Supporting Information

for

Palladium-Catalyzed Intermolecular Alkynylcarbonylation of Unactivated Alkenes: Easy Access to β-Alkynylcarboxylic Ester

Xiang Li, Pinhong Chen* and Guosheng Liu*

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China

Email: pinhongchen@sioc.ac.cn, gliu@mail.sioc.ac.cn

Table of Contents

1.	General consideration	S2	
2.	Experiments section	S2	
	2.1 Synthesis of alkene substrates and EBX reagents	S2	
	2.2 General procedure for alkynylcarbonylation of unactivated alkenes	S2	
	2.3 Scale-up reaction	S3	
	2.4 Reaction with nitrogen contain nucleophiles	S3	
	2.5 Synthetic applications	S3	
	2.6 Mechanical experiments	S8	
3.	X-Ray structures	S13	
4. New compounds characterization			
5.	5. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra		
6.	6. Supplementary reference		

1. General Consideration.

Pd(CH₃CN)₄(BF₄)₂ was purchased from Strem Chemical, other commercial reagents with high purity were purchased and used without further purification, unless otherwise noted. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on an Agilent-400 MHz and Bruker-400 MHz spectrometer. The chemical shifts (δ) are given in parts per million relative to internal standard CDCl₃ (7.26 ppm for ¹H), CDCl₃ (77.0 ppm for ¹³C). ¹H and ¹⁹F multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), quartet (q), multiplet (m), and broad resonance (br). Flash column chromatography was performed on silica gel (particle size 230-400 mesh, purchased from Canada) and eluted with petroleum ether/ethyl acetate or dichloromethane/ethyl acetate. High Resolution Mass spectral data were obtained on a Waters Micromass GCT spectrometer in EI mode or on Agilent Technologies 6224 TOF LC MS spectrometer in ESI mode. CH₃CN and DCM were dried by refluxed with CaH₂.

2. Experiments section.

2.1 Preparation of alkene and EBX reagents.

Alkene substrates **1c**, **1d**, **1f**, **1p** and **1u** were commercial available. And other alkenes and EBX reagents were prepared according to literature reports.¹⁻⁴

2.2 General procedure for alkynylcarbonylation of alkenes.

In an oven-dried 10.0 mL Schlenk tube, alkene substrate **1** (0.2 mmol, 1.0 equiv.) and EBX reagent **2** (0.4 mmol, 2.0 equiv.) were dissolved in a mixed solvent CH₃CN/toluene (2.0 mL, v/v 2:1) at room temperature under a CO atmosphere (1.0 atm). And then, HOTf (35.0 µL, 0.4 mmol, 2.0 equiv.) and Pd(CH₃CN)₄(BF₄)₂ (50.0 µL, 0.1 M in CH₃CN, 0.005 mmol, 2.5 mol%) were added to the reaction mixture. The reaction was stirred at room temperature and monitored by TLC. After the alkene substrate was consumed, the solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum

ether and ethyl acetate to afford products **3** or **4**. The results were shown in Table 2.

2.3 Scale-up reaction.

In an oven-dried 200.0 mL Schlenk bottom, alkene substrate **1i** (0.7 g, 3.0 mmol, 1.0 equiv.) and EBX reagent **2c** (2.4 g, 4.5 mmol, 1.5 equiv.) were dissolved in a mixed solvent CH₃CN/MeOH (25.0 mL, ν/ν 2:1) at room temperature under a CO atmosphere (1.0 atm). And then, HOTf (0.4 mL, 6.0 mmol, 2.0 equiv.) and Pd(CH₃CN)₄(BF₄)₂(75.0 μ L, 1 M in CH₃CN, 0.075 mmol, 2.5 mol%) were added to the reaction mixture. The reaction was stirred at room temperature and monitored by TLC. After the alkene substrate was consumed, the solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to afford products **3i** (R_f = 0.61, PE:EA = 3:1) (1.08 g, 75% yield).

2.4 The reactions with nitrogen nucleophiles.^a

Table S1 The reactions with nitrogen nucleophiles.

	Pdi TBDPS Pdi Me 2c	(CH ₃ CN) ₄ (BF ₄) ₂ (2.5 mol%) HOTf (2.0 equiv) <u>N-nucleophile (5.0 equiv)</u> CO (1.0 atm), r.t. CH ₃ CN (1.0 mL)	$ \begin{array}{c c} & \text{TBDPS} \\ & & \text{O} \\ & & \text{O} \\ & & \text{N} \\ & & \text{N} \\ & & \text{N} \\ & & \text{N} \\ & & \text{R}^2 \end{array} $
Entry	N-nucleophile	1a (%)	3a ["] (%)
1	CH ₃ ONH ₂	100	0
2	CH_3CONH_2	26	0
3	PhONH ₂	70	0
4	n-BuNH ₂	22	0
5	BnNH ₂	68	0
6	BnNHCH ₃	87	0
7	cyclohexanamine	85	0

^a The reactions were ran on 0.1 mmol scale, and yields were talken from ¹H NMR with CF₃DMA as an internal standard.

