, 2H), 2.35 (s, 3H), 2.27-2.23 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3 (d, J = 1.9 Hz), 148.0 (d, J = 94.5 Hz), 140.6 (d, J = 24.3 Hz), 138.2 (d, J =37.5 Hz), 135.8, 135.5 (d, J = 9.7 Hz), 135.3 (d, J = 7.6 Hz), 134.6, 134.1, 133.6, 133.1, 132.4 (d, J = 9.3 Hz), 132.2 (d, J = 10.2 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J =2.6 Hz), 130.7, 129.4 (d, J = 11.8 Hz), 129.0, 128.5 (d, J = 6.6 Hz), 128.4 (d, J = 4.1Hz), 128.2 (d, J = 5.0 Hz), 128.1 (d, J = 12.2 Hz), 127.7 (d, J = 6.1 Hz), 127.3, 69.7 (d, J = 9.0 Hz), 21.9, 21.1. ³¹P NMR (202 MHz, CDCl₃) δ 31.1:30.7 = 4.3:1 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₈H₃₁BrO₂P⁺: 629.1240, Found: 629.1234.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-6-methyl-4-phenyl-2-(p-tolyl)naphthal en-1(2H)-one (2t)

White solids, *m.p.*: 224.7-226.3 °C (29.5 mg, 47% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.97-7.91 (m, 2H), 7.85-7.77 (m, 3H), 7.63-7.58 (m, 3H), 7.57-7.53 (m, 4H), 7.51-7.46 (m, 3H), 7.44-7.38 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 1H), 6.57 (s, 1H), 6.11 (d, J = 12.0 Hz, 1H), 6.03 (d, J = 12.0 Hz, 1H), 2.33 (s, 3H), 2.21 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 195.7, 148.0 (d, J = 94.1 Hz), 144.6, 140.6 (d, J = 42.6 Hz), 138.1 (d, J = 33.6 Hz), 135.4 (d, J = 9.7 Hz), 134.4 (d, J = 41.5 Hz), 133.7 (d, J = 40.8 Hz), 132.5 (d, J = 7.9 Hz), 132.4 (d, J = 9.1 Hz), 132.1 (d, J = 10.4 Hz), 131.5 (d, J = 10.7 Hz), 130.0, 129.5, 129.4, 129.2, 129.0 (d, J = 23.8 Hz), 128.4, 128.2 (d, J = 12.2 Hz),

128.1, 127.9 (d, J = 38.0 Hz), 126.5, 69.4 (d, J = 9.1 Hz), 21.9, 21.0. ³¹**P** NMR (162 MHz, CDCl₃) δ 30.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₈H₃₁BrO₂P⁺: 629.1240, Found: 629.1242.

3-bromo-2-(1-(diphenylphosphoryl)vinyl)-6-fluoro-2-(4-fluorophenyl)-4-phenyln aphthalen-1(2H)-one (2u)

White solids, *m.p.*: 184.5-186.3 °C (27.4 mg, 43% yield). TLC ($\mathbf{R}_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.95-7.92 (m, 1H), 7.90-7.86 (m, 2H), 7.77-7.73 (m, 2H), 7.69-7.65 (m, 2H), 7.59-7.55 (m, 2H), 7.53-7.50 (m, 3H), 7.49-7.45 (m, 2H), 7.42-7.38 (m, 3H), 7.35-7.33 (m, 1H), 7.05-7.02 (m, 2H), 6.95-6.92 (m, 1H), 6.47-6.44 (m, 1H), 6.07-5.96 (m, 2H). ¹³**C** NMR (126 MHz, CDCl₃) δ 194.5, 166.4 (d, J = 254.5 Hz), 162.7 (d, J = 248.8 Hz), 148.0 (d, J = 94.2 Hz), 140.9 (d, J = 9.4 Hz), 140.4, 139.5, 135.6 (d, J = 9.7 Hz), 133.5 (dd, J = 103.7, 65.0 Hz), 132.2 (dd, J = 28.9, 9.8 Hz), 132.0 (d, J = 16.4 Hz), 131.9, (d, J = 2.5 Hz), 131.0 (d, J = 9.7 Hz), 130.5, 129.3 (d, J = 5.2 Hz), 129.0 (d, J = 47.9 Hz), 128.4 (d, J = 12.4 Hz), 128.3, 128.2, 125.2, 115.7 (d, J = 22.3 Hz), 115.6 (d, J = 21.5 Hz), 114.7 (d, J = 24.5 Hz), 69.0 (d, J = 9.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -102.9 (s), -113.5 (s). ³¹P NMR (202 MHz, CDCl₃) δ 31.1 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₆H₂₅BrF₂O₂P⁺: 637.0738, Found: 637.0736.

3-bromo-2-(1-(di-p-tolylphosphoryl)vinyl)-2,4-diphenylnaphthalen-1(2H)-one (2v)

White solids, *m.p.*: 243.0-244.8 °C (46.5 mg, 74% yield). TLC ($R_f = 0.25$, petroleum

ether/ethyl acetate=3:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.98-7.95 (m, 1H), 7.90-7.84 (m, 2H), 7.80 (d, J = 4.0 Hz, 2H), 7.75-7.70 (m, 2H), 7.62-7.56 (m, 2H), 7.52-7.45 (m, 3H), 7.40-7.32 (m, 6H), 7.30-7.23 (m, 3H), 6.82 (d, J = 8.0 Hz, 1H), 6.14-6.00 (m, 2H), 2.47 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.0, 148.4 (d, J = 94.3 Hz), 141.9 (d, J = 6.8 Hz), 140.6 (d, J = 34.5 Hz), 138.2, 135.5 (d, J = 7.6 Hz), 135.4 (d, J = 9.7 Hz), 133.8, 132.4 (d, J = 9.7 Hz), 132.2 (d, J = 10.5 Hz), 131.4 (d, J = 21.9 Hz), 130.4 (d, J = 21.2 Hz), 130.2, 129.5 (d, J = 20.5 Hz), 129.1, 128.9 (d, J = 2.0 Hz), 128.8, 128.7, 128.5, 128.2 (d, J = 4.8 Hz), 127.9 (d, J = 6.1 Hz), 127.6, 69.7 (d, J = 9.2 Hz), 21.7 (d, J = 11.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.6 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₈H₃₀BrNaO₂P⁺: 651.1059, Found: 651.1052.

