Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Enantiopure ferrocene-1,2-disulfoxides: synthesis and reactivity

Min Wen, William Erb,* Florence Mongin, Marielle Blot and Thierry Roisnel

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France.

E-mail: william.erb@univ-rennes1.fr

Table of Contents

Experimental Section

	A) Compound Synthesis	S2
	B) X-ray Crystallography	S 14
	C) NMR Spectra	S 16
	D) Selected NMR NOESY correlations	S112
	E) HPLC Data	S114
References		S122

Experimental Section

A) Compound Synthesis

General

All reactions were carried out in Schlenk tubes under a dry argon atmosphere. THF was freshly distilled from sodium-benzophenone. All alkyllithiums were titrated before use.¹ H-TMP was distilled over CaH₂ under vacuum and stored over KOH pellets. rt refers to room temperature (25 °C). Column chromatography separations were achieved on silica gel (40-63 μ m). All Thin Layer Chromatographies (TLC) were performed on aluminium backed plates pre-coated with silica gel (Merck, Silica Gel 60 F254). They were visualized by exposure to UV light. Melting points were measured on a Kofler apparatus. IR spectra were taken on a Perkin-Elmer Spectrum 100 spectrometer. ¹H and ¹³C{¹H} Nuclear Magnetic Resonance (NMR) spectra were recorded either on a Bruker Avance III HD at 500 MHz and 126 MHz respectively, or on a Bruker Avance III spectrometer at 300 MHz and 75.4 MHz respectively. ¹H chemical shifts (δ) are given in ppm relative to the solvent residual peak and ¹³C chemical shifts are relative to the central peak of the solvent signal.² Cp refers to the unsubstituted cyclopentadienyl ring of ferrocene. Optical rotations were determined on a Perkin Elmer 341 polarimeter (589 nm; 20 °C); the concentrations (*c*) are given in g/100 mL CHCl₃.

Safety considerations: Due to its high pyrophoric character, *tert*-butyllithium has to be used only by well-trained people under anhydrous conditions and nitrogen or argon atmosphere. Due to the inherent dangers of using cryogenic temperatures, experiments should be performed by well-trained people.

Procedures and analyses of the compounds

(S)-S-tert-Butylferrocenesulfoxide (S-FcSOtBu) was prepared as reported previously, by reacting ferrocenyllithium³ with (S,S)-2,2-diphenyl-1,2-dihydroxypropyl 2-*O-tert*-butylsulfinate.⁴ To ferrocene (0.41 g, 2.2 mmol) in THF (3.3 mL) at 0 °C was added dropwise a 1.6 M pentane solution of *t*BuLi (1.1 mL, 1.8 mmol) in order to generate a solution of ferrocenvllithium.³ After 10 min at 0 °C, this solution was cannulated onto a solution of (S,S)-2,2-diphenyl-1,2-dihydroxypropyl 2-O-tertbutylsulfinate^{5, 6} (0.28 g, 0.83 mmol) in THF (1 mL) at rt. The reaction was checked by TLC; when conversion was over, the reaction mixture was quenched by addition of water (10 mL). Extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product. Purification by chromatography over silica gel (eluent: petroleum ether-EtOAc 80:20; Rf = 0.18) and recrystallization from 1:1 Et₂O-hexane led to S-FcSOtBu in 70% yield (0.17 g) and >99% ee as a yellow solid: mp 160-162 °C (lit.⁴ 156-157 °C); IR (ATR) v 811, 1009, 1103, 1169, 1183, 1255, 1294, 1360, 1384, 1454, 1597, 1678, 2920, 3074 cm⁻¹; ¹H NMR (CDCl₃) δ 1.11 (s, 9H, *t*Bu), 4.35 (td, 1H, *J* = 2.5 and 1.3 Hz, H4), 4.37 (s, 5H, Cp), 4.39-4.41 (m, 2H, H3 and H5), 4.69 (dt, 1H, J = 2.6 and 1.4 Hz, H2) ppm; ¹³C{¹H} NMR (CDCl₃) δ 22.9 (3CH₃, CMe₃), 55.1 (C, CMe₃), 65.5 (CH, C2), 69.5 (CH, C3), 69.8 (CH, C5), 70.1 (CH, C4), 70.2 (5CH, Cp), 86.6 (C, C1, C-SOtBu) ppm; [a]_D +319 (c 1) (lit.⁴ +339 (c 0.8, CHCl₃)). Starting from ferrocene (73 g, 391 mmol) and (S,S)-2,2-diphenyl-1,2-dihydroxypropyl 2-O-tertbutylsulfinate (49 g, 148 mmol), S-FcSOtBu was isolated in 79% yield (34 g).

(*R*)-*S*-tert-Butylferrocenesulfoxide (*R*-FcSOtBu) was prepared by modifying a reported procedure.⁷ A 0.26 M THF solution of *tert*-butylmagnesium bromide (3.8 mL) was added to a solution of (R_C , S_S)-5,5-dimethyl-4-phenyl-*N*-tosyl-1,2,3-oxathiazolidine-2-oxide⁷ (0.385 g, 1.0 mmol) in THF (3 mL) at –78 °C. The mixture was stirred for 1 h at this temperature, and then for 1 h at rt in order to allow the sulfinate to be formed. In a second Schlenk containing ferrocene (0.28 g, 1.5 mmol) and potassium *tert*-butoxide (56 mg, 0.50 mmol) in THF (4.5 mL), ferrocenyllithium was prepared³ by adding dropwise at –78 °C a 1.6 M pentane solution of *t*BuLi (1.25 mL, 2.0 mmol). The resulting mixture was stirred at –78 °C for 15 min, warmed to rt and stirred at rt for 1 h. The formed ferrocenyllithium was

next cannulated onto the sulfinate at -78 °C. After stirring at -78 °C for 15 min and at rt for 1 h, the reaction was quenched by addition of water (10 mL). Extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product. Purification by chromatography over silica gel (eluent: petroleum ether-EtOAc 60:40; Rf = 0.35) gave *R***-FcSOtBu** in 60% yield (0.175 g) and 97% ee as a yellow solid. Its analyses were comparable to the ones of (S)-S-tert-butylferrocenesulfoxide. ¹H NMR (CDCl₃) δ 1.10 (s, 9H, tBu), 4.34 tBu (td, 1H, J = 2.5 and 1.3 Hz, H4), 4.36 (s, 5H, Cp), 4.39-4.40 (m, 2H, H3 and H5), 4.68

(dt, 1H, J = 2.6 and 1.4 Hz, H2) ppm, similar to that reported previously.⁸ [α]_D -320 (c 1) (lit.⁹ -355 (*c* 0.5, CHCl₃)).

(S)-S-(4-Tolyl)ferrocenesulfoxide (S-FcSO-*p*-Tol) was prepared as follows.¹⁰ To ferrocene (1.5 g, 8.0 mmol) and tBuOK (0.11 g, 0.96 mmol) in THF (67 mL) at -50 °C was added dropwise a 1.6 M pentane solution of tBuLi (10 mL, 16 mmol). After 1.5 h at this temperature, the reaction mixture was stirred for another 1 h at rt. The red solution was cooled to -55 °C and cannulated dropwise into a solution of (1R, 2S, 5R)-(-)-menthyl (S)-4-toluenesulfinate¹¹ (2.36 g, 8.0 mmol) in THF (40 mL). After 1 h stirring at this temperature, the reaction mixture was warmed to rt. Addition of water (20 mL), extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product. This was purified by chromatography over silica gel (eluent: petroleum ether-EtOAc 60:40; Rf = 0.40) and next recrystallized from 50:50 heptane-EtOAc to afford **S-FcSO-***p***-Tol** in 48% yield (1.25 g) and >99% ee as a yellow solid: mp 148-150 °C (lit.¹² 142-144 °C); IR (ATR) v 704, 808, 1045, 1082, 1107, 1159, 1402, 1492, 2977 cm⁻¹; ¹H NMR (CDCl₃) δ 2.37 (s, 3H, Me), 4.32 (td, 1H, J = 2.4 and 1.3 Hz, H4), 4.35-4.38 (m, 2H, H3 and H5), 4.37 (s, 5H, Cp), 4.61 (dt, 1H, J = 2.6 and 1.4 Hz, H2), 7.25 (d, 2H, J = 8.2 Hz, H3' and H5'), 7.52 (d, 2H, J = 8.2 Hz, H2' and H6') ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) $\delta 21.5$ (CH₃, Me), 65.4 (CH, C2), 68.0 (CH, C3 or C5), 70.0 (CH, C3, C4 or C5), 70.0 (5CH, Cp), 70.1 (CH, C3, C4 or C5), 94.8 (C, C1, C-SOtolyl), 124.5 (2CH, C2' and C6'), 129.8 (2CH, C3' and ō C5'), 141.1 (C, C4'), 143.1 (C, C1') ppm; $[\alpha]_D = +319$ (c 1) (lit.¹³ +305 (c 0.5, CHCl₃). The ¹H NMR data are similar to those reported previously.⁸

General procedure A: Deprotolithiation of (R)- or (S)-S-tert-butylferrocenesulfoxide (R-FcSOtBu or S-FcSOtBu) using tBuLi followed by electrophilic trapping.¹⁴ To a solution of the enantiopure S-tert-butylferrocenesulfoxide (0.29 g, 1.0 mmol) in THF (12.5 mL) at -80 °C was added dropwise a 1.6 M pentane solution of tBuLi (0.94 mL, 1.5 mmol), and the reaction mixture was stirred at this temperature for 1.5 h before addition of the electrophile (1.5 mmol unless otherwise specified; either pure for liquids or in solution for solids, as indicated below). The mixture was stirred at -80 °C for 30 min before being warmed to rt. Addition of 1 M HCl (5 mL), extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent given in the product description).

(R,R)-S,S'-Di-tert-butylferrocene-1,2-disulfoxide (R,R-1) was prepared by adapting the general procedure A to (R)-S-tert-butylferrocenesulfoxide (R-FcSOtBu) and using (R)-S-tert-butyl-tertbutanethiosulfinate¹⁵ (0.29 g) as the electrophile in THF (1.5 mL). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.11) in 46% yield (0.12 g) as a brownish-yellow solid: mp 156-158 °C; IR (ATR) v 822, 1044, 1108, 1169, 1361, 1412, 1457, 2964 cm⁻¹; ¹H NMR (CDCl₃) δ 1.26 (s, 9H, tBu), 1.37 (s, 9H, *t*Bu), 4.53 (s, 5H, Cp), 4.60 (dd, 1H, *J* = 2.6 and 1.4 Hz, H3), 4.64 (t, 1H, *J* = 2.7 Hz, H4), 4.96 (dd, 1H, J = 2.6 and 1.4 Hz, H5) ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) $\delta 24.2$ (3CH₃, CMe₃), 24.3 (3CH₃, CMe₃), 57.3 (C, CMe₃), 57.4 (C, CMe₃), 67.9 (CH, C5), 68.8

(CH, C3), 71.2 (CH, C4), 72.9 (5CH, Cp), 92.2 (C, C-SOtBu), 92.5 (C, C-SOtBu) ppm; $[\alpha]_D$ -126 (c 1). Anal. Calcd for C₁₈H₂₆FeO₂S₂ (394.37): C, 54.82; H, 6.65; S, 16.26. Found: C, 54.76; H, 6.90; S, 16.58%.

 (S,S,R_P) -*S-tert*-Butyl-*S*'-tolylferrocene-1,2-disulfoxide (S,S,R_P-2) was prepared by adapting the general procedure A to (S)-*S-tert*-butylferrocenesulfoxide (S-FcSOtBu) and using (1R,2S,5R)-(-)-menthyl (S)-4-toluenesulfinate (0.44 g) in THF (1.5 mL). It was isolated (eluent: petroleum ether-EtOAc 40:60; Rf = 0.22) in 88% yield (0.38 g) as a brownish-yellow solid: mp 192-194 °C; IR (ATR) v 705, 808, 822, 1012, 1043, 1082, 1107, 1152, 1183, 1361, 1410, 1451, 1594, 2983, 3518 cm⁻¹; ¹H NMR (CDCl₃) δ 0.79 (s, 9H, *t*Bu), 2.33 (s, 3H, Me), 4.46 (dd, 1H, J = 2.2 and 1.6 Hz, H5), 4.59 (s, 5H, Cp), 4.59-4.60 (m, 1H, H4), 5.27 (dd, 1H, J = 2.3 and 1.5 Hz, H3), 7.17 (d, 2H, J = 8.0 Hz, H3' and H5'), 7.66 (d, 2H, J = 8.1 Hz, H2' and H6') ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 21.5 (CH₃, Me), 22.9 (3CH₃, *CMe*₃), 56.9 (C, *CI*), *C*-SOtBu), 95.1 (C, C2, *C*-SOtolyl), 127.2 (2CH, C2' and C6'), 129.5 (2CH, C3' and C5'), 141.5 (C, C4', *C*-Me), 145.1 (C, C1') ppm; [α]_D +291 (*c* 1). Anal. Calcd for C₂₁H₂₄FeO₂S₂ (428.39): C, 58.88; H, 5.65; S, 14.97. Found: C, 58.43; H, 5.36; S, 14.49%.