2.5 Synthetic applications.

2.5.1. Palladium-catalyzed cross-coupling reaction.

According to literature process.⁵ Pd(PPh₃)₄ (46.2 mg, 0.04 mmol, 10 mol%) and AgI (18.7 mg, 0.08 mmol, 20 mol%) were weighted to an oven-dried sealed tube in glove-box. Then DMF (0.5 mL), **3i** (0.44 mL, 1 M in DMF, 0.44 mmol, 1.1 equiv.) and cyclohex-1-en-1-yl trifluoromethanesulfonate (0.4 mL, 1 M in DMF, 0.4 mmol, 1.0 equiv.) were added in sequence, and the mixture was stirred for 5 minutes under N₂ atmosphere. Then, Bu₄NOH·3H₂O (0.6 mL, 1 M in DMF, 0.6 mmol, 1.5 equiv.) was added and the reaction was allowed to stirred at room temperature. When **3i** was consumed, ethyl acetate (10.0 mL) was added and the mixture was washed with water. The combined organic layer was dried over Na₂SO₄, filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **5a** ($R_f = 0.65$, PE:EA = 3:1) (114.7 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.50 – 7.34 (m, 4H), 6.79 (d, J = 7.2 Hz, 1H), 6.00 (s, 1H), 4.14 (t, J = 6.4 Hz, 2H), 3.69 (s, 3H), 3.00 – 2.96 (m, 1H), 2.55 (dd, J = 15.6, 7.6 Hz, 1H), 2.46 (dd, J = 15.6, 7.2 Hz, 1H), 2.06 – 2.05 (m, 3H), 1.98 – 1.90 (m, 2H), 1.61 – 1.46 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 154.9, 134.5, 133.8, 127.4, 126.3, 125.9, 125.7, 125.0, 122.1, 120.7, 119.9, 104.5, 88.3, 84.0, 67.9, 51.7, 40.2, 34.7, 29.5, 29.2, 28.8, 27.0, 26.0, 25.5, 22.3, 21.5. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 422.2690, measured: 422.2692. IR (neat): 2929, 2857, 1736, 1579, 1389, 1268, 1155, 1099, 791, 770 cm⁻¹.

2.5.2. Click reaction.

According to literature process.⁶ TBAF (0.4 mL, 1 M in THF, 0.4 mmol, 2.0 equiv.) was added to a solution of 3i (104.2 mg, 0.2 mmol, 1.0 equiv.) in freshly dried THF, and the mixture was stirred at 80 °C for 2 hours under N₂ atmosphere. When the **3i** was consumed, the reaction was cooled down to room temperature before water (5.0 mL) and ethyl acetate (10.0 mL) were added to the mixture, and the water phase was extracted with ethyl acetate (10.0 mL*2). The combined organic layer was washed with brine and dried over MgSO4. The filtrate was concentrated under vacuum, and the residue was dissolved with tert-butanol and water (1.0 mL, 1:1) in a 10 mL sealed tube, cupric acetate (3.6 mg, 0.02 mmol, 10 mol%), sodium ascorbate (8.0 mg, 0.04 mmol, 20 mol%) and benzyl azide (26.6 mg, 0.2 mmol, 1.0 equiv.) were added to the solution in sequence. The mixture was reacted at room temperature for overnight. Then, the reaction was diluted with ethyl acetate (10.0 mL), dried over MgSO₄ and concentrated in vacuum. The residue was purified by column chromatography on silica with a gradient eluent of petroleum ether and ethyl acetate (3:1 to 0:1) gel to get **5b** ($R_f = 0.32$, PE:EA:Et₃N = 3:3:1) (83.2 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.50 – 7.32 (m, 7H), 7.20 – 7.17 (m, 3H), 6.76 (d, J = 7.2 Hz, 1H), 5.44 (d, J = 15.2 Hz, 1H), 5.39 (d, J = 15.2 Hz, 1H), 4.07 (t, J = 6.4 Hz, 2H), 3.57 (s, 3H), 3.34 – 3.30 (m, 1H), 2.76 (dd, J = 15.6, 8.0 Hz, 1H), 2.68 (dd, J = 16.0, 6.8 Hz, 1H), 1.91 – 1.70 (m, 4H), 1.60 – 1.50 (m, 2H), 1.36 – 1.32 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 154.7, 150.3, 134.8, 134.4, 128.9, 128.5, 127.8, 127.4, 126.3, 125.9, 125.6, 125.0, 122.0, 120.9, 119.9, 104.4, 67.7, 53.8, 51.4, 39.5, 34.6, 33.1, 29.1, 26.8, 26.0. HRMS: m/z (ESI) calculated [M+H]⁺: 458.2438, measured: 458.2435. IR (neat): 3141, 2941, 1727, 1582, 1457, 1333, 1206, 778, 724, 694 cm⁻¹. 2.5.3. Hydrolysis of ester.