2-(1-(bis(4-ethylphenyl)phosphoryl)vinyl)-3-bromo-2,4-diphenylnaphthalen-1(2H)-one (2w)

White solids, *m.p.*: 158.5-160.3 °C (49.9 mg, 76% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.97-7.95 (m, 1H), 7.90-7.85 (m, 2H), 7.79-7.71 (m, 4H), 7.61-7.54 (m, 2H), 7.51-7.47 (m, 2H), 7.44-7.42 (m, 1H), 7.40-7.36 (m, 4H), 7.34-7.31 (m, 2H), 7.29-7.25 (m, 3H), 6.80 (d, J = 8 Hz, 1H), 6.14-6.00 (m, 2H), 2.76 (q, J = 8 Hz, 16Hz, 2H), 2.69 (q, J = 8 Hz, 16Hz, 2H), 1.31 (t, J = 8 Hz, 3H), 1.25 (t, J = 8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.0, 148.3 (d, J = 94.2 Hz), 148.0, 140.6 (d, J = 42.9 Hz), 138.2, 135.5, 135.4 (d, J = 18.0 Hz), 133.8, 132.5 (d, J = 9.7 Hz), 132.3 (d, J = 10.6 Hz), 131.5 (d, J = 30.4 Hz), 130.4 (d, J = 29.5 Hz), 130.2, 129.4 (d, J = 16.6 Hz), 129.1, 129.0, 128.7, 128.5, 128.2 (d, J = 6.6 Hz), 127.9, 127.8, 127.7 (d, J = 3.1 Hz), 127.6 (d, J = 5.5 Hz), 69.7 (d, J = 9.3 Hz), 28.9 (d, J = 10.4 Hz), 15.2. ³¹**P NMR** (162 MHz, CDCl₃) δ 30.8 (s). **HRMS (ESI)**: ([M+H]⁺) Calcd for C₄₀H₃₅BrO₂P⁺: 657.1553, Found: 657.1539.

2-(1-(bis(4-chlorophenyl)phosphoryl)vinyl)-3-bromo-2,4-diphenylnaphthalen-1(2 H)-one (2x)

White solids, *m.p.*: 127.5-129.2 °C (48.1 mg, 72% yield). TLC ($R_f = 0.25$, petroleum ether/ethy acetate=3:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.93-7.86 (m, 3H), 7.75-7.70 (m, 4H), 7.62-7.48 (m, 6H), 7.44-7.37 (m, 4H), 7.36-7.31 (m, 2H), 7.29-7.25 (m, 2H), 6.81 (d, J = 8 Hz, 1H), 6.10 (d, J = 8 Hz, 1H), 6.03 (d, J = 16 Hz, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 196.3, 147.6 (d, J = 96.1 Hz), 140.5 (d, J = 85.0 Hz), 138.5, 138.4 (d, J = 6.4 Hz), 138.1, 136.0 (d, J = 9.8 Hz), 134.9 (d, J = 7.7 Hz), 134.1, 133.7 (d, J = 10.3 Hz), 133.5 (d, J = 11.1 Hz), 132.6 (d, J = 17.9 Hz), 131.5 (d, J = 16.7 Hz), 129.7 (d, J = 46.1 Hz), 129.1 (d, J = 4.9 Hz), 128.8, 128.7, 128.6 (d, J = 5.6 Hz), 128.5, 128.4 (d, J = 2.2 Hz), 128.0, 127.8 (d, J = 12.4 Hz), 69.8 (d, J = 9.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.3 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₆H₂₄BrCl₂NaO₂P⁺: 690.9967, Found: 690.9962.

3-bromo-2-(1-(diphenylphosphoryl)ethyl)-2,4-diphenylnaphthalen-1(2H)-one (2y)

White solids, *m.p.*: 241.7-243.3 °C (45.2 mg, 75% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.09-8.04 (m, 2H), 7.88 (d, *J* = 8 Hz, 1H), 7.78-7.73 (m, 2H), 7.67 (t, *J* = 8 Hz, 1H), 7.59-7.56 (m, 3H), 7.55-7.50 (m, 5H), 7.37-7.32 (m, 3H), 7.30-7.27 (m, 2H), 7.11 (t, *J* = 8 Hz, 1H), 7.07-7.03 (m, 3H), 6.78 (d, *J* = 8 Hz, 1H), 4.89-4.80 (m, 1H), 1.64 (dd, *J* = 8 Hz, 16 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 196.4, 140.1 (d, *J* = 80.0 Hz), 138.1, 137.2 (d, *J* = 11.6 Hz), 134.2, 133.5, 132.6 (d, *J* = 9.2 Hz), 132.1, 131.6 (d, *J* = 2.8 Hz), 131.5 (d, *J* = 7.9 Hz), 130.7 (d, *J* = 3.7 Hz), 130.2, 129.2 (d, *J* = 21.7 Hz), 128.7 (d, *J* = 19.8 Hz), 128.5 (d, *J* = 4.5 Hz), 128.4, 127.9 (d, *J* = 18.7 Hz), 127.7 (d, *J* = 17.2 Hz), 127.5, 127.1, 64.4, 42.9 (d, *J* = 67.6 Hz), 134.4 ³¹**P** NMR (162 MHz, CDCl₃) δ 31.2 (s). HRMS

(ESI): ([M+H]⁺) Calcd for C₃₆H₂₉BrO₂P⁺: 603.1083, Found: 603.1076.

3-bromo-2-(1-(diphenylphosphoryl)ethyl)-2-phenyl-4-(p-tolyl)naphthalen-1(2H)one (2z)

White solids, *m.p.*: 240.5-242.2 °C (43.1 mg, 70% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (400 MHz, CDCl₃) δ 8.09-8.04 (m, 2H), 7.77-7.72 (m, 3H), 7.58-7.51 (m, 6H), 7.48 (d, J = 8 Hz, 1H), 7.39-7.32 (m, 3H), 7.30-7.23 (m, 3H), 7.12-7.09 (m, 1H), 7.06-7.01 (m, 3H), 6.81 (d, J = 8 Hz, 1H), 4.89-4.80 (m, 1H), 2.52 (s, 3H), 1.64 (dd, J = 8 Hz, 16 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 140.6, 138.0 (d, J = 59.8 Hz), 137.2 (d, J = 11.6 Hz), 136.7, 134.1, 133.4, 132.6 (d, J = 9.2 Hz), 132.4, 132.1, 131.6 (d, J = 8.1 Hz), 131.5 (d, J = 2.6 Hz), 130.6 (d, J = 3.6 Hz), 130.0 (d, J = 3.8 Hz), 129.1 (d, J = 32.6 Hz), 128.7 (d, J = 16.7 Hz), 128.4 (d, J = 14.4 Hz), 127.7 (d, J = 9.7 Hz), 127.5 (d, J = 4.8 Hz), 127.4, 127.1, 64.5, 42.9 (d, J = 67.6 Hz), 21.6, 13.3. ³¹P NMR (162 MHz, CDCl₃) δ 31.2 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₇H₃₁BrO₂P⁺: 617.1240, Found: 617.1242.