 (R,R_P) -*S-tert*-Butyl-2-(phenylthio)ferrocenesulfoxide (R,R_P -4) was prepared by adapting the general procedure A to 1.9 mmol of (R)-*S-tert*-butylferrocenesulfoxide (R-FcSOtBu; 0.56 g) and using PhSSPh (0.63 g) in THF (4 mL). It was isolated (eluent: petroleum ether-EtOAc 80:20; Rf = 0.14) in 70% yield (0.54 g) as a yellow solid: mp 164-166 °C; IR (ATR) ν 735, 823, 1033, 1106, 1146, 1181, 1362, 1437, 1580, 2959 cm⁻¹; ¹H NMR (CDCl₃) δ 1.18 (s, 9H, *t*Bu), 4.44 (t, 1H, J = 2.6 Hz, H4), 4.48 (s, 5H, Cp), 4.49 (dd, 1H, J = 2.6 and 1.5 Hz, H5), 4.52 (dd, 1H, J = 2.4 and 1.5 Hz, H3), 7.11-7.15

(m, 1H, H4'), 7.21-7.24 (m, 4H, H2', H3', H5' and H6') ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 23.9 (3CH₃, *CMe*₃), 56.5 (C, *C*Me₃), 70.6 (CH, C4), 72.2 (CH, C5), 72.3 (5CH, Cp), 77.1 (CH, C3), 80.0 (C, C1 or C2), 84.2 (C, C1 or C2), 125.7 (CH, C4'), 128.1 (2CH, Ph), 128.9 (2CH, Ph), 138.7 (C, C1') ppm; [α]_D -298 (*c* 0.4). Anal. Calcd for C₂₀H₂₂FeOS₂ (398.36): C, 60.30; H, 5.57; S, 16.10. Found: C, 60.14; H, 5.62; S, 15.77%.

(*S*,*S*_P)-*S*-*tert*-Butyl-2-(phenylthio)ferrocenesulfoxide (*S*,*S*_P-4) was prepared by adapting the general procedure A to 1.8 mmol of (*S*)-*S*-*tert*-butylferrocenesulfoxide (*S*-**FcSOtBu**; 0.53 g) and using PhSSPh (0.60 g) in THF (4 mL). It was isolated (eluent: petroleum ether-EtOAc 80:20; Rf = 0.14) in 82% yield (0.60 g) as a yellow solid: mp 164-166 °C; IR (ATR) ν 742, 753, 822, 1044, 1182, 1476, 1579, 2953 cm⁻¹; ¹H NMR (CDCl₃) δ 1.18 (s, 9H, *t*Bu), 4.44 (t, 1H, *J* = 2.6 Hz, H4), 4.48 (s, 5H, Cp), 4.49 (dd, 1H, *J* = 2.6 and 1.5 Hz, H5), 4.52 (dd, 1H, *J* = 2.4 and 1.5 Hz, H3), 7.11-7.15 (m, 1H, H4'), 7.21-7.24 (m, 4H, H2', H3', H5' and H6') ppm; ¹³C{¹H} NMR (CDCl₃) δ 23.9 (3CH₃,

CMe₃), 56.5 (C, CMe₃), 70.6 (CH, C4), 72.2 (CH, C5), 72.3 (5CH, Cp), 77.1 (CH, C3), 80.0 (C, C1 or C2), 84.2 (C, C1 or C2), 125.7 (CH, C4'), 128.1 (2CH, Ph), 128.9 (2CH, Ph), 138.7 (C, C1') ppm; $[\alpha]_D$ +683 (c 1). Anal. Calcd for C₂₀H₂₂FeOS₂ (398.36): C, 60.30; H, 5.57; S, 16.10. Found: C, 60.12; H, 5.13; S, 15.68%.

(*S*)-*S*-*tert*-Butyl-2,5-di(phenylthio)ferrocenesulfoxide (*S*-4') was similarly isolated (eluent: petroleum ether-EtOAc 80:20; Rf = 0.28) in 9% yield (85 mg) as an orange oil: IR (ATR) v 736, 826, 892, 958, 1024, 1037, 1081, 1108, 1173, 1215, 1363, 1439, 1477, 1582, 1703, 2962 cm⁻¹; ¹H NMR (CDCl₃) δ

1.14 (s, 9H, *t*Bu), 4.53 (s, 5H, Cp), 4.62 (d, 1H, J = 2.6 Hz, H3 or H4), 4.74 (d, 1H, J = 2.6 Hz, H3 or H4), 7.11-7.17 (m, 3H, Ar), 7.19-7.24 (m, 3H, Ar), 7.29-7.30 (m, 4H, Ar) ppm; ¹³C{¹H} NMR (CDCl₃) δ 24.4 (3CH₃, *CMe*₃), 58.1 (C, *CMe*₃), 74.5 (5CH, Cp), 76.8 (CH, C3 or C4), 78.4 (CH, C3 or C4), 81.9 (C, C1 or C2 or C5), 83.7 (C, C1 or C2 or C5), 87.3 (C, C1 or C2 or C5), 125.9 (C4' or C4"), 126.4 (C4' or C4"), 126.9, 129.0, 129.1 and 129.2 (4 x 2CH, C2'/C6', C3'/C5', C2"/C6" and C3"/C5"),

137.7 (C, C1' or C1"), 138.4 (C, C1' or C1") ppm; [α]_D +189 (*c* 0.5). Anal. Calcd for C₂₆H₂₆FeOS₃ (506.52): C, 61.65; H, 5.17; S, 18.99. Found: C, 61.42; H, 5.11; S, 19.05%.

(S,S)-S,S'-Di(4-tolyl)ferrocene-1,2-disulfoxide (S,S-3) was prepared as follows.¹⁶ To a solution of (S)-S-(4-tolyl)ferrocenesulfoxide (S-FcSO-p-Tol; 0.27 g, 0.83 mmol) in THF (2 mL) at -80 °C was added dropwise a solution of LiTMP [prepared by adding a 1.4 M hexane solution of *n*BuLi (0.77 mL, 1.1 mmol) to 2,2,6,6-tetramethylpiperidine (0.20 mL, 1.2 mmol) in THF (1 mL) at -15 °C] cooled at -80 °C. The reaction mixture was stirred at this temperature for 30 min before addition of (1R, 2S, 5R)-(-)-menthyl (S)-4-toluenesulfinate (0.32 g, 1.1 mmol) in THF (1 mL). The mixture was stirred at -80 °C for 1 h before being warmed to rt. Addition of water (5 mL), extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent: petroleum ether-EtOAc 40:60; Rf = 0.25). (S,S)-S,S'-di(4-tolyl)ferrocene-1,2-disulfoxide (S,S-3) was isolated in 65% yield (0.25 g) as a brownish-yellow solid: mp 222-224 °C; IR (ATR) v772, 828, 849, 981, 1045, 1067, 1155, 1184, 1323, 1413, 1616, 2975 cm⁻¹; ¹H NMR (CDCl₃) δ2.31 (s, 3H, C₂-SOC₆H₄Me), 2.33 (s, 3H, C₁-SOC₆H₄Me), 4.21 (dd, 1H, J = 2.4 and 1.5 Hz, H5), 4.47 (t, 1H, J = 2.7 Hz, H4), 4.55 (s, 5H, Cp), 4.91 (dd, 1H, J = 2.4 and 1.4 Hz, H3), 7.10 (d, 2H, J = 7.9 Hz, H3" and H5"), 7.22 (d, 2H, J = 8.0 Hz, H3' and H5'), 7.46 (d, 2H, J = 8.2 Hz, H2" and H6"), 7.47 (d, 2H, J = 8.2 Hz, H2' and H6') ppm; ¹³C{¹H} NMR (CDCl₃) δ 21.5 (CH₃, Me), 21.6 (CH₃, Me), 67.1 (CH, C3), 70.2 (CH, C5), 70.8 (CH, C4), 72.1 (5CH, Cp), 94.9 (C, C-SOtolyl), 96.2 (C, C-SOtolyl), 125.1 (2CH, C2' and C6', or C2" and C6"), 125.3 (2CH, C2' and C6', or C2" and C6"), 129.6 (2CH, C3' and C5', or C3" and C5"), 129.7 (2CH, C3' and C5', or C3" and C5"), 140.5 (C, C1'), 141.0 (C, C4"), 141.7 (C, C4'), 143.3 (C, C1") ppm;

(S)-S-(4-Tolyl)ferrocenesulfoxide (S-FcSO-p-Tol) was similarly recovered in 20% yield.

 $[\alpha]_D$ +317 (c 1). Anal. Calcd for C₂₄H₂₂FeO₂S₂ (462.40): C, 62.34; H,

4.80; S, 13.87. Found: C, 62.08; H, 5.26; S, 13.31%.

General procedure B: Oxidation of (phenylthio)ferrocenes.¹⁶ To a solution of the (phenylthio)ferrocene (1.0 mmol) in CH₂Cl₂ (6 mL) was added portionwise, at 0 °C, 3-chloroperbenzoic acid (*m*-CPBA; 70%; 0.44 g, 1.8 mmol). The reaction mixture was stirred at 0 °C for 1 h before addition of CH₂Cl₂ (10 mL). The organic phase was washed with a 10% aqueous solution of NaOH (3 x 10 mL). Drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent given in the product description).

(*R*,*R*,*S*_P)-*S*-tert-Butyl-*S*'-phenylferrocene-1,2-disulfoxide (*R*,*R*,*S*_P-5) was prepared by adapting the general procedure B to 1.3 mmol of (*R*,*R*_P)-*S*-tert-butyl-2-(phenylthio)ferrocenesulfoxide (*R*,*R*_P-4; 0.51 g). It was isolated (eluent: petroleum ether-EtOAc 20:80; Rf = 0.16) in 80% yield (0.42 g) as a brownish-yellow solid: mp 174-176 °C; IR (ATR) v 761, 822, 859, 1013, 1179, 1231, 1409, 1449, 1649, 2977, 3492 cm⁻¹; ¹H NMR (CDCl₃) δ 0.78 (s, 9H, tBu), 4.47 (s, 1H, H5), 4.60 (s, 6H, H4 and Cp), 5.27 (s, 1H, H3), 7.36-7.37 (m, 3H), 7.78-7.79 (m, 2H) ppm; ¹³C{¹H} NMR (CDCl₃) δ 22.9

 $(3CH_3, CMe_3)$, 56.9 (C, *C*Me₃), 67.1 (CH, C3), 69.6 (CH, C5), 71.2 (CH, C4), 72.7 (5CH, Cp), 87.8 (C, C1, *C*-SO*t*Bu), 95.0 (C, C2, *C*-SOPh), 127.2 (2CH, C2' and C6'), 128.9 (2CH, C3' and C5'), 131.1 (CH, C4'), 148.2 (C, C1') ppm; [α]_D -366 (*c* 1). Anal. Calcd for C₂₀H₂₂FeO₂S₂ (414.36): C, 57.97; H, 5.35; S, 15.47. Found: C, 58.03; H, 5.66; S, 15.19%.

 (S,S,R_P) -S-tert-Butyl-S'-phenylferrocene-1.2-disulfoxide (S,S,R_P-5) was prepared by adapting the general procedure B to 0.30 mmol of (S, S_P) -S-tert-butyl-2-(phenylthio)ferrocenesulfoxide (S, S_P-4; 0.12 g). It was isolated (eluent: petroleum ether-EtOAc 20:80; Rf = 0.16) in 85% yield (0.10 g) as a brownish-yellow solid: mp 174-176 °C; IR (ATR) v 761, 822, 858, 1013, 1082, 1106, 1179, 1310, 1363, 1449, 1471, 1650, 2977, 3439 cm⁻¹; ¹H NMR (CDCl₃) δ 0.78 (s, 9H, *t*Bu), 4.47 (s, 1H, H5), 4.60 (s, 6H, H4 and Cp), 5.27 (s, 1H, H3), 7.36-7.37 (m, 3H), 7.78-7.79 (m, 2H) ppm; ¹³C{¹H} NMR (CDCl₃) δ22.9 (3CH₃, CMe₃), 56.9 (C, CMe₃), 67.1 (CH, C3), 69.6 (CH, C5), 71.2 (CH, C4), 72.7 (5CH, Cp), 87.8 (C, C1, C-SOtBu), 95.0 (C, C2, C-SOPh), 127.2 (2CH, C2' and C6'), 128.9 (2CH, C3' and C5'), 131.1 (CH, C4'), 148.2 (C, C1') ppm; $[\alpha]_D$ +94 (c 0.6). Anal. Calcd for C₂₀H₂₂FeO₂S₂ (414.36): C, 57.97; H, 5.35; S, 15.47. Found: C, 58.45; H, 5.41; S, 15.10%.