TBAF (2.0 mL, 1 M in THF, 2.0 mmol, 2.0 equiv.) was added to a solution of 3i (562.3 mg, 1.0 mmol, 1.0 equiv.) in freshly dried THF, and mixture was stirred at 80 °C for 2 hours under N₂ atmosphere. When the **3i** was consumed (detected by TLC), the reaction was cooled down to room temperature before water (10.0 mL) and ethyl acetate (30.0 mL) were added to the mixture, and the water phase was extracted with ethyl acetate (30.0 mL*2). The combined organic layer was washed with brine and dried over MgSO4, and concentrated under reduced pressure. The residue was dissolved with THF/H₂O (1:1, 10.0 mL) and lithium hydroxide monohydrate (125.9 mg, 3.0 mmol, 3.0 equiv.) was added to the solution in sequence. The mixture was allowed to react at 80 °C for overnight. After that, the reaction was cooled down to room temperature, HCl (1 M, 10.0 mL) was added to the mixture and extracted with ethyl acetate (20.0 mL*3). The combined organic phase was washed with brine (40.0 mL) and dried over MgSO4. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica with a gradient eluent of petroleum ether and ethyl acetate (3:1 to 0:1) gel to get 5c ($R_f = 0.44$, PE:EA = 1:3), (201.8 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.7 (br, 1H), 8.31 (d, J = 9.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.52 – 7.36 (m, 4H), 6.81 (d, J = 7.2 Hz, 1H), 4.15 (t, J = 6.0 Hz, 2H), 2.94 – 2.88 (m, 1H), 2.64 (dd, J = 15.6, 7.6 Hz, 1H), 2.54 (dd, J =

16.0, 6.8 Hz, 1H), 2.14 (s, 1H), 1.98 – 1.95 (m, 2H), 1.68 – 1.59 (m, 6H). ¹³ C NMR (100 MHz, CDCl₃) δ 177.7, 154.7, 134.4, 127.4, 126.3, 125.9, 125.6, 125.0, 122.0, 119.9, 104.5, 85.5, 70.1, 67.8, 39.7, 34.2, 29.1, 27.7, 26.8, 25.9. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 328.1907, measured: 328.1907. IR (neat): 3310, 2958, 1741, 1579, 1389, 1361, 1155, 770 cm⁻¹.

2.5.4 Gold-catalyzed cyclization reaction.

According to literature process.⁷ AuCl₃ (1.2 mg, 0.0035 mmol, 2.5 mol%) and **5c** (43.4 mg, 0.14 mmol, 1.0 equiv.) were dissolved in a mixed solvent (toluene/water, 1:1, 1.0 mL) under N₂ atmosphere. And the mixture was allowed to react at room temperature for overnight. Then, the mixture was diluted with ethyl acetate (10.0 mL), dried over MgSO₄ and the filtrate was removed in vacuum. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (20:1 to 5:1) to give **5d** (R_f = 0.75, PE:EA = 5:1) (33.3 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 7.6 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.52 – 7.34 (m, 4H), 6.81 (d, *J* = 7.6 Hz, 1H), 4.77 (s, 1H), 4.32 (s, 1H), 4.15 (t, *J* = 6.4 Hz, 2H), 3.08 – 3.03 (m, 1H), 2.80 (dd, *J* = 18.0, 9.6 Hz, 1H), 2.36 (dd, *J* = 18.0, 6.0 Hz, 1H), 1.98 – 1.91 (m, 2H), 1.78 – 1.73 (m, 1H), 1.66 – 1.45 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 160.1, 154.6, 134.4, 127.4, 126.3, 125.9, 125.6, 125.1, 121.9, 120.0, 104.4, 88.4, 67.7, 37.7, 34.1, 29.1, 26.5, 26.1. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 328.1907, measured: 328.1907. IR (neat): 2942, 2862, 2339, 2307, 1806, 1581, 1269, 1125, 1018, 769 cm⁻¹.

2.5.5. NIS-medaited lactonization.

According to literature process.⁸ In a 10.0 mL oven-dried sealed tube, 5c (40.3 mg, 0.13 mmol, 1.0 equiv.) was dissolved in CH₂Cl₂, N-iodosuccinimide (NIS) (58.5 mg, 0.26 mmol, 2.0 equiv.), sodium bicarbonate (27.3 mg, 0.32 mmol, 2.5 equiv.) and tetrabutylammonium hydroxide (16.9 mg, 0.07 mmol, 50 mol%) were added in sequence. The reaction was stirred vigorously for 30 minutes, H₂O (10.0 mL) and CH₂Cl₂ (10.0 mL) were added to the mixture. The organic layer was washed with sodium thiosulfate (5% aq) and saturated brine, dried over Na_2SO_4 and the filtrate was removed in vacuum. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (20:1 to 5:1) to get 5e (R_f = 0.7, PE:EA = 5:1) (48.8 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 7.2 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.49 – 7.35 (m, 4H), 6.81 (d, J = 7.6 Hz, 1H), 5.81 (s, 1H), 4.15 (t, J = 6.4 Hz, 2H), 3.23 – 3.21 (m, 1H), 2.85 (dd, J = 18.0, 9.2 Hz, 1H), 2.53 (d, J = 18.4 Hz, 1H), 1.96 – 1.85 (m, 3H), 1.66 – 1.46 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 157.8, 154.7, 134.4, 127.4, 126.3, 125.9, 125.1, 121.9, 120.1, 104.5, 67.7, 53.1, 39.0, 34.0, 32.4, 29.1, 26.0. HRMS: m/z (ESI) calculated [M+H]⁺: 437.0608, measured: 437.0602. IR (neat): 2934, 2340, 1705, 1579, 1459, 1267, 1237, 1098, 791, 770 cm⁻¹.