3-bromo-4-(4-chlorophenyl)-2-(1-(diphenylphosphoryl)ethyl)-2-phenylnaphthale n-1(2H)-one (2aa)

White solids, *m.p.*: 231.7-233.5 °C (40.1 mg, 63% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (500 MHz, CDCl₃) δ 8.03-7.99 (m, 2H), 7.83-7.81 (m, 1H), 7.71-7.66 (m, 2H), 7.63-7.61 (m, 1H), 7.53-7.47 (m, 7H), 7.33-7.29 (m, 2H), 7.28-7.22 (m, 3H), 7.09-7.06 (m, 1H), 7.05-6.97 (m, 3H), 6.73 (d, J = 8 Hz, 1H), 4.82-4.75 (m, 1H), 1.61 (dd, J = 5 Hz, 15 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

196.3, 139.5, 138.0 (d, J = 37.9 Hz), 137.1 (d, J = 11.7 Hz), 134.3, 134.1, 133.4, 132.5 (d, J = 9.3 Hz), 132.0, 131.9, 131.7 (d, J = 13.0 Hz), 131.5 (d, J = 8.2 Hz), 131.3, 130.2 (d, J = 110.6 Hz), 128.9, 128.7, 128.6, 127.9 (d, J = 7.9 Hz), 127.6 (d, J = 11.5 Hz), 127.1 (d, J = 15.1 Hz), 64.4, 43.0 (d, J = 67.5 Hz), 13.4. ³¹P NMR (202 MHz, CDCl₃) δ 32.0 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₃₆H₂₈BrClO₂P⁺: 637.0693, Found: 637.0690.

(5-bromo-3-(hydroxydiphenylmethyl)-5-phenylpenta-1,3,4-trien-2-yl)diphenylph osphine oxide (3a)

White solids, *m.p.*: 165.0-166.2 °C (56.0 mg, 93% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.73-7.62 (m, 6H), 7.54-7.47 (m, 5H), 7.37-7.28 (m, 6H), 7.20-7.10 (m, 6H), 6.90-6.88 (m, 2H), 6.01 (d, J = 44.0 Hz, 1H), 5.42 (d, J = 20.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 202.4 (d, J = 6.7 Hz), 146.0, 144.3, 138.9 (d, J = 91.7 Hz), 134.2 (d, J = 10.4 Hz), 133.1, 132.4 (d, J = 14.0 Hz), 132.1 (d, J = 9.9 Hz), 132.0 (d, J = 10.2 Hz), 130.4, 129.5 (d, J = 25.8 Hz), 128.8 (d, J = 12.5 Hz), 128.5 (d, J = 12.5 Hz), 128.3, 127.9 (d, J = 7.7 Hz), 127.7 (d, J = 7.8 Hz), 127.1 (d, J = 24.2 Hz), 127.0, 118.8 (d, J = 6.8 Hz), 96.3, 80.8. ³¹**P NMR** (162 MHz, CDCl₃) δ 35.3 (s). **HRMS (ESI):** ([M+Na]⁺) Calcd for C₃₆H₂₈BrNaO₂P⁺: 625.0903, Found: 625.0886.

(5-bromo-3-(hydroxydiphenylmethyl)-5-(p-tolyl)penta-1,3,4-trien-2-yl)diphenylp hosphine oxide (3b)

White solids, *m.p.*: 155.3-157.0 °C (54.8 mg, 89% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.73-7.68 (m, 2H), 7.66-7.61

(m, 4H), 7.59-7.55 (m, 1H), 7.51-7.46 (m, 4H), 7.42-7.38 (m, 1H), 7.36-7.26 (m, 5H), 7.20 (t, J = 8.0 Hz, 2H), 7.14-7.11 (m, 1H), 6.92 (d, J = 8.0 Hz, 2H), 6.77-6.74 (m, 2H), 5.99 (d, J = 40.0 Hz, 1H), 5.41 (d, J = 20.0 Hz, 1H), 2.32 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 202.2 (d, J = 6.9 Hz), 146.0, 144.4, 139.1 (d, J = 91.4 Hz), 138.3, 134.2 (d, J = 10.5 Hz), 132.3 (d, J = 15.0 Hz), 132.1, 132.0, 131.9, 130.3 (d, J = 9.5Hz), 129.5 (d, J = 38.2 Hz), 128.7 (d, J = 12.6 Hz), 128.6, 128.5 (d, J = 12.5 Hz), 127.8 (d, J = 9.6 Hz), 127.6, 127.2, 126.9 (d, J = 10.2 Hz), 118.7 (d, J = 7.2 Hz), 96.3, 80.7, 21.2. ³¹**P NMR** (162 MHz, CDCl₃) δ 35.1 (s). **HRMS (ESI):** ([M+Na]⁺) Calcd for C₃₇H₃₀BrNaO₂P⁺: 639.1059, Found: 639.1047.

(5-bromo-5-(4-ethylphenyl)-3-(hydroxydiphenylmethyl)penta-1,3,4-trien-2-yl)dip henylphosphine oxide (3c)

White solids, *m.p.*: 135.9-137.8 °C (54.2 mg, 86% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.60-7.55 (m, 4H), 7.50-7.48 (m, 1H), 7.46-7.44 (m, 2H), 7.41-7.38 (m, 2H), 7.31-7.29 (m, 1H), 7.26-7.22 (m, 4H), 7.21-7.18 (m, 1H), 7.13 (t, J = 6.0 Hz, 2H), 7.07-7.04 (m, 1H), 6.87 (d, J = 12.0 Hz, 2H), 6.72 (d, J = 6.0 Hz, 2H), 5.92 (d, J = 36.0 Hz, 1H), 5.34 (d, J = 18.0 Hz, 1H), 2.54 (q, J = 6.0 Hz, 2H), 1.17 (t, J = 6.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 202.2 (d, J = 6.6 Hz), 146.0, 144.7, 144.4, 139.0 (d, J = 91.6 Hz), 134.1 (d, J = 10.6 Hz), 132.4 (d, J = 2.2 Hz), 132.3 (d, J = 2.6 Hz), 132.1 (d, J = 9.9 Hz), 132.0 (d, J = 9.9 Hz), 130.5, 130.2, 129.5 (d, J = 3.7 Hz), 128.8 (d, J = 12.5 Hz), 128.5 (d, J = 12.2 Hz), 127.8 (d, J = 18.0 Hz), 127.6 (d, J = 25.2 Hz), 127.2, 127.0, 118.5 (d, J = 7.1 Hz), 96.5, 80.7, 28.5, 15.6. ³¹P NMR (243 MHz, CDCl₃) δ 35.3 (s). **HRMS (ESI):** ([M+Na]⁺) Calcd for C₃₈H₃₂BrNaO₂P⁺: 653.1216, Found: 653.1210.