(S,S,R_P)-S-tert-Butyl-S'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (S,S,R_P-11) was prepared by adapting the general procedure B to 0.76 mmol of (S,S_P)-S-tert-butyl-2-(phenylthio)-5-(trimethylsilyl)ferrocenesulfoxide (S,SP-8b; 0.35 g). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.25) in 88% yield (0.63 g) as a brownish-yellow solid: mp 160-162 °C; IR (ATR) v 748, 823, 881, 1037, 1111, 1189, 1249, 1306, 1363, 1412, 1442, 1473, 1580, 1700, 2967, 3386 cm⁻¹; ¹H NMR (CDCl₃) $\delta 0.35$ (s, 9H, SiMe₃), 0.97 (s, 9H, *t*Bu), 4.49 (d, 1H, J = 2.6 Hz, H4), 4.65 (s, 5H, Cp), 5.22 (d, 1H, J = 2.7 Hz, H3), 7.40-7.41 (m, 3H), 7.69-7.71 (m, 2H) ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 1.7 (3CH₃, SiMe₃), 24.5 (3CH₃, CMe₃), 57.1 (C, CMe₃), 72.3 (CH, C3), 73.4

(5CH, Cp), 78.1 (C, C5, C-SiMe₃), 78.3 (CH, C4), 94.3 (C, C1, C-SOtBu), 98.0 (C, C2, C-SOPh), 126.9 (2CH, C2' and C6'), 129.0 (2CH, C3' and C5'), 130.9 (CH, C4'), 147.8 (C, C1') ppm; [a]_D +125 (c 1). Anal. Calcd for C₂₃H₃₀FeO₂S₂Si (486.54): C, 56.78; H, 6.22; S, 13.18. Found: C, 56.83; H, 6.06; S, 13.39%.

General procedure C: Deprotolithiation using LiTMP (1.3 equiv) at -80 °C followed by electrophilic trapping.¹⁶ To a stirred, cooled (0 °C) solution of H-TMP (0.20 mL, 1.4 mmol) in THF (5 mL) was added dropwise a 1.4 M hexane solution of *n*BuLi (0.93 mL, 1.3 mmol). The mixture was stirred for 5 min at 0 °C and then for 2 min at -80 °C before introduction of the ferrocenesulfoxide (1.0 mmol). After 30 min at this temperature, the electrophile (1.3 mmol; either pure for liquids or in solution for solids, as indicated below) was introduced. The mixture was stirred for 1 h at -80 °C before addition of water and warming to rt. Extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent given in the product description).

 (S,S,R_P) -S-tert-Butyl-S'-tolyl-3-(trimethylsilyl)ferrocene-1,2-disulfoxide (S,S,R_P-6a) was prepared by adapting the general procedure C to 0.61 mmol of (S,S,R_P) -S-tert-butyl-S'-phenylferrocene-1,2disulfoxide (S,S,RP-2; 0.26 g) and using ClSiMe₃ (0.10 mL). It was isolated (eluent: petroleum ether-EtOAc 20:80; Rf = 0.56) in 28% yield (86 mg) as a brownish-yellow oil: IR (ATR) v 749, 809, 838, 896, 965, 1038, 1082, 1109, 1191, 1241, 1456, 1493, 1648, 2923, 3413 cm⁻¹; ¹H NMR (CDCl₃) δ 0.23 $(s, 9H, SiMe_3), 0.94 (s, 9H, tBu), 2.33 (s, 3H, Me), 4.58 (d, 1H, J = 2.6 Hz, H4), 4.61 (s, 5H, Cp), 4.69$ (d, 1H, J = 2.6 Hz, H5), 7.15 (d, 2H, J = 8.0 Hz, H2' and H6'), 7.45 (d, 2H, J = 8.1 Hz, H3' and H5') ppm; ${}^{13}C{}^{1}H{}$ NMR (CDCl₃) δ 2.1 (3CH₃, SiMe₃), 21.5 (CH₃, Me), 21.5 (3CH₃, CMe₃), 56.8 (C, CMe₃), 72.9 (5CH, Cp), 72.9 (CH, C5), 74.5 (C, C3, C-SiMe₃), 79.0 (CH, C4), 90.4 (C, C1, C-SOtBu), 98.5 (C, C2, C-SOtolyl), 127.9 (2CH, C3' and *t*Βı C5'), 129.3 (2CH, C2' and C6'), 140.8 (C, C4', C-Me), 145.0 (C, C1') ppm; $[\alpha]_{D}$ +34 (c 0.4). Anal. Calcd for C₂₄H₃₂FeO₂S₂Si (500.57): C, 57.59; H, 6.44; S, 12.81. Found: C, 58.17; H, 7.12; S, 12.69%.

Starting (S,S,R_P)-S-tert-butyl-S'-phenylferrocene-1,2-disulfoxide (S,S,R_P-2) was recovered in 50% yield (0.13 g).

(*R*,*R*,*S*_P)-*S*-tert-Butyl-*S*'-phenyl-3-(trimethylsilyl)ferrocene-1,2-disulfoxide (*R*,*R*,*S*_P-7a) was prepared by adapting the general procedure C to 0.58 mmol of (R,R,S_P)-S-tert-butyl-S'-phenylferrocene-1,2disulfoxide (R,R,SP-5; 0.30 g) and using ClSiMe₃ (0.10 mL). It was isolated (eluent: petroleum ether-EtOAc 60:40; Rf = 0.20) in 10% yield (30 mg) as a brownish-yellow oil: IR (ATR) v 747, 824, 896, 964, 1037, 1082, 1123, 1191, 1242, 1363, 1413, 1443, 1457, 1474, 1711, 2959 cm⁻¹; ¹H NMR (CDCl₃) $\delta 0.22$ (s, 9H, SiMe₃), 0.95 (s, 9H, *t*Bu), 4.59 (d, 1H, J = 2.6 Hz, H4), 4.62 (s, 5H, Cp), 4.71 (d, 2H, Cp), 4.81 = 2.6 Hz, H5), 7.34-7.36 (m, 3H, H3', H4' and H5'), 7.58-7.60 (m, 2H, H2' and H6') ppm; ${}^{13}C{}^{1}H{}$ NMR (CDCl₃) δ2.1 (3CH₃, SiMe₃), 23.5 (3CH₃, CMe₃), 56.8 (C, CMe₃), 72.9 (CH, C5), 72.9 (5CH, Cp), 74.6 (C, C3, C-SiMe₃), 79.1 (CH, C4), 90.7 (C, C1, C-SOtBu), 98.6 (C, Me₃Si C2, C-SOPh), 127.8 (2CH, C2' and C6'), 128.7 (2CH, C3' and C5'), 130.5 tBu (CH, C4'), 148.0 (C, C1') ppm; $[\alpha]_D + 27$ (c 0.4). Anal. Calcd for Ô '. C₂₃H₃₀FeO₂S₂Si (486.54): C, 56.78; H, 6.22; S, 13.18. Found: C, 56.30; H, 6.13; S, 12.71%.

Starting (R,R,S_P) -*S-tert*-butyl-*S*'-phenylferrocene-1,2-disulfoxide (R,R,S_P-5) was recovered in 38% yield (92 mg).

 (S,S,R_P) -*S-tert*-Butyl-3-chloro-*S*'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-12a) was prepared by adapting the general procedure C to 0.66 mmol of (S,S,R_P) -*S-tert*-butyl-*S*'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-11; 0.49 g) and using C₂Cl₆ (0.16 g) in THF (3 mL). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.47) in 37% yield (0.13 g) as a brownish-yellow oil: IR (ATR) v747, 830, 929, 1042, 1111, 1250, 1441, 1577, 1700, 2967, 3518 cm⁻¹; ¹H NMR (CDCl₃) δ 0.39 (s, 9H, SiMe₃), 1.24 (s, 9H, *t*Bu), 4.67 (s, 1H, H4), 4.80 (s, 5H, Cp), 7.40-7.44 (m, 3H), 7.50-7.52 (m, 2H) ppm; ¹³C{¹H} NMR (CDCl₃) δ 1.7 (3CH₃, SiMe₃), 24.9 (3CH₃, CMe₃), 56.7 (C, CMe₃), 75.6 (5CH, Cp), 77.0 (C, C5, *C*-SiMe₃), 79.2 (CH, C4), 93.9 (C, C1

or C2), 94.1 (C, C1 or C2), 95.4 (C, C3, C-Cl), 126.2 (2CH, C2' and C6'), 128.8 (2CH, C3' and C5'), 129.8 (CH, C4'), 145.1 (C, C1') ppm; $[\alpha]_D$ +170 (*c* 1). Anal. Calcd for C₂₃H₂₉ClFeO₂S₂Si (520.98): C, 53.03; H, 5.61; S, 12.31. Found: C, 53.62; H, 5.89; S, 12.18%.

 (S,R_P) -S-tert-Butyl-2-chloro-5-(trimethylsilyl)ferrocenesulfoxide (S,R_P -12a') was similarly isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.67) in 4% yield (10 mg) as a yellow oil, and identified by NMR: ¹H NMR (CDCl₃) δ 0.31 (s, 9H, SiMe₃), 1.29 (s, 9H, tBu), 4.16 (d, 1H, J = 2.6 Hz, H4), 4.46 (s, 5H, Cp), 4.79 (d, 1H, J = 2.6 Hz, H3) ppm; ¹³C{¹H} NMR (CDCl₃) δ 1.6 (3CH₃,

SiMe₃), 25.1 (3CH₃, *CMe*₃), 58.1 (C, *C*Me₃), 73.2 (5CH, Cp), 74.2 (CH, C4), 74.6 (CH, C3), 75.4 (C, C5, *C*-SiMe₃), 88.8 (C, C1, *C*-SOtBu), 92.6 (C, C2, C-Cl) ppm; $[\alpha]_D$ +57 (*c* 0.3). Anal. Calcd for C₁₇H₂₅ClFeOSSi (396.83): C, 51.46; H, 6.35; S, 8.08. Found: C, 51.31; H, 6.19; S, 8.16%.

 (S,S,R_P) -*S-tert*-Butyl-3-fluoro-*S*'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (*S*,*S*,*R*P-12b) was prepared by adapting the general procedure C to 0.76 mmol of (*S*,*S*,*R*P)-*S-tert*-butyl-*S*'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (*S*,*S*,*R*P-11; 0.37 g) and using NFSI (0.29 g) in THF (3 mL). It was isolated (eluent: petroleum ether-EtOAc 60:40; Rf = 0.22) in 48% yield (0.18 g) as a brownish-yellow oil: IR (ATR) ν 749, 843, 1022, 1112, 1307, 1442, 1575, 2971, 3548 cm⁻¹; ¹H NMR (CDCl₃) δ 0.36 (s, 9H, SiMe₃), 1.24 (s, 9H, *t*Bu), 4.56 (d, 1H, *J* = 2.8 Hz, H4), 4.83 (s, 5H, Cp), 7.42-7.47 (m, 3H), 7.65-7.66 (m, 2H) ppm; ¹³C{¹H} NMR (CDCl₃) δ 1.7 (3CH₃, SiMe₃), 24.9 (3CH₃, CMe₃), 56.8 (C, CMe₃), 66.2 (d, CH, *J* = 12.3 Hz, C4), 70.9 (C, C5, *C*-SiMe₃), 74.6 (5CH, Cp), 87.7 (d, C, *J* = 9.7 Hz, C2, *C*-SOPh), 88.8 (C, C1, *C*-SOtBu), 125.8 (2CH, C2' and C6'), 128.9

(2CH, C3' and C5'), 130.3 (CH, C4'), 135.0 (d, C, J = 286.4 Hz, C3), 145.4 (C, C1') ppm; ¹⁹F{¹H} NMR (CDCl₃) δ -174.7 ppm; [α]_D+85 (c 0.3). Anal. Calcd for C₂₃H₂₉FFeO₂S₂Si (504.53): C, 54.75; H, 5.79; S, 12.71. Found: C, 54.67; H, 5.45; S, 12.51%.

(S,R_P)-S-tert-Butyl-2-(trimethylsilyl)ferrocenesulfoxide (S,R_P-12b') was similarly isolated (eluent: petroleum ether-EtOAc 60:40; Rf = 0.38) in 20% yield (55 mg) as an orange oil: IR (ATR) v755, 818, 945, 1027, 1177, 1249, 1362, 1457, 1638, 2958, 3398 cm⁻¹; ¹H NMR (CDCl₃) δ 0.33 (s, 9H, SiMe₃), 1.15 (s, 9H, *t*Bu), 4.24 (dd, 1H, *J* = 2.4 and 1.3 Hz, H3), 4.36 (s, 5H, Cp), 4.60 (t, 1H, *J* = 2.4 Hz, H4), 4.89 (dd, 1H, J = 2.5 and 1.3 Hz, H5) ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 1.3 (3CH₃, Me₃Si SiMe₃), 23.6 (3CH₃, CMe₃), 55.6 (C, CMe₃), 68.5 (CH, C5), 70.6 (5CH, Cp), 72.3 *t*Bu (CH, C4), 75.6 (C, C2, C-SiMe₃), 76.4 (CH, C3), 93.3 (C, C1, C-SOtBu) ppm; [α]_D +250 (c 1). Anal. Calcd for C₁₇H₂₆FeOSSi (362.38): C, 56.35; H, 7.23; S, 8.85. Found: C, 56.12; H, 7.68; S, 8.96%.