2.6 Mechanistic investigations.

2.6.1 Control experiment.

 $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 10 mol%), alkene substrate **1a** (21.5 mg, 0.1 mmol, 1.0 equiv.), Selectfluor (70.8 mg, 0.2 mmol, 2.0 equiv.) and potassium carbonate (27.6 mg, 0.2 mmol, 2.0 equiv.) were dissolved in a mixed solvent (CH₃CN/CH₃OH 2:1, 1.0 mL), and trimethoxy(phenylethynyl)silane (44.4 mg, 0.2 mmol, 2.0 equiv.) was added to the mixture in sequence under a CO atmosphere. Then the reaction was stirred at room temperature for 8 hours. The solvent was removed in vacuum and the residue was

analyzed by ¹H NMR with CF₃DMA as internal standard. As shown in **figure S1**, product **4a** was obtained in 12% yield with trimethoxy(phenylethynyl)silane as the alkynylation reagent⁹. The result indicated that alkynyl-Pd^{II} was involved in the alkynylcarbonylation process.

Figure S1¹H NMR of control experiment

2.6.2 Influence of CO pressure.

Alkene substrate **1a** (43.0 mg, 0.2 mmol, 2.0 equiv.), EBX reagent **2c** (52.4 mg, 0.1 mmol, 1.0 equiv.) and a stirring bar were added into a vial (4.0 mL). Then CH_3CN/CH_3OH (1.0 mL, v/v 2:1) was injected by syringe. The vial was then transferred into an autoclave (20.0 mL). At room temperature, the autoclave was flushed with CO gas three times and pressurized with CO gas to 2.0 atm, 5.0 atm and 10.0 atm. 8 hours later, the solvent was removed under reduced pressure and CDCl₃ was added to the residue and the product was detected by ¹H NMR with CF₃-DMA as an internal standard.

Scheme S1 Influence of CO pressure

The yields of target product **3a** were decreased when increasing CO pressure. Those results ruled out the possibility that CO₂Me-Pd (II) acted as a key intermediate for the target reaction, in which a high CO pressure could be benefited for alkynylcarbonylation products formation. On the other hand, an alkynyl-Pd^{II} species might be involved in the reaction. Alkene insertion by alkynyl-Pd^{II} occurred exclusively at 1 atm CO pressure, whereas the direct carbonylation of alkynyl-Pd^{II} was promoted to a remarkable extent by increasing the CO pressure.

2.6.3 Stereochemistry of alkynylcarbonylation process.

7 was prepared via literature process.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 8.75 (m, 4H), 7.42 – 7.34 (m, 6H), 6.01 (br, 1H), 3.63 – 3.57 (m, 1H), 3.40 – 3.33 (m, 1H), 3.13 – 3.07 (m, 1H), 2.73 (dd, *J* = 17.6, 6.0 Hz, 1H), 2.61 (dd, *J* = 17.6, 7.2 Hz, 1H), 2.17 – 1.97 (m, 2H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 135.5, 133.2, 129.5, 127.7, 111.0, 82.2, 40.2, 37.4, 27.9, 27.0, 25.8, 18.4. HRMS: m/z (ESI) calculated [M+Na]⁺: 384.1754 measured:384.1755. Then we turned our attention to confirm the relative The relative configuration of 7. The NOESY spectroscopy shows that there are stronger NOE between H_b and H_c, and weak NOE with H_c and H_a, which means H_c and H_b in one side of ring, and H_c and H_a in cross sides of ring.

Figure S2 NOE of 7

The deuterium-labelled substrate *trans*-1b- d_1 (90% D containing) was synthesized according to the literature³ and then subjected to the reaction conditions. The configuration of the corresponding product d_1 -3b was determined by the further transformation to give six membered-lactam d_1 -7 as a single isomer. This result indicated that the reaction could involve a *cis*-alkynulpalladation followed by CO insertion and nucleophilic attack of acyl Pd(II) intermediate by methanol in sequence to afford the arylcarbonylation products.