(5-bromo-3-(hydroxydiphenylmethyl)-5-(4-propylphenyl)penta-1,3,4-trien-2-yl)d iphenylphosphine oxide (3d)

White solids, *m.p.*: 150.7-152.1 °C (54.7 mg, 85% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.72-7.68 (m, 2H), 7.67-7.61 (m, 4H), 7.59-7.55 (m, 1H), 7.51-7.45 (m, 4H), 7.40-7.36 (m, 1H), 7.34-7.24 (m, 5H), 7.21-7.17 (m, 2H), 7.13-7.10 (m, 1H), 6.92 (d, J = 8.0 Hz, 2H), 6.77 (d, J = 8.0 Hz, 2H), 5.98 (d, J = 40.0 Hz, 1H), 5.40 (d, J = 16.0 Hz, 1H), 2.55 (t, J = 8.0 Hz, 2H), 1.69-1.59 (m, 2H), 0.98 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.2 (d, J = 6.8 Hz), 146.0, 144.4, 143.1, 139.0 (d, J = 91.6 Hz), 134.1 (d, J = 10.6 Hz), 132.4 (d, J = 2.7 Hz), 132.2 (d, J = 2.7 Hz), 132.1, 132.0 (d, J = 1.9 Hz), 131.9, 130.4 (d, J = 6.0 Hz), 129.5 (d, J = 31.3 Hz), 128.7 (d, J = 12.5 Hz), 128.5 (d, J = 12.4 Hz), 127.9 (d, J = 22.0 Hz), 127.7 (d, J = 11.2 Hz), 127.2, 126.9 (d, J = 10.8 Hz), 118.5 (d, J = 7.0 Hz), 96.4, 80.7, 37.7, 24.5, 13.9. ³¹P NMR (162 MHz, CDCl₃) δ 35.2 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₉H₃₄BrNaO₂P⁺: 667.1372, Found: 667.1362.

(5-bromo-5-(4-fluorophenyl)-3-(hydroxydiphenylmethyl)penta-1,3,4-trien-2-yl)di phenylphosphine oxide (3e)

White solids, *m.p.*: 164.4-165.8 °C (55.8 mg, 90% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.73-7.67 (m, 4H), 7.63-7.58 (m, 2H), 7.56-7.53 (m, 1H), 7.50-7.43 (m, 4H), 7.37-7.25 (m, 6H), 7.19-7.15 (m, 2H), 7.12-7.08 (m, 1H), 6.77 (s, 2H), 6.75 (s, 2H), 5.97 (d, J = 40.0 Hz, 1H), 5.40 (d, J = 16.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 202.1 (d, J = 6.5 Hz), 162.5 (d, J = 248.8 Hz), 145.1 (d, J = 214.2 Hz), 138.7 (d, J = 91.9 Hz), 134.0 (d, J = 10.4 Hz), 132.5 (d, J = 2.9 Hz), 132.3 (d, J = 2.8 Hz), 132.0 (dd, J = 15.8, 10.0 Hz), 130.3,

129.4 (d, J = 12.0 Hz), 129.1, 128.7 (d, J = 11.9 Hz), 128.6 (d, J = 8.4 Hz), 128.4, 127.9, 127.6 (d, J = 1.5 Hz), 127.1 (d, J = 28.5 Hz), 126.8, 118.7 (d, J = 6.9 Hz), 114.8 (d, J = 21.9 Hz), 95.0, 80.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.2 (s). ³¹P NMR (162 MHz, CDCl₃) δ 35.4 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₆H₂₇BrFNaO₂P⁺: 643.0808, Found: 643.0802.

(5-bromo-5-(3-fluorophenyl)-3-(hydroxydiphenylmethyl)penta-1,3,4-trien-2-yl)di phenylphosphine oxide (3f)

White solids, *m.p.*: 167.0-168.8 °C (41.5 mg, 67% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.68-7.64 (m, 2H), 7.61-7.60 (m, 2H), 7.58-7.52 (m, 3H), 7.44-7.41 (m, 4H), 7.34-7.32 (m, 1H), 7.30-7.26 (m, 4H), 7.24-7.22 (m, 1H), 7.15-7.13 (m, 2H), 7.08-7.05 (m, 1H), 7.00-6.96 (m, 1H), 6.81-6.77 (m, 1H), 6.56-6.55 (m, 1H), 6.46-6.44 (m, 1H), 5.92 (d, *J* = 42.0 Hz, 1H), 5.36 (d, *J* = 24.0 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 202.4 (d, *J* = 6.7 Hz), 162.2 (d, *J* = 246.0 Hz), 145.0 (d, *J* = 316.0 Hz), 138.6 (d, *J* = 91.8 Hz), 135.4 (d, *J* = 7.9 Hz), 134.0 (d, *J* = 10.5 Hz), 132.5 (d, *J* = 2.3 Hz), 132.3 (d, *J* = 2.5 Hz), 132.1 (d, *J* = 9.9 Hz), 131.9 (d, *J* = 9.9 Hz), 130.1, 129.2 ((q, *J* = 15.1 Hz), 128.7 (d, *J* = 12.8 Hz), 128.5 (d, *J* = 12.6 Hz), 127.9, 127.7 (d, *J* = 5.3 Hz), 127.2 (d, *J* = 34.6 Hz), 126.8, 122.6 (d, *J* = 2.2 Hz), 119.1 (d, *J* = 6.7 Hz), 115.0 (d, *J* = 21.1 Hz), 113.9 (d, *J* = 24.0 Hz), 94.6, 80.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -113.4 (s). ³¹**P NMR** (243 MHz, CDCl₃) δ 35.3 (s). **HRMS (ESI):** ([M+Na]⁺) Calcd for C₃₆H₂₇BrFNaO₂P⁺: 643.0808, Found: 643.0803.

(5-bromo-5-(2-fluorophenyl)-3-(hydroxydiphenylmethyl)penta-1,3,4-trien-2-yl)di phenylphosphine oxide (3g)

White solids, *m.p.*: 155.3-157.0 °C (39.1 mg, 63% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.60 (m, 4H), 7.58-7.56 (m, 1H), 7.54-7.43 (m, 7H), 7.39-7.35 (m, 2H), 7.28-7.17 (m, 7H), 6.97-6.90 (m, 2H), 6.72-6.68 (m, 1H), 6.04 (d, J = 40.0 Hz, 1H), 5.44 (d, J = 20.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.1 (d, J = 7.3 Hz), 160.3, 157.8, 144.9 (d, J = 32.6 Hz), 138.4 (d, J = 91.8 Hz), 135.0 (d, J = 10.3 Hz), 132.3 (d, J = 2.9 Hz), 132.2 (d, J = 2.9 Hz), 132.1 (d, J = 2.2 Hz), 132.0 (d, J = 2.1 Hz), 130.7 (d, J = 1.5 Hz), 130.2 (d, J = 8.6 Hz), 129.2 (d, J = 1.8 Hz), 128.7 (d, J = 12.5 Hz), 128.5 (d, J = 12.4 Hz), 127.6 (d, J = 2.9 Hz), 127.4 (d, J = 23.1 Hz), 127.0 (d, J = 16.4 Hz), 123.9 (d, J = 3.7 Hz), 122.1 (d, J = 11.4 Hz), 117.1 (d, J = 7.5 Hz), 115.6 (d, J = 21.4 Hz), 87.3, 80.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.0 (s). ³¹P NMR (162 MHz, CDCl₃) δ 35.1 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₆H₂₇BrFNaO₂P⁺: 643.0808, Found: 643.0804.