General procedure D: Deprotolithiation using LiTMP (1.5 equiv) at -50 °C followed by electrophilic trapping.¹⁶ To a stirred, cooled (0 °C) solution of H-TMP (0.14 mL, 0.96 mmol) in THF (3 mL) was added dropwise a 1.4 M hexane solution of *n*BuLi (0.64 mL, 0.90 mmol). The mixture was stirred for 5 min at 0 °C and then for 2 min at -50 °C before introduction of (S, S, R_P) -S-tert-butyl-S'-phenylferrocene-1,2-disulfoxide (S,S,RP-5; 0.25 g, 0.60 mmol). After 30 min at this temperature, the electrophile (0.90 mmol; either pure for liquids or in solution for solids, as indicated below) was introduced. The mixture was stirred for 1 h at -50 °C before addition of water and warming to rt. Extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent given in the product description).

 (S,S,R_P) -S-tert-Butyl-3-(dimethylaminomethyl)-S'-phenylferrocene-1,2-disulfoxide (S,S,R_P-7b) was prepared by adapting the general procedure D to 0.50 mmol of S,S,RP-5 (0.21 g) and using N,Ndimethylmethyleneiminium iodide (0.14 g) as the electrophile in THF (4 mL). It was isolated (eluent: 90:10 EtOAc-NEt₃; Rf = 0.59) in 58% yield (0.14 g) as a brownish-yellow oil: IR (ATR) v 747, 829, 1033, 1080, 1175, 1239, 1364, 1456, 1667, 2976, 3436 cm⁻¹; ¹H NMR (CDCl₃) δ 0.98 (s, 9H, tBu), 2.11 (s, 6H, NMe₂), 3.30 (d, 1H, J = 14.0 Hz, CHHNMe₂), 3.90 (d, 1H, J = 13.9 Hz, CHHNMe₂), 4.50 (d, 1H, J = 2.7 Hz, H5), 4.59 (s, 5H, Cp), 4.69-4.75 (m, 1H, H4), 7.34-7.38 (m, 3H, H3', H4' and H5'), 7.98-8.00 (m, 2H, H2' and H6') ppm; ${}^{13}C{}^{1}H{}$ NMR (CDCl₃) δ 23.5 (3CH₃, CMe₃), 45.5 (2CH₃, NMe₂), 56.9 (C, CMe₃), 57.0 (CH₂, CH₂NMe₂), 68.6 (CH, C5), 73.5 (5CH, Cp), 73.9 (CH, C4), 88.5 (CH, C3), 89.6 (C, C1 or C2), 91.1 (C, C1 or C2), 127.8 (2CH, C2' and C6'), NMe₂ 128.7 (2CH, C3' and C5'), 130.6 (CH, C4'), 147.4 (C, C1') ppm; [α]_D+122 (c 1). Anal. Calcd for C₂₃H₂₉FeNO₂S₂ (471.45): C, 58.60; H, 6.20; S, 13.60. tBu-Found: C, 59.11; H, 6.77; S, 13.13%. Starting (S,S,R_P) -S-tert-butyl-S'-phenylferrocene-1,2-disulfoxide (S,S,R_P-5)

was also recovered in 20% yield.

(S,S,R_P)-S-tert-Butyl-3-chloro-S'-phenylferrocene-1,2-disulfoxide $(S,S,R_{P}-7c)$ was prepared according to the general procedure D and using C_2Cl_6 (0.21 g) in THF (1 mL). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.36) in 66% yield (0.18 g) as a yellow solid: mp 196-198 °C; IR (ATR) v 751, 832, 1042, 1079, 1173, 1208, 1282, 1308, 1366, 1413, 1477, 1581, 1704, 2978, 3462 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16 (s, 9H, tBu), 4.54 (d, 1H, J = 2.7 Hz, H5), 4.78 (s, 5H, Cp), 4.78 (d, 1H, J = 2.7 Hz, H4), 7.37-7.43 (m, 3H), 7.67-7.70 (m, 2H) ppm; ¹³C{¹H} NMR (CDCl₃) δ 23.7 (3CH₃, CMe₃), 56.7 (C, CMe₃), 68.5 (CH, C5), 72.7 (CH, C4), 75.1 (5CH, Cp), 87.9 (C, C1 or C2 or C3), 91.5 (C, C1 or C2 or C3), 93.0 (C, C1 or C2 or C3),

126.4 (2CH, C2' and C6'), 128.8 (2CH, C3' and C5'), 130.3 (CH, C4'), 145.3 (C, C1') ppm; $[\alpha]_D$ +509 (c 1). Anal. Calcd for C₂₀H₂₁ClFeO₂S₂ (448.80): C, 53.52; H, 4.72; S, 14.29. Found: C, 53.17; H, 5.13; S, 14.18%.

(*S*,*S*,*R*_P)-*S*-tert-Butyl-3-fluoro-*S*'-phenylferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-7d) was prepared according to the general procedure D and using NFSI (0.28 g) in THF (3 mL). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.28) in 50% yield (0.13 g) as a yellow solid: mp 192-194 °C; IR (ATR) v754, 833, 1039, 1083, 1136, 1251, 1304, 1362, 1447, 1582, 1655, 2975, 3462 cm⁻¹; ¹H NMR (CDCl₃) δ 1.09 (s, 9H, *t*Bu), 4.26 (dd, 1H, *J* = 2.8 and 1.5 Hz, H5), 4.69 (t, 1H, *J* = 2.9 Hz, H4), 4.80 (s, 5H, Cp), 7.39-7.44 (m, 3H, H3', H4' and H5'), 7.76-7.79 (m, 2H, H2' and H6') ppm; ¹³C{¹H} NMR (CDCl₃) δ 23.5 (3CH₃, *CMe*₃), 56.6 (C, *CMe*₃), 60.3 (d, CH, *J* = 15.4 Hz, C4), 62.7 (d, CH, *J* = 3.6 Hz, C5), 74.1 (5CH, Cp), 82.9 (C, C1, *C*-SOtBu), 84.6 (C, d, *J* = 8.8 Hz, C2, *C*-SOPh), 126.1 (d, 2CH, *J* = 2.2 Hz, C2' and C6'), 128.9 (2CH, C3' and C5'), 130.8 (CH, C4'), 133.2 (d, C, *J* = 285.0 Hz, C3, C-F), 145.9 (C, C1') ppm; ¹⁹F{¹H} NMR (CDCl₃) δ -178.6 ppm; [α]_D +511 (*c* 1). Anal. Calcd for C₂₀H₂₁FFeO₂S₂

(CDCl₃) δ -178.6 ppm; [α]_D +511 (*c* 1). Anal. Calcd for C₂₀H₂₁FFeO₂S₂ (432.35): C, 55.56; H, 4.90; S, 14.83. Found: C, 56.11; H, 5.15; S, 15.10%. Starting (*S*,*S*,*R*_P)-*S*-*tert*-butyl-*S*'-phenylferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-5) was also recovered in 12% yield (28 mg).

Note that (R,R,S_P) -*S-tert*-butyl-3-fluoro-*S*'-phenylferrocene-1,2-disulfoxide (R,R,S_P-7d) was similarly prepared from (R,R,S_P) -*S-tert*-butyl-*S*'-phenylferrocene-1,2-disulfoxide (R,R,S_P-7d) was similarly $(R,R,S_P-5; 0.83 \text{ g}, 2.0 \text{ mmol})$ and isolated in 60% yield (0.51 g). ¹H NMR $(CDCl_3) \delta 1.09$ (s, 9H, *t*Bu), 4.26 (dd, 1H, J = 2.8 and 1.5 Hz, H5), 4.69 (t, 1H, J = 2.9 Hz, H4), 4.47 (s, 5H, Cp), 7.39-7.44 (m, 3H, H3', H4' and H5'), 7.76-7.79 (m, 2H, H2' and H6') ppm, and ¹⁹F{¹H} NMR $(CDCl_3) \delta$ -178.7

General procedure E: Deprotolithiation using *n*BuLi at rt followed by electrophilic trapping.⁴ To a solution of (S,S_P) -*S*-tert-Butyl-2-(phenylthio)ferrocenesulfoxide $(S,S_P-4; 0.40 \text{ g}, 1.0 \text{ mmol})$ in THF (10 mL) at 0 °C was added dropwise a 1.4 M hexane solution of *n*BuLi (0.93 mL, 1.3 mmol) before warming to rt. The reaction was stirred at this temperature for 1 h and cooled to 0 °C before addition of the electrophile (1.3 mmol; either pure for liquids or in solution for solids, as indicated below). The mixture was warmed to rt and stirred for 1 h. Addition of 1 M HCl (5 mL), extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent given in the product description).

 $(R_{\rm C}, S_{\rm S}, S_{\rm P})$ -*S-tert*-Butyl-2-(1-(ferrocenyl)hydroxymethyl)-5-(phenylthio)ferrocenesulfoxide (*S*, *S*_P-8a) was prepared by adapting the general procedure E to 0.60 mmol of *S*, *S*_P-4 (0.24 g) and using ferrocenecarboxaldehyde (0.17 g) as the electrophile in THF (3 mL). The main diastereoisomer was isolated (eluent: petroleum ether-EtOAc 60:40; Rf = 0.39) in 56% yield (0.21 g) as a brownish-yellow oil: IR (ATR) ν 739, 819, 928, 1002, 1042, 1106, 1173, 1232, 1364, 1411, 1438, 1477, 1581, 2972 cm⁻¹; ¹H NMR (CDCl₃) δ 1.36 (s, 9H, *t*Bu), 2.90 (br s, 1H, OH), 4.25 (s, 5H, Cp or Cp"), 4.47 (s, 5H, Cp or Cp"), 4.31 (br s, H3" and H4"), 4.46-4.49 (m, 3H, H4, H2" and H5"), 4.61 (d, 1H, *J* = 2.7 Hz, H3), 5.35 (s, 1H, *CH*(OH)), 7.08 (t, 1H, *J* = 7.3 Hz, H4'), 7.14 (d, 2H, *J* = 6.8 Hz, H2' and H6'), 7.20 (t, 2H, *J* = 7.7 Hz, H3' and H5') ppm; ¹³C{¹H} NMR (CDCl₃) δ 24.9 (3CH₃, *CMe*₃), 57.8 (C, *CMe*₃), 65.1 (C2"), 66.1 (CH, CH(OH)), 67.7 (C3" or C4"), 68.6 (C3" or C4"), 68.7 (5CH, Cp or Cp"), 69.4 (C5"), 70.7 (CH, C4), 73.4 (5CH, ³C² 1, ^{OH} 4

C4"), 68.7 (5CH, Cp or Cp"), 69.4 (C5"), 70.7 (CH, C4), 73.4 (5CH, Cp or Cp"), 77.6 (C, C2), 77.9 (CH, C3), 86.7 (C, C1), 94.4 (C, C1"), 95.6 (C, C5), 125.2 (CH, C4'), 126.5 (2CH, C2' and C6'), 128.9 (2CH, C3' and C5'), 139.7 (C, C1') ppm; $[\alpha]_D + 163 (c 1)$. Anal. Calcd for C₂₀H₂₁FFeO₂S₂ (432.35): C, 55.56; H, 4.90; S, 14.83. Found: C, 55.22; H, 5.19; S, 14.98%.

 (S,S_P) -*S-tert*-Butyl-2-(phenylthio)-5-(trimethylsilyl)ferrocenesulfoxide (S,S_P -8b) was prepared by adapting the general procedure E to 0.88 mmol of S,S_P -4 (0.35 g) and using ClSiMe₃ (0.14 mL). It was isolated (eluent: petroleum ether-EtOAc 80:20; Rf = 0.41) in 73% yield. (0.30 g) as an orange oil: IR

(ATR) v749, 819, 877, 896, 965, 1066, 1121, 1172, 1198, 1247, 1362, 1336, 1411, 1456, 1477, 1582, 2958 cm⁻¹; ¹H NMR (CDCl₃) δ 0.35 (s, 9H, SiMe₃), 1.24 (s, 9H, *t*Bu), 4.35 (d, 1H, J = 2.6 Hz, H4), 4.47 (s, 5H, Cp), 4.76 (d, 1H, J = 2.5 Hz, H3), 7.11-7.12 (tt, 1H, J = 7.0 and 1.5 Hz, H4'), 7.19-7.24 (m, 4H, H2', H3', H5' and H6') ppm; ¹³C{¹H} NMR (CDCl₃) δ 1.7 (3CH₃, SiMe₃), 25.1 (3CH₃, CMe₃), 57.3 (C, CMe₃), 73.0 (5CH, Cp), 77.5 (CH, C4), 78.1 (C, C5), 80.6 (CH, C3), 81.5 (C, C2), 91.3 (C, C1), 125.4 (CH, C4'), 127.4 (2CH, Ph), 128.9 (2CH, Ph), 139.4 (C, C1')

ppm; $[\alpha]_D$ +413 (*c* 1). Anal. Calcd for C₂₃H₃₀FeOS₂Si (470.54): C, 58.71; H, 6.43; S, 13.63. Found: C, 58.97; H, 6.84; S, 13.20%.

The yield of the reaction could be improved to 85% by increasing the amount of *n*BuLi to 2.5 equivalents.