Figure S3 ¹H NMR of 8a and d_1 -8a

3. X-Ray structure of target product.

CCDC Number: 2129108

Figure S4 X-Ray structure of 3v

Identification code mo_d8v19162_0m

Empirical formula	C27 H38 O5 Si		
Formula weight	470.66		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 13.9071(10) Å	α= 109.976(2)°.	
	b = 14.9140(12) Å	β=113.932(2)°.	
	c = 16.1401(13) Å	$\gamma = 98.587(2)^{\circ}$.	
Volume	2709.4(4) Å ³		
Ζ	4		
Density (calculated)	1.154 Mg/m ³		
Absorption coefficient	0.119 mm ⁻¹		
F(000)	1016		
Crystal size	0.200 x 0.170 x 0.100 mm ³		
Theta range for data collection	1.700 to 25.500°.		
Index ranges	-16<=h<=16, -18<=k<=18, -19<=l<=19		
Reflections collected	37764		
Independent reflections	10067 [R(int) = 0.0562]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6424		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	10067 / 132 / 666		
Goodness-of-fit on F ²	1.046		
Final R indices [I>2sigma(I)]	R1 = 0.0727, wR2 = 0.1705		
R indices (all data)	R1 = 0.1098, $wR2 = 0.1962$		
Extinction coefficient	0.0076(11)		
Largest diff. peak and hole	0.592 and -0.274 e.Å ⁻³		

4. New compounds characterization

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3a** ($R_f = 0.40$, PE:EA = 3:1) (Pale yellow oil,

85.9 mg of 6:1 mixture, 69%, 6:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.83 (m, 2H), 7.78 – 7.76 (m, 4H), 7.72 – 7.67 (m, 2H), 7.40 – 7.34 (m, 6H), 3.77 (t, *J* = 7.2 Hz, 2H), 3.67 (s, 3H), 3.15 – 3.10 (m, 1H), 2.66 (dd, *J* = 15.2, 8.0 Hz, 1H), 2.55 (dd, *J* = 15.2, 6.8 Hz, 1H), 2.10 – 2.04 (m, 1H), 1.95 – 1.89 (m, 1H), 1.78 – 1.62 (m, 2H), 1.03 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 168.3, 135.5, 133.8 133.4, 132.0, 129.3, 127.6, 123.2, 111.8, 81.8, 51.7, 39.9, 37.5, 31.7, 29.2, 26.9, 26.6, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 555.2674, measured: 555.2674. IR (neat): 2930, 2855, 2324, 2171, 1772, 1736, 1430, 1394, 1107, 699 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3b** ($R_f = 0.34$, PE:EA = 3:1) (Pale yellow oil,

86.8 mg of 3:1 mixture, 62%, 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.62 (m, 8H), 7.61 – 7.35 (m, 6H), 4.02 – 3.81 (m, 2H), 3.66 (s, 3H), 3.17 – 3.13 (m, 1H), 2.77 – 2.63 (m, 2H), 2.04 – 1.99 (m, 2H), 1.04 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 168.2, 135.6, 133.8, 133.3, 132.0, 129.4, 127.6, 123.2, 111.0, 82.3, 51.9, 39.7, 36.1, 33.0, 27.6, 26.9, 18.4. HRMS: m/z (ESI) calculated [M+Na]⁺: 546.2071, measured: 546.2067. IR (neat): 2933, 2934, 2174, 1767, 1743, 1430, 1267, 1107, 699 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (1:0 to 10:1) to get **3c** ($R_f = 0.78$, PE:EA = 10:1) (Yellow oil, 81.5 mg, 71%, 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.78 (m, 4H), 7.41 – 7.34 (m, 6H), 3.70 (s, 3H), 3.08 – 3.04 (m, 1H), 2.66 (dd, J = 15.2, 7.6 Hz, 1H), 2.57 (dd, J = 15.2, 6.8 Hz, 1H), 1.60 – 1.52 (m, 4H), 1.37 – 1.26 (m, 26H), 1.06 (s, 9H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 135.5, 133.7, 129.3, 127.6, 112.8, 81.1, 51.7, 40.1, 34.5, 31.9, 29.68, 29.66, 29.62, 29.55, 29.35, 29.26, 27.2, 27.0, 22.7, 18.5, 14.1. HRMS: m/z (ESI) calculated [M+Na]⁺: 597.4098, measured: 597.4090. IR (neat): 2922, 2853, 2324, 2169, 1744, 1463, 1227, 1163, 1107, 919, 720, 660 cm⁻¹

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (1:0 to 10:1) to get **3d** ($R_f = 0.75$, PE:EA = 10:1) (Yellow oil, 78.4 mg, 80%,

10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.78 (m, 4H), 7.41 – 7.34 (m, 6H), 3.69 (s, 3H), 3.08 – 3.04 (m, 1H), 2.65 (dd, J = 15.2, 7.6 Hz, 1H), 2.56 (dd, J = 15.2, 6.8 Hz, 1H), 1.60 – 1.52 (m, 4H), 1.37 – 1.26 (m, 14H), 1.06 (s, 9H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 135.5, 133.7, 129.3, 127.6, 112.8, 81.1, 51.7, 40.1, 34.5, 31.9, 29.62, 29.55, 29.31, 29.26, 27.2, 27.0, 26.9, 22.7, 28.5, 14.1. HRMS: m/z (ESI) calculated [M+Na]⁺: 513.3159, measured: 513.3168. IR (neat): 2924, 2860, 2324, 2169, 1743, 1462, 1229, 1164, 1107, 918, 674, 660 cm⁻¹.