(5-bromo-3-(hydroxydiphenylmethyl)-5-(4-(trifluoromethyl)phenyl)penta-1,3,4-t rien-2-yl)diphenylphosphine oxide (3h)

White solids, *m.p.*: 171.7-173.5 °C (55.6 mg, 83% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.67-7.63 (m, 4H), 7.57-7.51 (m, 3H), 7.47-7.45 (m, 3H), 7.43-7.40 (m, 2H), 7.34-7.31 (m, 2H), 7.27-7.20 (m, 5H), 7.16-7.13 (m, 2H), 7.08-7.05 (m, 1H), 6.82 (d, *J* = 10.0 Hz, 2H), 5.93 (d, *J* = 40.0 Hz, 1H), 5.36 (d, *J* = 20.0 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 202.9 (d, *J* = 6.4 Hz), 145.0 (d, *J* = 288.0 Hz), 138.3 (d, *J* = 92.1 Hz), 136.8, 134.1 (d, *J* = 10.2 Hz), 132.7 (d, *J* = 2.9 Hz), 132.4 (d, *J* = 2.9 Hz), 132.2 (d, *J* = 10.1 Hz), 131.9 (d, *J* = 10.0 Hz), 130.1 (d, *J* = 10.9 Hz), 129.8, 129.2 (d, *J* = 34.0 Hz), 128.8 (d, *J* = 12.6 Hz), 128.5 (d, *J* = 12.6 Hz), 128.1, 127.7 (d, *J* = 14.5 Hz), 127.3 (d, *J* = 33.0 Hz), 126.9 (d, *J* = 41.4 Hz), 124.8 (q, *J* = 3.8 Hz), 124.0 (d, *J* = 272.1 Hz), 119.1 (d, *J* = 6.7 Hz), 94.5, 80.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.5 (s). ³¹P NMR (202 MHz, CDCl₃) δ 36.3 (s). **HRMS (ESI):** ([M+Na]⁺) Calcd for C₃₇H₂₇BrF₃NaO₂P⁺: 693.0776, Found: 693.0769.

1-(4-(1-bromo-4-(diphenylphosphoryl)-3-(hydroxydiphenylmethyl)penta-1,2,4-tri en-1-yl)phenyl)ethan-1-one (3i)

White solids, *m.p.*: 167.5-168.2 °C (50.9 mg, 79% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.71-7.68 (m, 2H), 7.66-7.59 (m, 5H), 7.58-7.54 (m, 2H), 7.47-7.43 (m, 4H), 7.34-7.26 (m, 6H), 7.18-7.14 (m, 2H), 7.10-7.06 (m, 1H), 6.90 (d, J = 12.0 Hz, 2H), 5.96 (d, J = 40.0 Hz, 1H), 5.40 (d, J = 20.0 Hz, 1H), 2.57 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 203.1 (d, J = 6.6 Hz), 197.4, 145.9, 143.9, 138.8, 137.8 (d, J = 21.7 Hz), 136.3, 134.3 (d, J = 10.3 Hz), 132.4 (d, J = 18.2 Hz), 132.0 (d, J = 10.1 Hz), 131.9 (d, J = 10.1 Hz), 130.2, 129.4, 129.2, 128.8 (d, J = 12.5 Hz), 126.8 (d, J = 19.5 Hz), 119.2 (d, J = 6.8 Hz), 94.9, 80.8, 26.7. ³¹**P** NMR (162 MHz, CDCl₃) δ 35.3 (s). **HRMS (ESI):** ([M+H-H₂O]⁺) Calcd for C₃₈H₂₉BrO₂P⁺: 627.1083, Found: 627.1073.

(5-bromo-3-(hydroxydiphenylmethyl)-5-(4-nitrophenyl)penta-1,3,4-trien-2-yl)dip henylphosphine oxide (3j)

White solids, *m.p.*: 164.3-166.0 °C (45.3 mg, 70% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹H NMR (600 MHz, CDCl₃) δ 7.85-7.84 (m, 2H), 7.69-7.66 (m, 2H), 7.64-7.62 (m, 2H), 7.56-7.53 (m, 3H), 7.45-7.42 (m, 4H), 7.36-7.30 (m, 3H), 7.29-7.26 (m, 3H), 7.13 (t, J = 6.0 Hz, 2H), 7.06-7.04 (m, 1H), 6.90 (d, J = 6.0 Hz, 2H), 5.94 (d, J = 42.0 Hz, 1H), 5.39 (d, J = 18.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 203.5 (d, J = 6.5 Hz), 146.0, 145.3 (d, J = 542.8 Hz), 139.5, 137.9 (d, J = 89.6 Hz), 134.2 (d, J = 10.1 Hz), 132.5 (d, J = 36.6 Hz), 132.1 (d, J = 10.8 Hz), 131.9

(d, J = 9.8 Hz), 130.0, 129.2 (d, J = 27.6 Hz), 128.8 (d, J = 12.8 Hz), 128.5 (d, J = 12.2 Hz), 127.9 (d, J = 43.6 Hz), 127.6, 127.4 (d, J = 3.4 Hz), 127.2, 126.6, 123.0, 119.5, 93.6, 80.9. ³¹P NMR (243 MHz, CDCl₃) δ 35.5 (s). HRMS(ESI): ([M+H]⁺) Calcd for C₃₆H₂₈BrNO₄P⁺: 648.0934, Found: 648.0923.

(5-bromo-5-(3,5-dimethylphenyl)-3-(hydroxydiphenylmethyl)penta-1,3,4-trien-2yl)diphenylphosphine oxide (3k)

White solids, *m.p.*: 135.0-136.8 °C (54.8 mg, 87% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.73-7.70 (m, 2H), 7.67-7.63 (m, 4H), 7.60-7.56 (m, 1H), 7.53-7.47 (m, 5H), 7.39-7.36 (m, 1H), 7.33-7.27 (m, 4H), 7.24-7.20 (m, 2H), 7.16-7.13 (m, 1H), 6.81 (s, 1H), 6.44 (s, 2H), 6.00 (d, *J* = 40.0 Hz, 1H), 5.43 (d, *J* = 20.0 Hz, 1H), 2.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 202.4 (d, *J* = 7.0 Hz), 145.3 (d, *J* = 194.3 Hz), 139.2 (d, *J* = 91.3 Hz), 137.4, 134.1 (d, *J* = 10.7 Hz), 133.0, 132.4 (d, *J* = 2.8 Hz), 132.1, 132.0, 131.9 (d, *J* = 10.0 Hz), 130.3, 130.1, 129.4 (d, *J* = 40.7 Hz), 128.7, 128.4 (d, *J* = 7.1 Hz), 96.4, 80.6, 21.2. ³¹P NMR (162 MHz, CDCl₃) δ 35.0 (s). **HRMS (ESI):** ([M+Na]⁺) Calcd for C₃₈H₃₂BrNaO₂P⁺: 653.1216, Found: 653.1209.