General procedure F: Double deprotolithiation using *n*BuLi in excess at rt followed by electrophilic trapping.⁴ To a solution of (S,S_P) -*S-tert*-butyl-2-(phenylthio)ferrocenesulfoxide $(S,S_P-4; 0.40 \text{ g}, 1.0 \text{ mmol})$ in THF (10 mL) at 0 °C was added dropwise a 1.4 M hexane solution of *n*BuLi (1.8 mL, 2.5 mmol) before warming to rt. The reaction was stirred at this temperature for 1 h and cooled to 0 °C before addition of the electrophile (2.5 mmol; either pure for liquids or in solution for solids, as indicated below). The mixture was warmed to rt and stirred for 1 h. Addition of 1 M HCl (5 mL), or water in the case of Cl₂SiMe₂, extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent given in the product description).

(S,S_P)-S-tert-Butyl-2-(phenylthio)-5,1'-bis(trimethylsilyl)ferrocenesulfoxide (S,S_P-9a) was prepared by adapting the general procedure F to 0.70 mmol of S,SP-4 (0.28 g) and using ClSiMe₃ (0.22 mL). It was isolated (eluent: petroleum ether-EtOAc 70:30; Rf = 0.51) in 85% yield (0.325 g) as an orange solid: mp 168 °C; IR (ATR) v 702, 741, 826, 893, 966, 1042, 1067, 1164, 1199, 1246, 1362, 1384, 1439, 1455, 1471, 1583, 2956 cm⁻¹; ¹H NMR (CDCl₃) δ 0.20 (s, 9H, C1'-SiMe₃), 0.35 (s, 9H, C5-SiMe₃), 1.24 (s, 9H, tBu), 4.08 (s, 1H, H2'), 4.30 (s, 1H, H5'), 4.32 (d, 1H, J = 2.5 Hz, H4), 4.72 (s, 1H, H3'), 4.75 (d, 1H, J = 2.4 Hz, H3), 5.13 (s, 1H, H4'), 7.10 (t, 1H, J = 7.2 Hz, H4"), 7.16 (dd, 2H, J = 8.4 and 1.4 Hz, H2" and H6"), 7.22 (t, 2H, J = 7.6 Hz, H3" and H5") ppm; ¹³C{¹H} NMR (CDCl₃) δ 0.0 (3CH₃, C1'-SiMe₃), 1.8 (3CH₃, C5-SiMe₃), 25.1 (3CH₃, CMe₃), 57.3 *t*Bu SiMe₃ (C, CMe₃), 74.6 (CH, C3'), 75.6 (CH, C2'), 76.6 (C, C1', C-SiMe₃), 77.6 (CH, C4), 77.7 (CH, C4'), 78.2 (C, C5, C-SiMe₃), 80.5 (CH, C5'), 80.8 (C, C2, C-SPh), 81.7 (CH, C3), 91.1 (C, C1, C-SOtBu), 125.2 (CH, C4"), 126.8 (2CH, C2" and C6"), 128.9 (2CH, C3" and C5"), 140.0 (C, C1") ppm; [a]_D SiMe₃ +456 (c 1). Anal. Calcd for C₂₆H₃₈FeOS₂Si₂ (542.72): C, 57.54; H, 7.06; S, 11.81. Found: C, 57.62; H, 7.16; S, 11.88%.

(S,S_P)-S-tert-Butyl-5,1'-bis(diphenylphosphino)-2-(phenylthio)ferrocenesulfoxide (S.SP-9b)was prepared by adapting the general procedure F to 0.60 mmol of S,SP-4 (0.24 g) and using ClPPh₂ (0.27 mL). It was isolated (eluent: petroleum ether-EtOAc 40:60; Rf = 0.86) in 60% yield (0.28 g) as an orange oil: IR (ATR) v 739, 832, 893, 1026, 1040, 1066, 1164, 1198, 1306, 1362, 1433, 1477, 1583, 2985 cm⁻¹; ¹H NMR (CDCl₃) δ 1.08 (s, 9H, *t*Bu), 2.88 (dq, 1H, *J* = 2.9 and 1.5 Hz, H2'), 4.06 (d, 1H, J = 2.6 Hz, H3), 4.31 (dp, 1H, J = 2.6 and 1.4 Hz, H5'), 4.59 (d, 1H, J = 2.6 Hz, H4), 4.79 (td, 1H, J = 2.4 and 1.2 Hz, H3'), 5.30 (t, 1H, J = 3.3 Hz, H4'), 7.08-7.14 (m, 4H, Ar), 7.18-7.25 (m, 14H, Ar), 7.27-7.35 (m, 5H, Ar), 7.44 (td, 2H, J = 8.2 and 1.6 Hz, Ar) ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 24.9 (d, 3CH₃, J = 2.5 Hz, tBu^{Pl} CMe₃), 58.4 (C, CMe₃), 75.2 (CH, C3'), 75.3 (d, CH, J = 6.1 Hz, C2'), 75.6 (d, CH, J = 4.3 Hz, C3), 79.0 (d, C, J = 4.6 Hz), 80.8 (d, CH, J = 11.2 Hz, C4'), 81.2 (d, CH, J = 4.4 Hz, C4), 82.0 (d, C, J = 20.1 Hz), 82.6 (d, CH, J = 19.3 Hz, C5'), 85.5 (d, C, J = 2.9 Hz), 91.7 (d, C, J = 26.8 Hz), 126.3 (CH), 128.2 (CH), 128.3 (CH), 128.3 (2CH), 128.3 (CH), 128.35

(2CH), 128.4 (CH), 128.5 (CH), 128.6 (CH), 128.8 (CH), 129.1 (2CH), 129.2 (2CH), 129.7 (CH), 133.1 (d, 2CH, J = 19.5 Hz), 132.5 (d, 2CH, J = 19.0 Hz), 133.8 (d, 2CH, J = 20.5 Hz) and 135.2 (d, 2CH, J = 23.3 Hz) (C2^a, C6^a, C2^b and C6^b), 137.2 (d, C, J = 9.5 Hz), 137.9 (C, C1"), 137.9 (d, C, J = 10.5 Hz), 138.8 (d, C, J = 10.5 Hz), 139.2 (d, C, J = 8.8 Hz) ppm; ³¹P{1H} NMR (CDCl₃) δ -26.8, -18.7 ppm; [α]_D +53 (*c* 1). Anal. Calcd for C₄₄H₄₀FeOP₂S₂ (766.72): C, 68.93; H, 5.26; S, 8.36. Found: C, 68.37; H, 5.12; S, 8.49%.

(S,S_P)-S-tert-Butyl-2-(phenylthio)-5,1'-(1,1,3,3-tetramethyl-1,3-disiloxanediyl)ferrocenesulfoxide $(S, S_{P}-9c)$ was prepared by adapting the general procedure F to 0.40 mmol of $S, S_{P}-4$ (0.16 g) and using Cl_2SiMe_2 (0.12 mL, 1.0 mmol). It was isolated (eluent: petroleum ether-EtOAc 60:40; Rf = 0.82) in 48% yield (0.10 g) as a yellow oil: IR (ATR) v737, 789, 820, 871, 903, 968, 1017, 1039, 1123, 1200, 1252, 1385, 1478, 1582, 2959 cm⁻¹; ¹H NMR (CDCl₃) δ 0.28 (s, 3H, Me^d), 0.32 (s, 3H, Me^b), 0.42 (s, 3H, Me^c), 0.45 (s, 3H, Me^a), 1.22 (s, 9H, tBu), 4.28 (dt, 1H, J = 2.4 and 1.2 Hz, H5'), 4.48 (d, 1H, J = 2.4 and 1.4 Hz, H5'), 4.48 (d, 1H, J = 2.4 and 1.4 Hz, H5'), 4.48 (d, 1H, J = 2.4 and 1.4 Hz, H5'), 4.48 (d, 2H, H 2.5 Hz, H4), 4.57 (td, 1H, J = 2.4 and 1.1 Hz, H4'), 4.61 (td, 1H, J = 2.4 and 1.1 Hz, H3'), 4.75 (d, 1H, J = 2.5 Hz, H3), 5.17 (dt, 1H, J = 2.4 and 1.2 Hz, H2'), 7.11 (t, 1H, J = 7.2 Hz), 7.18 (dd, 2H, J = 8.5and 1.4 Hz), 7.23 (t, 2H, J = 7.6 Hz) ppm; ¹³C{¹H} NMR (CDCl₃) δ 0.1 (CH₃, SiMe₂), 0.2 (CH₃, SiMe₂), 1.6 (CH₃, SiMe₂), 3.8 (CH₃, SiMe₂), 25.2 (3CH₃, CMe₃), tBu 57.8 (C, CMe₃), 73.7 (C, C1', C'-SiMe₂), 74.7 (CH, C4'), 75.7 (CH, C5'), 77.7 (C, C5, C-SiMe₂), 77.9 (CH, C4), 79.1 (CH, C2'), 79.6 (CH, C3'), 80.8 (CH, C3), 80.9 (C, C2, C-SPh), 93.1 (C, C1, C-SOtBu), 125.5 (CH, C4"), 127.2 (2CH, C2" and C6"), 128.9 (2CH, C3" and C5"), 139.3 (C, C1") ppm; [α]_D+604 (*c* 1). Anal. Calcd for C₂₄H₃₂FeO₂S₂Si₂ (528.65): C, 54.53; H, 6.10; S, 12.13. Found: C, 54.97; H, 6.18;

S, 12.10%.

(*S*,*S*_P)-*S*-*tert*-Butyl-1'-(diphenylphosphino)-2-(phenylthio)-5-(trimethylsilyl)ferrocenesulfoxide

(S, SP-10) was prepared as follows. To a solution of (S, S_P) -S-tert-butyl-2-(phenylthio)-5-(trimethylsilyl)ferrocenesulfoxide (S,SP-8b; 0.60 g, 1.3 mmol) in THF (13 mL) at 0 °C was added dropwise a 1.4 M hexane solution of *n*BuLi (1.65 mL, 2.3 mmol) before warming to rt. The reaction was stirred at this temperature for 1 h and cooled to 0 °C before addition of ClPPh₂ (0.41 mL). The mixture was warmed to rt and stirred for 1 h. Addition of 1 M HCl (5 mL), extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent: petroleum ether-EtOAc 40:60; Rf = 0.81). (S,S_P)-S-tert-Butyl-1'-(diphenylphosphino)-2-(phenylthio)-5-(trimethylsilyl)ferrocenesulfoxide (S,SP-10) was isolated in 67% yield (0.56 g) as an orange solid: mp 80-82 °C; IR (ATR) v 739, 830, 897, 965, 1025, 1043, 1121, 1164, 1197, 1248, 1434, 1477, 1583, 2958 cm⁻¹; ¹H NMR $(CDCl_3) \delta 0.30$ (s, 9H, SiMe₃), 1.22 (s, 9H, *t*Bu), 4.18 (d, 1H, J = 2.5 Hz, H4), 4.20 (br s, 1H, H2'), 4.27 (br s, 1H, H5'), 4.35 (d, 1H, J = 2.5 Hz, H3), 4.92-4.94 (m, 2H, H3' and H4'), 7.13-7.16 (m, 3H, H2", H4" and H6"), 7.21-7.24 (m, 2H, H3" and H5"), 7.24-7.29 (m, 8H, 2H3"', 2H4"', 2H5"' and 2H6"), 7.32-7.35 (m, 2H, 2H2") ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 1.7 (3CH₃, SiMe₃), 25.2 (3CH₃, CMe₃), 57.5 (C, CMe₃), 75.5 (d, CH, J = 4.3 Hz, C3'), 76.2 (d, CH, J = 18.5 Hz, C2'), 78.3 (d, CH, J = 9.1 Hz, C5'), 78.7 (C, C5, C-SiMe₃), 78.7 (d, CH, J = 6.0 Hz, C4'), 79.4 (d, CH, J = 2.1 Hz, C4), 80.1 (d, C, J = 10.4 Hz, C1', C-PPh₂), 81.7 (d, CH, J = 2.3 Hz, C3), 83.3 (C, C2, C-SPh), 91.0 (C, C1, C-SOtBu), 125.8 (CH, C4"), 128.2 (2CH, Ph), 128.3 (2CH, Ph), 128.4 *t*Bu SiMe₃ (2CH, Ph), 128.7 (CH, C4""), 128.9 (2CH, Ph), 129.1 (CH, C4""), 133.3 (d, 2CH, J = 19.3 Hz, C2" or C6"), 133.9 (d, 2CH, J = 20.4 Hz, C2" or C6""), 138.1 (d, C, J = 9.9 Hz, C1""), 138.6 (C, C1"), 138.9 (d, C, J = 10.2 Hz, C1"") ppm; ³¹P{1H} NMR (CDCl₃) δ -18.9 ppm; $[\alpha]_D$ +429 (c 1). Anal. Calcd for C₃₅H₃₉FeOPS₂Si (654.72): C, 64.21; H, 6.00; S, Ρh

9.79. Found: C, 64.65; H, 6.18; S, 10.11%.

General procedure G: Sulfoxide/lithium exchange using *t*BuLi.¹⁰ To a stirred, cooled (-90 °C) solution of the ferrocenesulfoxide (1.0 mmol) in THF (10 mL) was added dropwise a 1.6 M pentane

solution of *t*BuLi (0.69 mL, 1.1 mmol), and the reaction was stirred at this temperature (see the reaction time below) before addition of the electrophile (1.1 mmol unless otherwise specified; either pure for liquids or in solution for solids, as indicated below). The mixture was warmed to rt. Addition of 1 M HCl (5 mL), or saturated aqueous Na₂S₂O₃ in the case of I₂, extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent given in the product description).