TBDPS The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (20:1 to 5:1) to get **3e** ($R_f = 0.53$, PE:EA = 10:1) **3e** (Yellow oil, 67.2 mg, 74%, 9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.83 (m, 4H), 7.44 - 7.37 (m, 6H), 7.33 - 7.29 (m, 2H), 7.26 - 7.20 (m, 3H), 3.70 (s, 3H), 3.11 - 2.99 (m, 2H), 2.89 - 2.84 (m, 1H), 2.71 (dd, J = 15.6, 8.0 Hz, 1H), 2.57 (dd, J = 15.6, 7.2 Hz, 1H), 1.96 - 1.88 (m, 2H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 141.4, 135.5, 133.5, 129.4, 128.5, 127.6, 127.62, 126.0, 112.2, 81.9, 51.6, 39.9, 36.4, 33.6, 29.3, 27.0, 18.5. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 472.2666, measured: 472.2668. IR (neat): 2930, 2856, 2170, 1738, 1428, 1165, 1107, 819, 741, 698 cm⁻¹. **3e'** ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.82 (m, 4H), 3.72 (s, 3H).

The crude material was purified by column chromatography BDPS on silica gel with a gradient eluent of petroleum ether and ethyl acetate (30:1 to 10:1) to get **3f** ($R_f = 0.66$, PE:EA = CO₂Me Br 10:1), (Yellow oil, 69.4 mg, 70%). ¹H NMR (400 MHz, 3f CDCl₃) δ 7.80 – 7.77 (m, 4H), 7.42 – 7.34 (m, 6H), 3.70 (s, 3H), 3.42 (t, J = 6.8 Hz, 2H), 3.09 – 3.06 (m, 1H), 2.67 (dd, J = 15.2, 8.0 Hz, 1H), 2.56 (dd, J = 15.2, 6.8 Hz, 1H), 1.92 - 1.85 (m, 2H), 1.67 - 1.48 (m, 6H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 135.5, 133.5, 129.4, 127.6, 112.4, 81.4, 51.8, 40.0, 34.2, 33.7, 32.6, 29.5, 27.7, 27.0, 26.4, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 516.1928, measured: 515.1930. IR (neat): 2930, 2856, 2170, 1738, 1428, 1165, 1107, 819, 741, 698 cm⁻¹

The crude material was purified by column chromatography TBDPS on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get 3g (R_f = 0.46, PE:EA = 3:1) CO₂Me HO (Pale yellow oil, 78.5 mg, 82%). ¹H NMR (400 MHz, CDCl₃) 3g δ 7.81 – 7.79 (m, 4H), 7.42 – 7.26 (m, 6H), 3.70 (s, 3H), 3.62 (t, *J* = 6.4 Hz, 2H), 3.09 -3.06 (m, 1H), 2.66 (dd, J = 15.6, 8.4 Hz, 1H), 2.56 (dd, J = 14.8, 6.8 Hz, 1H), 1.76 (br, 1H), 1.64 – 1.51 (m, 6H), 1.41 - 1.27 (m, 9H), 1.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) § 172.0, 135.5, 133.6, 129.3, 127.6, 112.7, 81.1, 62.9, 51.7, 40.0, 34.4, 32.7, 29.5, 29.4, 29.2, 29.1, 27.1, 26.9, 25.6, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]+: 496.3241, measured: 496.3245. IR (neat): 2928, 2855, 2170, 1738, 1429, 1359, 1107, 741, 698, 630 cm⁻¹

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3h** ($R_f = 0.50$, PE:EA = 3:1),

(Yellow oil, 65.4 mg, 75%, 7:1, dr 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.77 (m, 4H), 7.41 – 7.34 (m, 6H), 3.84 – 3.79 (m, 1H), 3.69 (s, 3H), 3.09 – 3.06 (m, 1H), 2.67 (dd, J = 15.2, 7.6 Hz, 1H), 2.57 (dd, J = 15.2, 8.0 Hz, 1H), 1.75 – 1.45 (m, 7H), 1.19 (d, J = 6.4 Hz, 3H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 135.5, 133.5, 129.4, 127.6, 112.4, 81.4, 67.9, 51.7, 40.0, 38.8, 34.4, 29.6, 26.9, 23.45, 23.40, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 454.2722, measured: 454.2725. IR (neat): 2930, 2857, 2170, 1737, 1429, 1158, 1107, 819, 714, 699 cm⁻¹

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to afford **3i** ($R_f = 0.61$, PE:EA = 3:1), (Yellow oil, 75.3 mg,

67%, 12:1). ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.34 (m, 1H), 7.88 – 7.82 (m, 5H), 7.54 – 7.37 (m, 10H), 6.80 (d, *J* = 6.8 Hz, 1H), 4.17 (t, *J* = 6.4 Hz, 2H), 3.74 (s, 3H), 3.18 – 3.14 (m, 1H), 2.73 (dd, *J* = 15.2, 7.6 Hz, 1H), 2.62 (dd, *J* = 15.2, 6.8 Hz, 1H), 2.02 – 1.97 (m, 2H), 1.83 – 1.62 (m, 6H), 1.12 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 154.7, 135.5, 134.4, 133.5, 129.4, 127.6, 127.4, 126.3, 125.9, 125.7, 125.0, 122.0, 119.9, 112.6, 104.5, 81.3, 67.8, 51.7, 40.0, 34,4, 29.6, 29.2, 27.1, 27.0, 25.9, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 580.3241, measured: 580.3249. IR (neat): 2930, 2856, 2324, 2170, 1737, 1579, 1268, 1238, 1107, 819, 790, 740 cm⁻¹.