(5-bromo-5-(3,5-dichlorophenyl)-3-(hydroxydiphenylmethyl)penta-1,3,4-trien-2yl)diphenylphosphine oxide (3l)

Yellow oil, (44.9 mg, 67% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.73-7.65 (m, 4H), 7.64-7.54 (m, 3H), 7.48-7.42 (m, 4H), 7.38-7.28 (m, 6H), 7.22-7.19 (m, 2H), 7.14-7.10 (m, 2H), 6.58 (d, J = 4.0 Hz, 2H), 5.92 (d, J = 40.0 Hz, 1H), 5.41 (d, J = 28.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.5 (d, J = 6.4 Hz), 146.2, 143.5, 138.2 (d, J = 92.1 Hz), 136.2, 134.4, 133.7 (d, J = 10.0 Hz), 132.6 (d, J = 2.9 Hz), 132.1 (d, J = 10.1 Hz), 131.7 (d, J = 10.1 Hz), 130.0, 128.9 (d, J = 3.8 Hz), 128.8 (d, J = 12.7 Hz), 128.5 (d, J = 12.5 Hz), 128.0 (d, J = 5.5 Hz), 127.7 (d, J = 27.1 Hz), 127.4 (d, J = 20.3 Hz), 126.6, 125.1, 119.4 (d, J = 6.5 Hz), 93.0 (d, J = 1.7 Hz), 80.8. ³¹P NMR (162 MHz, CDCl₃) δ 35.3 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₆H₂₆BrCl₂NaO₂P⁺: 693.0123, Found: 693.0115.

(5-bromo-3-(hydroxydiphenylmethyl)-5-(naphthalen-1-yl)penta-1,3,4-trien-2-yl) diphenylphosphine oxide (3m)

White solids, *m.p.*: 115.3-117.0 °C (32.6 mg, 50% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.81-7.74 (m, 2H), 7.72-7.67 (m, 2H), 7.59-7.49 (m, 7H), 7.48-7.43 (m, 2H), 7.38-7.29 (m, 7H), 7.25-7.22 (m, 2H), 7.19-7.11 (m, 4H), 6.65-6.62 (m, 1H), 5.92 (d, *J* = 40.0 Hz, 1H), 5.41 (d, *J* = 25.0 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 201.4, 145.2, 144.5, 139.8, 139.0, 134.9 (d, *J* = 10.6 Hz), 133.7, 132.5, 132.3, 132.2, 132.0 (d, *J* = 9.9 Hz), 130.3 (d, *J* = 12.6 Hz), 129.6, 129.4 (d, *J* = 10.1 Hz), 128.9 (d, *J* = 12.5 Hz), 128.5 (d, *J* = 12.4 Hz), 128.3, 128.0 (d, *J* = 14.6 Hz), 127.7 (d, *J* = 13.6 Hz), 127.4, 127.1 (d, *J* = 21.9 Hz), 126.3 (d, *J* = 20.5 Hz), 125.7, 125.2, 117.1 (d, *J* = 7.4 Hz), 90.3, 80.7. ³¹**P NMR** (202 MHz, CDCl₃) δ 35.3 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₄₀H₃₁BrO₂P⁺: 653.1240, Found: 653.1231.

(5-bromo-3-(hydroxydiphenylmethyl)undeca-1,3,4-trien-2-yl)diphenylphosphine oxide (3n)

White solids, *m.p.*: 126.0-127.3 °C (50.6 mg, 83% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.74-7.70 (m, 2H), 7.58-7.51 (m, 5H), 7.49-7.44 (m, 2H), 7.43-7.39 (m, 2H), 7.38-7.36 (m, 2H), 7.25-7.18 (m, 5H), 7.17-7.13 (m, 2H), 5.87 (d, J = 40.0 Hz, 1H), 5.33 (d, J = 20.0 Hz, 1H), 1.81-1.71 (m, 2H), 1.23-1.15 (m, 2H), 1.09-1.03 (m, 2H), 0.95-0.88 (m, 2H), 0.86-0.84 (m, 4H), 0.77-0.68 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 200.2 (d, J = 6.9 Hz), 146.4, 144.3, 139.3, 138.6, 134.2 (d, J = 10.6 Hz), 132.4 (dd, J = 5.4, 2.8 Hz), 132.1 (dd, J = 12.9, 9.9 Hz), 130.4 (d, J = 34.2 Hz), 129.6 (d, J = 34.7 Hz), 128.7 (dd, J = 12.4, 9.0 Hz), 127.8 (d, J = 4.4 Hz), 127.4 (d, J = 32.5 Hz), 127.0 (d, J = 23.3 Hz), 116.8 (d, J = 6.9 Hz), 97.1, 80.5, 37.4, 31.5, 28.3, 27.4, 22.5, 14.2. ³¹P NMR (202 MHz, CDCl₃) δ 35.5 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₆H₃₆BrNaO₂P⁺: 633.1529, Found: 633.1457.

(3-(bis(4-fluorophenyl)(hydroxy)methyl)-5-bromo-5-phenylpenta-1,3,4-trien-2-yl)diphenylphosphine oxide (30)

White solids, *m.p.*: 183.8-184.4 °C (33.8 mg, 53% yield). TLC (R_f = 0.25, petroleum ether/ethyl acetate=5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.65 (m, 2H), 7.62-7.57 (m, 4H), 7.56-7.48 (m, 3H), 7.45-7.33 (m, 5H), 7.20-7.10 (m, 3H), 6.95 (t, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.83 (t, *J* = 8.0 Hz, 2H), 5.97 (d, *J* = 40.0 Hz, 1H), 5.40 (d, *J* = 20.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.3 (d, *J* = 7.1 Hz), 163.1, 160.7 (d, *J* = 17.9 Hz), 140.8 (d, *J* = 175.3 Hz), 138.9 (d, *J* = 90.9 Hz), 134.5 (d, *J* = 10.7 Hz), 132.7, 132.5 (d, *J* = 9.8 Hz), 132.0 (d, *J* = 3.0 Hz), 131.9 (d, *J* = 3.1 Hz), 130.1, 129.4 (d, *J* = 8.1 Hz), 128.8 (d, *J* = 12.5 Hz), 128.7, 128.6 (d, *J* = 6.2 Hz), 128.5 (d, *J* = 4.5 Hz), 127.4 (d, *J* = 131.4 Hz), 119.1, 114.6 (d, *J* = 21.3 Hz), 114.3 (d, *J* = 21.4 Hz), 96.2, 79.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.7 (s), -116.0 (s). ³¹P NMR (162 MHz, CDCl₃) δ 35.3 (s). HRMS (ESI): ([M+Na]⁺) Calcd for C₃₆H₂₆BrF₂NaO₂P⁺: 661.0714, Found: 661.0707.