(*S*,*R*_P)-*S*-*tert*-Butyl-2-iodo-5-(trimethylsilyl)ferrocenesulfoxide (*S*,*R*_P-13a) was prepared by adapting the general procedure G (30 min) to 0.53 mmol of (*S*,*S*,*R*_P)-*S*-*tert*-butyl-*S*'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-11; 0.27 g) and using I₂ (0.15 g) as the electrophile in THF (3 mL). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.80) in 35% yield (95 mg) as a yellow solid: mp 184 °C; IR (ATR) ν 759, 819, 838, 871, 944, 1066, 1107, 1174, 1249, 1361, 1383, 1408, 1471, 2957 cm⁻¹; ¹H NMR (CDCl₃) δ 0.31 (s, 9H, SiMe₃), 1.30 (s, 9H,

*t*Bu), 4.30 (d, 1H, J = 2.5 Hz, H4), 4.40 (s, 5H, Cp), 4.85 (d, 1H, J = 2.5 Hz, H3) ppm; ¹³C{¹H} NMR (CDCl₃) δ 1.7 (3CH₃, SiMe₃), 25.7 (3CH₃, *CMe*₃), 33.9 (C, C2, C-I), 58.2 (C, *C*Me₃), 74.1 (5CH, Cp), 76.8 (C, C5, *C*-SiMe₃), 78.9 (CH, C4), 82.7 (CH, C3), 89.4 (C, C1, *C*-SO*t*Bu) ppm; [α]_D +242 (*c* 1). Anal. Calcd for C₁₇H₂₅FeIOSSi (488.28): C, 41.82; H, 5.16; S, 6.57. Found: C, 42.11; H, 5.29; S, 6.30%.

 (S,R_P) -*S*-tert-Butyl-2-(trimethylsilyl)ferrocenesulfoxide (S,R_P-12b') was similarly isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.52) in 40% yield (80 mg) as an orange oil (see above).

(*S*,*R*_P)-*S*-*tert*-Butyl-4-chloro-2-(trimethylsilyl)ferrocenesulfoxide (*S*,*R*_P-13b) was prepared by adapting the general procedure G (30 min) to 0.44 mmol of (*S*,*S*,*R*_P)-*S*-*tert*-butyl-3-chloro-*S*'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-12a; 0.23 g) and using ClSiMe₃ (60 µL). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.72) in 29% yield (50 mg) as a yellow oil: IR (ATR) ν 756, 820, 900, 1027, 1105, 1209, 1249, 1361, 1458, 1642, 2958, 3481 cm⁻¹; ¹H NMR (CDCl₃) δ 0.32 (s, 9H, SiMe₃), 1.16 (s, 9H, *t*Bu), 4.42 (s, 5H, Cp), 4.46 (d, 1H, *J* = 1.4 Hz,

H3), 5.11 (d, 1H, J = 1.4 Hz, H5) ppm; ¹³C{¹H} NMR (CDCl₃) δ 1.3 (3CH₃, SiMe₃), 23.6 (3CH₃, CMe₃), 55.8 (C, CMe₃), 68.1 (CH, C5), 72.9 (5CH, Cp), 74.5 (C, C2, C-SiMe₃), 76.0 (CH, C3), 91.5 (C, C1), 95.0 (C, C4) ppm; [α]_D +336 (c 1). Anal. Calcd for C₁₇H₂₅ClFeOSSi (396.83): C, 51.46; H, 6.35; S, 8.08. Found: C, 51.63; H, 6.16; S, 8.03%.

In this reaction, the starting material was also recovered in an estimated 10% yield, as a mixture with (S,R_P) -*S*-*tert*-butyl-2-(trimethylsilyl)ferrocenesulfoxide (S,R_P -12b') also formed in about 9% yield.

(*S*,*S*_P)-*S*-*tert*-Butyl-3-fluoroferrocenesulfoxide (*S*,*S*_P-13c) was prepared by adapting the general procedure G (10 min) to 0.27 mmol of (*S*,*S*,*R*_P)-*S*-*tert*-butyl-3-fluoro-*S*'-phenylferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-7d; 0.12 g) and using MeOH in excess (2 mL). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.75) in 93% yield (77 mg) as a yellow solid: mp 176-178 °C; IR (ATR) ν 820, 939, 109, 1060, 1108, 1185, 1245, 1358, 1462, 2932 cm⁻¹; ¹H NMR (CDCl₃) δ 1.12 (s, 9H, *t*Bu), 4.12 (dt, 1H, *J* = 2.7 and 1.4 Hz, H5), 4.48 (s, 5H, Cp), 4.54 (td, 1H, *J* = 2.8 and 1.6 Hz, H4), 4.87 (dt, 1H, *J* = 3.0 and 1.5 Hz, H2) ppm; ¹³C{¹H} NMR (CDCl₃) δ 22.9 (3CH₃, *CMe*₃), 53.8

TH, J = 3.0 and 1.5 Hz, H2) ppin; C{ H} NMR (CDCl₃) δ 22.9 (3CH₃, CMe₃), 53.8 (d, CH, J = 15.1 Hz, C2), 55.3 (C, CMe₃), 58.6 (d, CH, J = 16.3 Hz, C4), 63.1 (d, CH, J = 3.4 Hz, C5), 71.6 (5CH, Cp), 80.5 (d, C, J = 1.6 Hz, C1, C-SOtBu), 134.7 (d, C, J = 274.3 Hz, C3, C-F) ppm; ¹⁹F{¹H} NMR (CDCl₃) δ -183.8 ppm; [α]_D +138 (c 0.6). Anal. Calcd for C₁₄H₁₇FFeOS (308.19): C, 54.56; H, 5.56; S, 10.40. Found: C, 54.10; H, 6.02; S, 10.13%.

 (R,R_P) -S-tert-Butyl-3-fluoro-2-(methoxycarbonyl) ferrocenesulfoxide (R,R_P -13d) was prepared by adapting the general procedure G (7 min) to 0.68 mmol of (R,R,S_P)-S-tert-butyl-3-fluoro-S'phenylferrocene-1,2-disulfoxide (*R*,*R*,*S*_{**P**}-**7d**; 0.30 g) and using methyl chloroformiate (0.27 mL, 3.4 mmol; reverse addition). It was isolated (eluent: petroleum ether-EtOAc 30:70; Rf = 0.35) in 46% yield (0.12 g) as a brownish-orange oil: IR (ATR) v 751, 826, 948, 1047, 1076, 1130, 1175, 1213, 1276, 1335, 1379, 1416, 1452, 1716, 2954, 3089, 3440 cm⁻¹; ¹H NMR (CDCl₃) δ 1.22 (s, 9H, *t*Bu), 3.89 (s, 3H, OMe), 4.29 (dd, 1H, J = 2.8 and 1.9 Hz, H5), 4.57 (s, 5H, Cp), 4.72 (t, 1H, J = 2.9 Hz, H4) ppm; $^{13}C{^{1}H}$ NMR (CDCl₃) δ 24.1 (3CH₃, CMe₃), 52.4 (CH₃, OMe), 56.9 (C, CMe₃), 59.7 (d, CH, J = 15.4 Hz, C4), 63.3 (d, C, J = 8.7 Hz, C2, C-CO₂Me), 65.8 (d, CH, *J* = 3.7 Hz, C5), 73.6 (5CH, Cp), 81.4 (C, C1, *C*-SOtBu), 134.9 (d, C, *J* = 284.2

Hz, C3, C-F), 167.4 (d, C, J = 4.5 Hz, C=O) ppm; ¹⁹F{¹H} NMR (CDCl₃) δ -179.5 ppm; [a]_D -182 (c 0.6). Anal. Calcd for C₁₆H₁₉FFeO₃S (366.23); C. 52.47; H. 5.23; S, 8.75. Found: C, 52.11; H, 5.34; S, 8.78%.

 (R,R_P) -S-tert-Butyl-3-fluoroferrocenesulfoxide (R,R_P-13c) was also isolated in 9% yield (19 mg) as well as recovered starting material (4% yield).

(SP)-1-tert-Butyl-2-(phenylthio)-5,1'-bis(trimethylsilyl)ferrocene (SP-14) was obtained as follows. To a solution of (*S*,*S*_P)-*S*-tert-butyl-2-(phenylthio)-5,1'-bis(trimethylsilyl)ferrocenesulfoxide (*S*,*S*_P-9a; 0.55 g, 1.0 mmol) in THF (10 mL) at 0 °C was added dropwise a 1.4 M hexane solution of *n*BuLi (0.86 mL, 1.2 mmol) before warming to rt. The reaction was stirred at this temperature for 1 h and cooled to 0 °C before addition of ClSiMe₃ (0.15 mL). The mixture was warmed to rt and stirred for 1 h. Addition of 1 M HCl (5 mL), extraction with EtOAc (3 x 20 mL), drying over MgSO₄ and removal of the solvents under reduced pressure led to the crude product, which was purified by chromatography over silica gel (eluent: petroleum ether-EtOAc 80:20; Rf = 0.84). (S_P)-1-tert-Butyl-2-(phenylthio)-5,1'bis(trimethylsilyl)ferrocene (Sp-14) was isolated in 28% yield (0.135 g) as an orange oil: IR (ATR) v736, 752, 823, 870, 900, 967, 1025, 1037, 1065, 1122, 1200, 1246, 1384, 1439, 1456, 1478, 1582, 2955 cm⁻¹; ¹H NMR (CDCl₃) δ 0.22 (s, 9H, C1'-SiMe₃), 0.40 (s, 9H, C5-SiMe₃), 1.12 (s, 9H, tBu), 4.04 (dt, 1H, J = 2.4 and 1.2 Hz, H2'), 4.14 (dt, 1H, J = 2.4 and 1.2 Hz, H5'), 4.31 (d, 1H, J = 2.6 Hz, H4), 4.35 (td, 1H, J = 2.4 and 1.1 Hz, H4'), 4.41 (td, 1H, J = 2.3 and 1.1 Hz, H3'), 4.79 (d, 1H, J = 2.6 Hz, H3), 7.05 (t, 1H, J = 7.2 Hz, H4"), 7.14 (dd, 2H, J = 8.5 and 1.4 Hz, H2" and H6"), 7.19 (t, 2H, J = 7.6 Hz, H3" and H5") ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃) $\delta 0.0$ (3CH₃, C1'-SiMe₃), 1.5 (3CH₃, C5-SiMe₃), 31.9 (3CH₃, CMe₃), 46.8 (C, CMe₃), 74.5 (CH, C2' or C3'), 74.6 (CH, C2' or C3'), 75.1 (C, C1', C-SiMe₃), 76.8 (CH, C4), 77.2 (CH, C4'), 78.8 (CH, C5'), 80.1 (C, C5, C-SiMe₃ SiMe₃), 81.0 (CH, C3), 85.3 (C, C1, C-tBu), 86.5 (C, C2, C-SPh), 124.8 (CH, *t*Βι C4"), 126.1 (2CH, C2" and C6"), 128.7 (2CH, C3" and C5"), 140.7 (C, C1") ppm; $[\alpha]_D$ +305 (c 1). Anal. Calcd for C₂₆H₃₈FeSSi₂ (494.66): C, 63.13; H,

7.74; S, 6.48. Found: C, 63.17; H, 7.76; S, 6.31%. In this reaction, the starting material was also recovered in a 48% yield (0.26 g).

The evaluation of the ligands in the rhodium-catalysed 1,4-addition of phenylboronic acids to 2cyclohexenone was performed as follows.¹⁷ A solution of the ligand ($S_{,S,R_{P}-2}$; 13 mg, 30 µmol) and [Rh(C₂H₄)₂Cl]₂ (6.0 mg, 15 µmol) in degassed toluene was stirred for 30 min at rt. To this solution, was added phenylboronic acid (0.15 g, 1.2 mmol), 2-cyclohexenone (58 mg, 0.60 mmol) and a 2.5 M aqueous solution of NaOH (0.12 mL, 0.30 mmol). Once the starting material was consumed (TLC monitoring using petroleum ether-EtOAc 90:10 as eluent), the crude was purified by chromatography over silica gel (Rf = 0.54) to afford 3-phenylcyclohexanone in 99% yield (0.10 g) as a colourless oil. The product was identified by comparison of its ¹H NMR (CDCl₃) spectrum with that reported.¹⁷ $[\alpha]_D$ -19 (c 1). HPLC: 88% ee in favour of the S enantiomer, Chiralpack IA3 column, eluent: *n*-hexane-i-PrOH 97:3, 0.8 mL.min⁻¹, 30 °C, $t_R = 8.68$ min Ρh (major), 9.73 min (minor).

B) X-ray Crystallography

Crystallography. For *S*-FcSOtBu, the X-ray diffraction data were collected using D8 VENTURE Bruker AXS diffractometer equipped with a CMOS-PHOTON70 detector. For *S*,*S*P-9a and *S*,*R*P-13a, the X-ray diffraction data were collected using APEXII Kappa-CCD (Bruker-AXS) diffractometer equipped with a CCD plate detector. The structure was solved by dual-space algorithm using the *SHELXT* program,¹⁸ and then refined with full-matrix least-square methods based on F^2 (*SHELXL*).¹⁹ All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters. The molecular diagrams were generated by MERCURY (version 3.9).