TBDPS The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to get **3j** ($R_f = 0.58$, PE:EA = 3:1), **3j** (Pale vellow oil, 71.6 mg, 74%, 15:1), ¹H NMR (400 MHz,

3 (Pale yellow oil, 71.6 mg, 74%, 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.77 (m, 4H), 7.40 – 7.24 (m, 6H), 7.26 (t, J = 8.0 Hz, 2H), 6.95 – 6.88 (m, 3H), 4.02 (t, J = 6.4 Hz, 2H), 3.68 (s, 3H), 3.16 – 3.12 (m, 1H), 2.69 (dd, J = 15.6, 8.4 Hz, 1H), 2.56 (dd, J = 15.2, 6.8 Hz, 1H), 2.14 – 2.10 (m, 1H), 2.04 – 1.98 (m, 1H), 1.87 – 1.61 (m, 2H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 158.9, 135.5, 133.5, 129.4, 129.38, 127.6, 120.6, 114.4, 112.1, 81.7, 67.2, 51.8, 40.0, 31.2, 29.4, 27.1, 27.0, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 502.2722, measured: 502.2779. IR (neat): 2929, 2856, 2338, 2169, 1738, 1428, 1242, 1079, 752, 693cm⁻¹

The crude material was purified by column TBDPS chromatography on silica gel with a gradient eluent O CO₂Me of petroleum ether and ethyl acetate (10:1 to 3:1) to get 3k (R_f = 0.57, PE:EA = 3:1), (Pale yellow oil, CI 3k 70.5 mg, 68%, 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.78 (m, 4H), 7.43 – 7.36 (m, 6H), 7.21 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 4.00 (t, J = 6.0 Hz, 2H), 3.71 (s, 3H), 3.18 - 3.14 (m, 1H), 2.72 (dd, J = 15.2, 7.6 Hz, 1H), 2.61 (dd, J = 15.6, 6.8 Hz, 1H), 2.16 – 2.10 (m, 1H), 2.05 – 1.97 (m, 1H), 1. 87 – 1.73 (m, 2H), 1.08 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 157.5, 135.5, 133.4, 129.4, 129.2, 127.6, 125.4, 115.7, 112.0, 81.9, 67.6, 57.7, 51.2, 40.0, 31.1, 29.4, 27.0, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 536.2382, measured: 536.2379. IR (neat): 2973, 2902, 2348, 1741, 1394, 1252, 1054, 892, 643 cm⁻¹

53%, 7:1). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.75 (m, 6H), 7.42 – 7.34 (m, 6H), 7.30 (d, J = 8.4 Hz, 2H), 4.10 (t, J = 6.0 Hz, 2H), 3.69 (s, 3H), 3.05 – 2.99 (m, 1H), 2.65 (dd, J = 15.6, 7.6 Hz, 1H), 2.52 (dd, J = 15.2, 6.8 Hz, 1H), 2.42 (s, 3H), 2.05 – 1.98 (m, 1H), 1.89 – 1.83 (m, 1H), 1.75 – 1.56 (m, 2H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 144.7, 135.4, 133.2, 132.9, 129.8, 129.4, 128.0, 127.6, 111.4, 82.1, 60.9, 51.8, 39.8, 30.3, 29.0, 26.9, 26.7, 21.5, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 580.2547, measured: 580.2549. IR (neat): 2929, 2856, 2171, 1737, 1597, 1429, 1173, 1107, 919, 741 cm⁻¹. **3**I' ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.75 (m, 6H), 7.42 – 7.34 (m, 6H), 7.30 (d, J = 8.4 Hz, 2H), 4.07 (t, J = 6.0 Hz, 2H), 3.71 (s, 3H).

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (20:1 to 10:1) to get **3m** ($R_f = 0.63$, PE:EA = 10:1), (Yellow oil, 65.5 mg, 63%, 14:1). ¹H NMR (400

MHz, CDCl₃) δ 7.81 – 7.78 (m, 4H), 7.42 – 7.34 (m, 6H), 3.69 (s, 3H), 3.67 (s, 3H), 3.08 – 3.06 (m, 1H), 2.66 (dd, J = 15.2, 7.2 Hz, 1H), 2.55 (dd, J = 15.2, 8.4 Hz, 1H), 2.30 (t, J = 7.6 Hz, 2H), 1.66 – 1.56 (m, 6H), 1.33 – 1.30 (m, 8H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 171.9, 135.5, 133.6, 129.3, 127.6, 112.8, 81.1, 51.7, 51.4, 40.0, 34.5, 34.0, 29.6, 29.3, 29.1, 29.08, 27.2, 26.9, 24.9, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 538.3347, measured: 538.3342. IR (neat): 2930, 2856, 2170, 1738, 1428, 1165, 1107, 819, 741, 698 cm⁻¹