(1-(3-bromo-1-hydroxy-2,4-diphenyl-1,2-dihydronaphthalen-2-yl)ethyl)diphenyl phosphine oxide (4a)

White solids, *m.p.*: 231.9-232.3 °C (79.7 mg, 66% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹**H NMR** (500 MHz, CDCl₃) δ 8.09 (s, 1H), 8.02-7.99 (m, 1H), 7.88-7.84 (m, 2H), 7.60-7.58 (m, 2H), 7.49-7.46 (m, 3H), 7.38-7.32 (m, 5H), 7.30-7.27 (m, 1H), 7.14-7.11 (m, 1H), 7.05-6.99 (m, 4H), 6.92-6.88 (m, 1H), 6.64-6.58 (m, 3H), 6.28 (d, J = 10.0 Hz, 1H), 5.76 (s, 1H), 4.15-4.09 (m, 1H), 1.57 (dd, J = 5.0 Hz, 15Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.4 (d, J = 75.9 Hz), 138.7 (d, J = 97.1 Hz), 134.3 (d, J = 14.9 Hz), 132.9 (d, J = 99.8 Hz), 132.4, 131.8 (d, J = 98.7 Hz), 131.7 (d, J = 2.8 Hz), 130.8 (d, J = 4.4 Hz), 130.7 (d, J = 5.6 Hz), 130.6 (d, J = 2.9 Hz), 130.0, 129.0 (d, J = 11.5 Hz), 128.9, 128.8 (d, J = 7.4 Hz), 128.4 (d, J = 41.6 Hz), 127.9 (d, J = 12.1 Hz), 127.5 (d, J = 33.8 Hz), 127.0, 126.4 (d, J = 2.8 Hz), 124.9, 70.9, 57.8, 43.3 (d, J = 68.2 Hz), 14.7. ³¹**P NMR** (202 MHz, CDCl₃) δ 39.6 (s). **HRMS (ESI):** ([M+Na]⁺) Calcd for C₃₆H₃₀BrNaO₂P⁺: 627.1059, Found: 627.1049.

3-bromo-2-(1-(diphenylphosphorothioyl)vinyl)-2,4-diphenylnaphthalen-1(2H)-on e (4b)

White solids, *m.p.*: 228.2-230.0 °C (53.0 mg, 43% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=3:1). ¹H NMR (500 MHz, CDCl₃) δ 8.14-8.10 (m, 2H), 7.84-7.82 (m, 1H), 7.74-7.67 (m, 4H), 7.62-7.54 (m, 6H), 7.51-7.47 (m, 2H), 7.41-7.37 (m, 1H), 7.35-7.29 (m, 5H), 7.28-7.25 (m, 1H), 7.23-7.20 (m, 1H), 6.77 (d, J = 20.0 Hz, 1H), 6.01 (d, J = 20.0 Hz, 1H), 5.94 (d, J = 40.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 195.6, 147.5 (d, J = 74.6 Hz), 140.1 (d, J = 174.5 Hz), 138.7 (d, J = 7.4 Hz), 138.3, 136.3 (d, J = 21.8 Hz), 136.0 (d, J = 55.6 Hz), 133.9, 133.1 (d, J = 86.3 Hz), 132.4 (d, J = 10.4 Hz), 132.1 (d, J = 10.7 Hz), 131.4 (d, J = 3.0 Hz), 131.2 (d, J = 3.0 Hz), 131.0, 129.4 (d, J = 14.9 Hz), 129.2, 129.0, 128.7, 128.5 (d, J = 9.8 Hz), 128.4 (d, J = 10.4 Hz), 129.4 (d, J = 14.9 Hz), 129.2, 129.0, 128.7, 128.5 (d, J = 9.8 Hz), 128.4 (d, J = 10.4 Hz), 129.4 (d, J = 14.9 Hz), 129.2, 129.0, 128.7, 128.5 (d, J = 9.8 Hz), 128.4 (d, J = 10.4 Hz), 129.4 (d, J = 14.9 Hz), 129.2, 129.0, 128.7, 128.5 (d, J = 9.8 Hz), 128.4 (d, J = 10.4 Hz), 129.4 (d, J = 14.9 Hz), 129.2, 129.0, 128.7, 128.5 (d, J = 9.8 Hz), 128.4 (d, J = 10.4 Hz), 129.4 (d, J = 14.9 Hz), 129.2, 129.0, 128.7, 128.5 (d, J = 9.8 Hz), 128.4 (d, J = 10.4 Hz), 129.4 (d, J = 10.4 Hz), 129.4

5.4 Hz), 128.3 (d, J = 5.4 Hz), 128.0, 127.7 (d, J = 2.9 Hz), 70.8 (d, J = 11.9 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 46.7 (s). HRMS (ESI): ([M+H]⁺) Calcd for C₃₆H₂₇BrOPS⁺: 617.0698, Found: 617.0693.

(3-(hydroxydiphenylmethyl)-5-phenyl-5-(p-tolyl)penta-1,3,4-trien-2-yl)diphenylp hosphine oxide (4c)

White solids, *m.p.*: 93.2-95.2 °C (65.0 mg, 54% yield). TLC ($R_f = 0.25$, petroleum ether/ethyl acetate=5:1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.59-7.55 (m, 4H), 7.45-7.41 (m, 4H), 7.36-7.32 (m, 2H), 7.28-7.23 (m, 4H), 7.20-7.15 (m, 2H), 7.14-7.10 (m, 7H), 6.96 (d, J = 10.0 Hz, 2H), 6.70 (d, J = 5.0 Hz, 2H), 6.63 (d, J = 10.0 Hz, 2H), 5.96 (d, J = 40.0 Hz, 1H), 5.39 (d, J = 20.0 Hz, 1H), 2.33 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 206.1, 145.7 (d, J = 4.3 Hz), 139.7, 137.1, 136.0, 134.2, 133.5 (d, J = 11.5 Hz), 132.9, 132.2, 132.1, 132.0 (d, J = 3.9 Hz), 130.1 (d, J = 17.3 Hz), 129.2 (d, J = 17.9 Hz), 128.9, 128.5, 128.4, 128.3 (d, J = 8.0 Hz), 128.1, 128.1, 127.6 (d, J = 3.9 Hz), 127.4 (d, J = 3.3 Hz), 127.3, 126.8, 112.4, 81.1, 21.3. ³¹**P** NMR (202 MHz, CDCl₃) δ 36.5 (s). **HRMS (ESI):** ([M+H]⁺) Calcd for C₄₃H₃₆O₂P⁺: 615.2447, Found: 615.2433.