Crystal data for S-FcSOtBu. C₁₄H₁₈FeOS, M = 290.19, T = 150 K; orthorhombic $P \ 2_1 \ 2_1 \ 2_1 \ (I.T.#19)$, a = 5.9280(4), b = 9.8602(7), c = 22.3535(13) Å, V = 1306.59(15) Å³. Z = 4, d = 1.475 g.cm⁻³, $\mu = 1.294$ mm⁻¹. A final refinement on F^2 with 2953 unique intensities and 157 parameters converged at $\omega R_F^2 = 0.0811$ ($R_F = 0.0347$) for 2849 observed reflections with $I > 2\sigma(I)$. CCDC 2127411.

Figure 1. Molecular structure of compound S-FcSOtBu (thermal ellipsoids shown at the 30% probability level).

Crystal data for *S*,*S***P-9a.** C₂₆H₃₈FeOS₂Si₂, M = 542.71, T = 150 K; monoclinic $P 2_1$ (I.T.#4), a = 9.3403(6), b = 13.3410(8), c = 12.3446(8) Å, $\beta = 109.899(3)$ °, V = 1446.40(16) Å³. Z = 2, d = 1.246 g.cm⁻³, $\mu = 0.765$ mm⁻¹. A final refinement on F^2 with 4769 unique intensities and 298 parameters converged at $\omega R_F^2 = 0.0728$ ($R_F = 0.0339$) for 4250 observed reflections with $I > 2\sigma(I)$. CCDC 2127412.

Figure 2. Molecular structure of compound *S*,*S*_P-9a (thermal ellipsoids shown at the 30% probability level).

Crystal data for *S***,***R***P-13a.** C₁₇H₂₅FeIOSSi, *M* = 488.27, *T* = 150 K; orthorhombic *P* 2₁ 2₁ 2₁ (I.T.#19), *a* = 10.6604(5), *b* = 11.6304(6), *c* = 15.9593(8) Å, *V* = 1978.71(17) Å³. *Z* = 4, *d* = 1.639 g.cm⁻³, μ = 2.488 mm⁻¹. A final refinement on *F*² with 4437 unique intensities and 205 parameters converged at $\omega R_F^2 = 0.0525$ ($R_F = 0.0247$) for 4192 observed reflections with *I* > 2 σ (*I*). CCDC 2127413.

Figure 3. Molecular structure of compound S, RP-13a (thermal ellipsoids shown at the 30% probability level).

Figure 4. Halogen bond network observed at the solid state for compound *S*,*R*_{*P*}**-13a** (thermal ellipsoids shown at the 30% probability level). Hydrogens were omitted for clarity.

C) NMR Spectra

(S)-S-tert-Butylferrocenesulfoxide (S-FcSOtBu)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

DEPT 135 (126 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(R) - S - tert - Butyl ferrocenesul foxide (R - FcSOtBu)

(S)-S-(4-Tolyl)ferrocenesulfoxide (S-FcSO-*p*-Tol)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(*R*,*R*)-*S*,*S*'-Di-*tert*-butylferrocene-1,2-disulfoxide (*R*,*R*-1)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(*S*,*S*,*R*_P)-*S*-*tert*-Butyl-*S*'-tolylferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-2)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(S,S_P)-S-tert-Butyl-2-(phenylthio)ferrocenesulfoxide (S,S_P-4)

¹H NMR (500 MHz, CDCl₃)

8-

% ppm

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(S)-S-tert-Butyl-2,5-di(phenylthio)ferrocenesulfoxide (S-4')

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(*S*,*S*)-*S*,*S*'-Di(4-tolyl)ferrocene-1,2-disulfoxide (*S*,*S*-3)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

(S,S,R_P) -S-tert-Butyl-S'-phenylferrocene-1,2-disulfoxide (S,S,R_P-5)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S,S,R_P) -S-tert-Butyl-S'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (S,S,R_P-11)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S,S,R_P) -S-tert-Butyl-S'-tolyl-3-(trimethylsilyl)ferrocene-1,2-disulfoxide (S,S,R_P-6a)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

(*R*,*R*,*S*_P)-*S*-*tert*-Butyl-*S*'-phenyl-3-(trimethylsilyl)ferrocene-1,2-disulfoxide (*R*,*R*,*S*_P-7a)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S,S,R_P) -S-tert-Butyl-3-chloro-S'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (S,S,R_P-12a)

¹H NMR (500 MHz, CDCl₃)

(S,R_P)-S-tert-Butyl-2-chloro-5-(trimethylsilyl)ferrocenesulfoxide (S,R_P-12a')

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(*S*,*S*,*R*_P)-*S-tert*-Butyl-3-fluoro-*S*'-phenyl-5-(trimethylsilyl)ferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-12b)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

$(S,R_{\rm P})$ -S-tert-Butyl-2-(trimethylsilyl)ferrocenesulfoxide $(S,R_{\rm P}$ -12b')

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(S,S,R_P)-S-tert-Butyl-3-(dimethylaminomethyl)-S'-phenylferrocene-1,2-disulfoxide (S,S,R_P-7b)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(*S*,*S*,*R*_P)-*S-tert*-Butyl-3-chloro-*S*'-phenylferrocene-1,2-disulfoxide (*S*,*S*,*R*_P-7c)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S,S,R_P) -S-tert-Butyl-3-fluoro-S'-phenylferrocene-1,2-disulfoxide $(S,S,R_P$ -7d)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

(R_{C}, S_{S}, S_{P}) -S-tert-Butyl-2-(1-(ferrocenyl)hydroxymethyl)-5-(phenylthio)ferrocenesulfoxide $(S, S_{P}-8a)$

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S,S_P)-S-tert-Butyl-2-(phenylthio)-5-(trimethylsilyl)ferrocenesulfoxide (S,S_P-8b)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

S79

$(S,S_{\rm P})\text{-}S\text{-}tert\text{-}Butyl\text{-}2\text{-}(phenylthio)\text{-}5,1\text{'}\text{-}bis(trimethylsilyl)ferrocenesulfoxide} (S,S_{\rm P}\text{-}9a)$

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S,S_P)-S-tert-Butyl-5,1'-bis(diphenylphosphino)-2-(phenylthio)ferrocenesulfoxide (S,S-9b)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S, S_P) -S-tert-Butyl-2-(phenylthio)-5,1'-(1,1,3,3-tetramethyl-1,3-disiloxanediyl) ferrocenesul foxide (S, S_P-9c)

¹H NMR (500 MHz, CDCl₃)

0,5

1

1,5

0 % 40 60 8000

HSQC (500 MHz, CDCl₃)

7,5

ļ

6,5

6

(S, S_P) -S-tert-Butyl-1'-(diphenylphosphino)-2-(phenylthio)-5-(trimethylsilyl) ferrocenesulfoxide (S, S_P-10)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S,R_P)-S-tert-Butyl-2-iodo-5-(trimethylsilyl)ferrocenesulfoxide (S,R_P-13a)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(S,R_P) -S-tert-Butyl-4-chloro-2-(trimethylsilyl)ferrocenesulfoxide (S,R_P-13b)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(S,S_P)-S-tert-Butyl-3-fluoroferrocenesulfoxide (S,S_P-13c)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(R,R_P) -S-tert-Butyl-3-fluoro-2-(methoxycarbonyl)ferrocenesulfoxide (R,R_P-13d)

¹H NMR (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

(S_P)-1-*tert*-Butyl-2-(phenylthio)-5,1'-bis(trimethylsilyl)ferrocene (S_P-14)

¹H NMR (500 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

(*R/S*)-3-Phenylcyclohexanone

¹H NMR (300 MHz, CDCl₃)

D) Selected NMR NOESY correlations

S,S_P-8a

S,S_P-8b

S,S_P-9a

S,S_P-9b

S,S_P-9c

S,R_P-13a

S,R_P-13b

S,S_P-13c

R,R_P-13d

S_P-14

E) HPLC Data

(±)-S-tert-Butylferrocenesulfoxide ((±)-FcSOtBu)

Integr	Integration Results								
No.	o. Peak Name Retention Time		Area	Height	Relative Area	Relative Height			
		min	mAU*min	mAU	%	%			
1		19.617	23.570	25.038	50.46	55.59			
2		25.182	23.144	20.007	49.54	44.41			
Total:			46.714	45.045	100.00	100.00			

(*R*)-*S*-tert-Butylferrocenesulfoxide ((*R*)-FcSOtBu)

	Chromatogram and Results							
Gener	al informations							
Seque	nce Name:	2020-10-09						
Instrun	nent:	U3000						
Logicie	el used:	Chromeleon						
Colum	n used:	CHIRALPAK IC-3	DAICEL					
Injecti	ion Details							
Injectio	on Name:	RAC-MW-178OE	-2020-10-09-98-2	-0.7mLmin-50mi	Run Time:	40.0	00 min	
Instrun	nent Method:	98-2-0.7mLmin-40)min-254nm-25°C		Injection Volume:	2.0	00 µL	
Injectio	on Date/Time:	09/OCt./20 17:15			Channer.	UV_VIS_1	54 pm	
Instru	ment Method Details				wavelengin.	2	D4 NM	
Instrun	nent Method:	98-2-0.7mLmin-40	min-254nm-25°C					
%A	Isopropanol	2	%					
%В	Hexane	98	%		Température du four:	25	.0 °C	- 1
	Débit:	0.700	mL/min		Pression:		19 bars	
Chron	natogram							
55.0	🗿 2020-10-09 #10 [man	ually integrated] F	RAC-MW-178OD-	2020-10-09-98-2-0	.7mLmin-50min-254nm	1-25°C	UV_VIS_1 W	/L:254 nm
55.0	<u>'][</u>							
50.0)- 			1	20.910			
	4			۸				
	-			1				
	-1			11				
40.0	24			11				
	1							
]							
R 30.0	,]			11				
<u> </u>				11				
l B	-1							
ę	-1							
g 20.0)네							
A	-1							
	1							
10.0	.1							
10.0	']							
]			1				
	4			1				
0.0)-				2-25.	088		
	-1				1	1		
-5.0)┘ ╞────────────────────────────────────		, , , , , , , , , , , , , , , , , , , 					
	0.0 5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
Deals	Doculto			nme (min)			-	
No	Results Rook Namo	Potention Time	Width (50%)	Decolution (ED)	Asymmotry (ED)	Diatos (ED)		
NU.	r call maine	min	min	Resolution (EP)	Asymmetry (EP)	Fiales (EP)		
1		20.910	0.880	2.97	1 30	3131		
2		25.880	1 092	 	1.50	3112		
2		20.000	1.002	n.a.	1.47	3112		

		min	rnin					
1		20.910	0.880	2.97	1.30	3131		
2		25.880	1.092	n.a.	1.47	3112		
Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height		
		min	mAU*min	mAU	%	%		
1		20.910	45.851	49.552	98.40	98.80		
2		25.880	0.746	0.604	1.60	1.20		
Total:			46.597	50.155	100.00	100.00		

(S)-S-tert-Butylferrocenesulfoxide ((S)-FcSOtBu)

	Chromatogram and Results							
Gen	eral informations							
Sequence Name: 2020-10-15								
Instr	rument:	U3000						
Logi	ciel used:	Chromeleon	DAIOEI					
Coll	imn usea: atlaa Datalla	CHIRALPAK IC-3	DAICEL				_	
Inje	ction Details	MW 193 3ADD 0	D 2020 10 15 00 3	2.0.7ml min 40m	Dun Timo:	40.00) min	
Inst	uon Name. rument Method:	98-2-0 7ml min_40	D-2020-10-15-96-4	2-0.7111211111-4011	niertion Volume	40.00) (1)	
Inied	ction Date/Time:	15/oct./20 13:33			Channel:	UV VIS 1	μc	
					Wavelength:	254	1 nm	
Inst	rument Method Details	_						
Instr	rument Method:	98-2-0.7mLmin-40	min-254nm-25°C					
%A	Isopropanol	2	%		T	25.0		
%B	Hexane Débit:	98	% ml/min		remperature du tour:	25.0)°C) hare	
Chr	omatogram	0.700			riesaluri.		pais	
Cille	011at051a11	ally integrated 1 N	W-183-3APROD	2020-10-15-98-2-0) 7ml min-40min-254nn	1-25°C	UV VIS 1 WVI-24	54.nm
e	30.0 1 2020-10-10 #0 [man	any megrated	111-100-074 10-00	2020 10 10 00 21	5.7 MERINI 401111 20411	-20 0	01_10_11112.20	
Absorbance [mAU]	50.0 50.0 50.0 50.0 10.0 0.0					1		
-1			· · ·		· · · · · · · ·	· · · · · ·	· <u>··</u> ···	
	0.0 5.0	10.0	15.0	20.0 Time [min]	25.0	30.0	35.0	40.0
Dec	k Rosults			tine (ting			1	
No.	Peak Name	Retention Time min	Width (50%) min	Resolution (EP)	Asymmetry (EP)	Plates (EP)	1	
1		25.445	1.083	n.a.	1.28	3056	1	

Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height		
		min	mAU*min	mAU	%	%		
1		25.445	63.027	55.389	100.00	100.00		
Total:			63.027	55.389	100.00	100.00		

(±)-S-(4-Tolyl)ferrocenesulfoxide ((±)-FcSO-p-Tol)

	Chromatogram and Results						
Gonor	al informations						
Seque Instrum Logicie	nce Name: nent: el used: n used:	2021-12-03_2 U3000 Chromeleon	DAICE				
Injecti	ion Details	CHINALPAN ASH	DAICEL				
Injectio Instrum Injectio	on Name: nent Method: on Date/Time:	RAC-MW-199-2-0 90-10-30min-20°C 03/déc./21 17:57	DH-2021-12-03-90 -204nm-0.8mLmir)-10-30min-20°C n	Run Time: Injection Volume: Channel: Wavelength:	30.00 1.00 UV_VIS_1 204) min) μL 4 nm
Instru	ment Method Details	00 10 30min 20°C	204pm 0.9ml mi	p			
%A %B	Isopropanol Hexane Débit:	90-10-30mm-20°C 10 90 0.800	-2041111-0.811L1111 % % mL/min		Température du four: Pression:	20.0 34	0 °C ∣ 4 bars
Chron	natogram						
450	🗑 2021-12-03_2 #3 [man	ually integrated]					UV_VIS_1 WVL:204 nm
400 3000 [New]oouestosqy 100 0 -50			1 - 18.74	43	12 - 21.067		
	15.0 16.0	17.0 18	.0 19.0	20.0 Time (min)	21.0 2	22.0 23.0	24.0 25.0
Peak I	Results						1
No.	Peak Name	Retention Time min	Width (50%) min	Resolution (EP)	Asymmetry (EP)	Plates (EP)]
1 2		18.743 21.067	0.502 0.641	2.40 n.a.	1.37 2.03	7717 5993	

Integr	Integration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area				
		min	mAU*min	mAU	%				
1		18.743	214.105	391.328	50.20				
2		21.067	212.386	290.877	49.80				
Total:			426.491	682.205	100.00				

(S)-S-(4-Tolyl)ferrocenesulfoxide ((S)-FcSO-p-Tol)

	Chromatogram and Results							
Gener	al informations							
Seque	nce Name:	2021-12-03_2						
Instrun	ment:	J3000						
Logicie	el used:	Chromeleon						
Colum	n used:	CHIRALPAK ASH DAICEL						
Injecti	ion Details							
Injectio	on Name:	MW455-recris-ODH-2021-12-03-90-10-30min-20°C	-2 Run Time:	30.00 min				
Instrun	nent Method:	90-10-30min-20°C-204nm-0.8mLmin	Injection Volume:	1.00 µL				
Injecuo	on Date/ IIme:	03/dec./21 18:28	Channer. UV_VIS_1	204 pm				
Instru	ment Method Details		wavelength.	204 mm				
Instrum	nent Method:	90-10-30min-20°C-204nm-0.8mLmin						
%A	Isopropanol	10 %						
%B	Hexane	90 %	Température du four:	20.0 °C				
	Débit:	0.800 mL/min	Pression:	34 bars				
Chron	natogram							
450	🗑 2021-12-03_2 #4 [mai	nually integrated]		UV_VIS_1 WVL:204 nm				
400								
400	1							
400	1		12 - 21 017					
	1		\wedge					
	1		()					
	1		/ \					
300	-1							
5	1							
AL	-1							
<u> </u>	-1							
Ê 200	-							
ĝ	-							
vpso	-							
4	-1							
100	-							
	-							
	-							
0		<u>1 - 18.973</u>						
, i				1				
-50								
~~~	15.0 16.0	17.0 18.0 19.0 20.0	21.0 22.0	23.0 24.0 25.0				
		Time (min	]					
Peak I	Results							
No.	Peak Name	Retention Time Width (50%) Resolution (EP	P) Asymmetry (EP) Plates (	EP)				

	min	min			
1	18.973	0.499	2.11	0.84	8002
2	21.017	0.645	n.a.	1.92	5878

Integr	ation Results	ion Results								
No.	o. Peak Name Retention Tin		Area	Height	Relative Area					
	min		mAU*min	mAU	%					
1		18.973	0.988	1.809	0.36					
2		21.017	270.183	371.941	99.64					
Total:			271.171	373.750	100.00					

# (±)-3-Phenylcyclohexanone

	Chromatogram and Results						
General informations							
Sequence Name:	2021-06-08_2						
Instrument:	U3000	U3000					
Logiciel used:	Chromeleon						
Column used:	CHIRALPAK IC-3 DAICEL						
Injection Details							
Injection Name:	RAC-MW-402IA3-2021-06-08-97-3-30min-30°C-21	0 Run Time:	30.00 min				
Instrument Method:	97-3-30min-30°C-210nm-0.8mLmin	Chappel:	5.00 µL				
Injection Date/Time.	09/juii//21 00:11	Wavelength:	210 pm				
Instrument Method Details		wavelengun.	210 1111				
Instrument Method:	97-3-30min-30°C-210nm-0.8mLmin						
%A Isopropanol	3 %						
%B Hexane	97 %	Température du four:	30.0 °C				
Débit:	0.800 mL/min	Pression:	61 bars				
Chromatogram							
1000 - 2021-06-08_2 #5	RAÇ-MW-402IA3-2021-06-08-97-3	-30min-30°Ç-210nm-0.8mLmin	UV_VIS_1 WVL:210 nm				
875- 750- 625- 00- 125- 125- 125- 00- -100- 0.0	5'0 10.0 15.0 Time [mir	20.0	25.0 30.0				
Peak Results							

	i courto					
No.	Peak Name Retention Time		Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)
		min	min			
1		8.670	0.174	3.31	2.22	13796
2		9.687	0.189	n.a.	2.05	14593

Integr	Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height		
		min	mAU*min	mAU	%	%		
1		8.670	193.197	896.289	49.51	51.96		
2		9.687	196.987	828.815	50.49	48.04		
Total:			390.184	1725.104	100.00	100.00		

# (S)-3-Phenylcyclohexanone obtained by using ligand S,S,Rp-2

	Chromatogram and Results						
Gener	al informations						
Sequer	Sequence Name: 2021-06-08_2						
Instrument: U3000							
Logicie	l used:	Chromeleon					
Columi	n used:	CHIRALPAK IC-3 DAICEL					
Injecti	on Details						
Injectio	on Name:	MW-402-IA3-2021-06-08-97-3-30min-30	PC-210nm-0. Run Time:	30.00 min			
Instrun	nent Method:	97-3-30min-30°C-210nm-0.8mLmin	Injection Volume:	5.00 µL			
Injectio	on Date/Time:	09/juin/21 00:41	Channel: UV_VIS_1				
			Wavelength:	210 nm			
Instru	ment Method Details	07.0.00					
Instrun	nent Method:	97-3-30min-30°C-210nm-0.8mLmin					
%A	Isopropanol	3%	Town forthern do form	20.0.00			
%B	Hexane	97 %	Temperature du tour:	30.0 °C			
Charan	Debit	0.800 mL/min	Pression:	60 bars			
Chron	natogram		0.00.07.0.00min.00%0.040mm.0.0ml min	10.11.08			
1800	2021-06-08_2 #6 [ma רך	nually integrated] MVV-402-IA3-2021-0	6-08-97-3-30min-30°Ç-210nm-0.8mLmin	UV_VIS_1 WVL:210 nm			
	1	1 - 8.682					
	1						
1500	dl lb	1					
1000	1						
	1						
1250	~ 1						
	1						
_	1						
₹ 1000	거	1					
5							
ĕ	_1						
e /5	2						
oso	1						
₹ 500	lt.						
	7						
	1						
25	o-1						
	1	2 - 9 727					
	-11						
	0.0	5.0 10.0	15.0 20.0	25.0 30.0			
			Time [min]				
Peak F	Results						
No.	Peak Name	Retention Time Width (50%) Re	solution (EP) Asymmetry (EP) Plates (E	P)			

NO.	Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)
		min	min			
1		8.682	0.179	3.26	2.37	12965
2		9.727	0.199	n.a.	n.a.	13280

Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	
		min	mAU*min	mAU	%	%	
1		8.682	374.944	1681.907	93.94	94.46	
2		9.727	24.193	98.612	6.06	5.54	
Total:			399.138	1780.518	100.00	100.00	

# (S)-3-Phenylcyclohexanone obtained by using ligand S,S-3

			Chromatogram a	nd Results	
Gener	ral informations				
Seque	nce Name:	2021-09-02_2			
Instrur	ment:	U3000			
Logicie					
Colum	n used:	CHIRALPAK IA-3 DAI	CEL		
Inject	ion Details				
Injectio	on Name:	MIN-457-IA3-2021-09-0	2-99-1-30min-30°C-210nn	n-0. Run Time:	15.04 min
Instru	ment Method:	99-1-30min-30°C-210n	m-0.8mLmin	Injection Volume:	20.00 µL
Injectio	on Date/Time:	02/sept./21 15:26		Channel: UV_VIS	_1
Instru	ment Method Det	aile		wavelength.	210 nm
Instru	ment Method:	00 1 30min 30°C 210n	m 0.8ml min		
%Δ	Isopropanol	3 %			
%B	Hexane	97 %		Température du four:	30.0 °C
1	Débit:	0.800 mL/	min	Pression:	58 bars
Chron	natogram				
	2021-09-02 2#	6 [manually integrated] MI	N-457-IA3-2021-09-02-99-1-3	30min-30°C-210nm-0.8mLmin	UV_VIS_1 WVL:210 nm
800	<u>ا</u> ۲			1 - 8 898	
701 601 504 (NPW) 2010 2010 2010 101 101		^		2 - 9.908	
-100	0.0	2.0 4.0	6.0 Time In	8.0 10.0	12.0 14.0 15.0
Deale	Poculto		nine (n		
No	Results Rook Nomo	Retention Time	/idth (50%) Decolution (5	ED) Asymmetry (ED) Dia	tos (EP)
NO.	reakiname	Retenuori nine V	num (30%) resolution (8		ites (EF)

N	o. Peak Name	Retention Time	Width (50%)	Resolution (EP)	Asymmetry (EP)	Plates (EP)
		min	min			
1		8.898	0.129	4.46	1.39	26491
2		9.908	0.138	n.a.	1.24	28458
_						

Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	
		min	mAU*min	mAU	%	%	
1		8.898	107.993	754.466	60.06	61.58	
2		9.908	71.809	470.650	39.94	38.42	
Total:			179.802	1225.116	100.00	100.00	

#### References

- 1. A. F. Burchat, J. M. Chong and N. Nielsen, J. Organomet. Chem., 1997, 542, 281-283.
- 2. H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512-7515.
- 3. F. Rebière, O. Samuel and H. B. Kagan, *Tetrahedron Lett.*, 1990, **31**, 3121-3124.
- 4. F. Rebière, O. Riant, L. Ricard and H. B. Kagan, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 568-570.
- 5. F. Rebiere and H. B. Kagan, *Tetrahedron Lett.*, 1989, **30**, 3659-3662.
- 6. F. Rebiere, O. Samuel, L. Ricard and H. B. Kagan, J. Org. Chem., 1991, 56, 5991-5999.
- 7. Z. S. Han, A. M. Meyer, Y. Xu, Y. Zhang, R. Busch, S. Shen, N. Grinberg, B. Z. Lu, D. Krishnamurthy and C. H. Senanayake, *J. Org. Chem.*, 2011, **76**, 5480-5484.
- 8. J. Priego, O. García Mancheño, S. Cabrera, R. Gómez Arrayás, T. Llamas and J. C. Carretero, *Chem. Commun.*, 2002, DOI: 10.1039/b207344g, 2512-2513.
- 9. J. Priego, O. G. Mancheño, S. Cabrera and J. C. Carretero, J. Org. Chem., 2002, 67, 1346-1353.
- 10. O. Riant, G. Argouarch, D. Guillaneux, O. Samuel and H. B. Kagan, *J. Org. Chem.*, 1998, **63**, 3511-3514.
- 11. G. Solladié, J. Hutt and A. Girardin, Synthesis, 1987, DOI: 10.1055/s-1987-27877, 173.
- 12. D. Guillaneux and H. B. Kagan, J. Org. Chem., 1995, 60, 2502-2505.
- N. M. Lagneau, Y. Chen, P. M. Robben, H.-S. Sin, K. Takasu, J.-S. Chen, P. D. Robinson and D. H. Hua, *Tetrahedron*, 1998, 54, 7301-7334.
- 14. R. Gómez Arrayás, I. Alonso, O. Familiar and J. C. Carretero, *Organometallics*, 2004, 23, 1991-1996.
- 15. D. J. Weix and J. A. Ellman, Org. Lett., 2003, 5, 1317-1320.
- 16. M. Wen, W. Erb, F. Mongin, Y. S. Halauko, O. A. Ivashkevich, V. E. Matulis, T. Roisnel and V. Dorcet, *Organometallics*, 2021, **40**, 1129-1147.
- 17. N. Khiar, A. Salvador, V. Valdivia, A. Chelouan, A. Alcudia, E. Álvarez and I. Fernández, J. Org. Chem., 2013, **78**, 6510-6521.
- 18. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3-8.
- 19. G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, C71, 3-8.