9 ¹H-NMR, ¹³C-NMR, ³¹P-NMR, ¹⁹F-NMR, and HRMS spectra for Substrates and Products

Compound 1c (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃) of 1c

Compound 1d (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃) of 1d

Compound 1e (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of **1e**

Compound 1f (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃) of **1f**

Compound 11 (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃; ¹⁹F NMR, 376 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of **11**

 $^{31}\mathrm{P}$ NMR (162 MHz, CDCl₃) of 11

¹⁹F NMR (376 MHz, CDCl₃) of **11**

Compound 1m (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of 1m

³¹P NMR (162 MHz, CDCl₃) of **1m**

Spectrum from 19.wiff (sample 1) - Sample019, +TOF MS (100 - 1000) from 0.194 min

Compound 1p (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of 1p

³¹P NMR (162 MHz, CDCl₃) of **1p**

Compound 1q (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃) of 1q

Compound 1r (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

 1 H NMR (400 MHz, CDCl₃) of 1r

³¹P NMR (162 MHz, CDCl₃) of 1r

Compound 1s (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of 1s

Spectrum from 21.wiff (sample 1) - Sample021, +TOF MS (100 - 1000) from 0.146 min

Compound 1v (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of 1v

 ^{31}P NMR (162 MHz, CDCl₃) of 1v

Compound 1w (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

Compound 1x (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of 1x

³¹P NMR (162 MHz, CDCl₃) of **1**x

Compound 1y (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

 1 H NMR (600 MHz, CDCl₃) of 1y

³¹P NMR (243 MHz, CDCl₃) of 1y

¹H NMR (600 MHz, CDCl₃) of **1z**

³¹P NMR (243 MHz, CDCl₃) of 1z

Compound 1aa (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃) of 1aa

³¹P NMR (243 MHz, CDCl₃) of 1aa

Compound 2a (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

³¹P NMR (243 MHz, CDCl₃) of **2a**

Compound 2b (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

³¹P NMR (243 MHz, CDCl₃) of **2b**

Compound 2c (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃) of **2c**

Compound 2d (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of 2d

Compound 2e (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of 2e

³¹P NMR (162 MHz, CDCl₃) of 2e

Compound 2f (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz,

¹H NMR (600 MHz, CDCl₃) of **2f**

³¹P NMR (243 MHz, CDCl₃) of **2f**
20201202-20 #17 RT: 0.26 AV: 1 NL: 1.09E6 T: FTMS {1,1} + p ESI Full ms [100.00-1200.00]

Compound 2g (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

Compound 2h (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

111

³¹P NMR (243 MHz, CDCl₃) of **2h**

Compound 2i (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃; ¹⁹F NMR, 376 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of **2i**

¹³C NMR (101 MHz, CDCl₃) of **2j**

¹³C NMR (101 MHz, CDCl₃) of 2k

Compound 2l (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃; ¹⁹F NMR, 471 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃) of **2l**

Compound 2m (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

122

³¹P NMR (202 MHz, CDCl₃) of **2m**

20210609-3 #57 RT: 0.90 AV: 1 NL: 4.01E5 T: FTMS {1,1} + p ESI Full ms [100.00-1000.00]

Compound 20 (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of 20

Compound 2p (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

20210522-8 #27 RT: 0.32 AV: 1 NL: 3.78E6 T: FTMS {1,1} + p APCI corona Full ms [100.00-1000.00]

Compound 2q (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

20210118-17 #27 RT: 0.35 AV: 1 NL: 5.31E4 T: FTMS {1,1} + p ESI Full ms [100.00-1000.00]

Compound 2r (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of **2r**

Compound 2s and 2s' (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of 2s and 2s'

Compound 2t (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) of **2t**

³¹P NMR (162 MHz, CDCl₃) of 2t

20201202-25 #11 RT: 0.16 AV: 1 NL: 1.25E6 T: FTMS {1,1} + p ESI Full ms [100.00-1200.00]

Compound 2u (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃; ¹⁹F NMR, 471 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of **2u**

¹⁹F NMR (471 MHz, CDCl₃) of **2u**

Compound 2v (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

Compound 2w (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of **2w**

Compound 2x (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of 2x

Compound 2y (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

 13 C NMR (101 MHz, CDCl₃) of **2**y

Compound 2z (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

 $\frac{1}{101} \frac{1}{101} \frac{1}{1011} \frac{1}{1011}$

Compound 2aa (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃) of 2aa

Compound 3a (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz,

¹³C NMR (101 MHz, CDCl₃) of **3a**

Compound 3b (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

Compound 3c (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃) of **3c**

Compound 3d (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of 3d

Compound 3e (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃; ¹⁹F NMR, 376 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of **3e**

Compound 3f (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃; ¹⁹F NMR, 565 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃) of **3f**

¹⁹F NMR (565 MHz, CDCl₃) of **3f**

Compound 3g (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃; ¹⁹F NMR, 376 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of **3g**

³¹P NMR (162 MHz, CDCl₃) of **3g**

Compound 3h (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃; ¹⁹F NMR, 471 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of **3h**

¹⁹F NMR (471 MHz, CDCl₃) of **3h**

Compound 3i (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

Compound 3j (¹H NMR, 600 MHz, CDCl₃; ¹³C NMR, 151 MHz, CDCl₃; ³¹P NMR, 243 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃) of **3j**

Compound 3k (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of 3k

Compound 3l (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of **3**l

Compound 3m (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

 ^{13}C NMR (126 MHz, CDCl₃) of 3m

Compound 3n (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

 ^{13}C NMR (126 MHz, CDCl₃) of 3n

 ^{31}P NMR (202 MHz, CDCl₃) of 3n

Spectrum from 1.wiff (sample 1) - Sample001, +TOF MS (100 - 1000) from 0.352 min

Compound 30 (¹H NMR, 400 MHz, CDCl₃; ¹³C NMR, 101 MHz, CDCl₃; ³¹P NMR, 162 MHz, CDCl₃; ¹⁹F NMR, 376 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃) of **30**

³¹P NMR (162 MHz, CDCl₃) of **30**

Compound 4a (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of 4a

³¹P NMR (202 MHz, CDCl₃) of 4a

Compound 4b (1H NMR, 500 MHz, CDCl3; 13C NMR, 126 MHz, CDCl3; 31P NMR, 202 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of **4b**

³¹P NMR (202 MHz, CDCl₃) of **4b**

20210624-3 #59 RT: 0.80 AV: 1 NL: 2.06E5 T: FTMS {1,1} + p ESI Full ms [100.00-1000.00]

Compound 4c (¹H NMR, 500 MHz, CDCl₃; ¹³C NMR, 126 MHz, CDCl₃; ³¹P NMR, 202 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) of 4c