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3n** ($R_f = 0.35$, PE:EA = 2:1), (Yellow solid, 79.1 mg, 68%, 12:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.78

(m, 4H), 7.51 (d, J = 8.0 Hz, 2H), 7.41 – 7.26 (m, 9H), 7.09 (t, J = 7.2 Hz, 1H), 3.69 (s, 3H), 3.07 – 3.04 (m, 1H), 2.65 (dd, J = 15.2, 8.0 Hz, 1H), 2.55 (dd, J = 15.2, 6.8 Hz, 1H), 2.31 (t, J = 7.2 Hz, 2H), 1.72 – 1.66 (m, 3H), 1.62 – 1.53 (m, 4H), 1.33 – 1.26 (m, 7H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.4, 135.5, 133.6, 129.3, 128.9, 127.6, 127.5, 124.1, 119.7, 112.8, 81.1, 51.7, 40.1, 37.7, 34.4, 29.5, 29.2, 29.1, 29.0, 27.1, 26.9, 25.5, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 599.3663, measured: 599.3670. IR (neat): 3373, 2927, 2853, 2338, 2172, 1720.3, 1682, 1598, 1534, 1077, 740 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to get **30** ($R_f = 0.54$, PE:EA = 3:1), (Yellow oil, 56.3 mg, 67%, 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.76 (m, 4H), 7.43 – 7.35 (m, 6H), 3.70 (s, 3H), 3.14 – 3.07 (m, 1H), 2.80 – 2.67 (m, 3H), 2.58 (dd, *J* = 15.2, 6.8 Hz, 1H), 2.14 (s, 3H), 2.04 – 1.91 (m, 1H), 1.82 – 1.71 (m, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 171.5, 135.4, 133.3, 129.4, 127.6, 111.6, 82.3, 51.8, 41.1, 39.9, 30.0, 28.9, 28.1, 26.9, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 438.2459, measured: 438.2466. IR (neat): 2930, 2856, 2323, 2170, 1737, 1715, 1428, 1166, 1107, 819, 714, 699 cm⁻¹

The crude material was purified by column
chromatography on silica gel with a gradient eluent of
$$O_2N$$

 CO_2Me petroleum ether and ethyl acetate (10:1 to 3:1) to get
 $3p$ $3p$ ($R_f = 0.43$, PE:EA = 5:1), (Yellow oil, 67.1 mg,
72%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.77 (m, 4H), 7.43 – 7.35 (m, 6H), 4.35 (t,
 $J = 7.2$ Hz, 2H), 3.70 (s, 3H), 3.08 – 3.06 (m, 1H), 2.68 (dd, $J = 15.2$, 7.6 Hz, 1H), 2.56
(dd, $J = 15.6$, 7.2 Hz, 1H), 2.06 – 1.98 (m, 2H), 1.71 – 1.57 (m, 4H), 1.51 – 1.40 (m,
2H), 1.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 135.5, 133.4, 129.4, 127.6,
112.1, 81.6, 75.4, 51.8, 39.9, 34.0, 29.4, 27.2, 26.9, 26.5, 25.8, 18.4. HRMS: m/z (ESI)
calculated [M+NH₄]⁺: 483.2674, measured: 483.2670. IR (neat): 2930, 2857, 2338,

2172, 1739, 1374, 1234, 1143, 1107, 699 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3q** ($R_f = 0.52$, PE:EA = 2:1), (Yellow oil, 63.5

mg, 57%, 9:1). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 6.8 Hz, 4H), 7.40 – 7.28 (m, 10H), 7.22 – 7.18 (m, 2H), 4.36 – 4.32 (m, 2H), 3.62 (s, 3H), 3.10 – 3.07 (m, 1H), 2.61 (dd, J = 15.2, 8.0 Hz, 1H), 2.47 (dd, J = 15.2, 6.4 Hz, 1H), 2.26 – 2.21 (m, 1H), 2.13 – 2.06 (m, 1H), 1.69 – 1.63 (m, 2H), 1.02 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 140.3, 135.4, 133.3, 129.4, 127.6, 125.7, 122.8, 120.3, 118.8, 111.7, 108.5, 82.1, 51.7, 42.6, 39.9, 32.0, 29.4, 26.9, 26.8, 18.4. HRMS: m/z

(ESI) calculated [M+H]⁺: 558.2823, measured: 558.2832. IR (neat): 2928, 2855, 2169, 1735, 1484, 1452, 1326, 1152, 1107, 819, 747, 740 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get 3r (R_f = 0.51, PE:EA = 2:1), (Yellow oil, 85.2 mg,

75%, 7:1). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 8.0 Hz, 1H), 8.38 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.81 – 7.79 (m, 4H), 7.48 (t, *J* = 6.8 Hz, 1H), 7.43 – 7.35 (m, 7H), 4.45 (t, *J* = 6.4 Hz, 2H), 3.69 (s, 3H), 3.22 – 3.18 (m, 1H), 2.73 (dd, *J* = 15.2, 7.6 Hz, 1H), 2.61 (dd, *J* = 15.6, 7.2 Hz, 1H), 2.20 – 2.16 (m, 1H), 2.08 – 2.04 (m, 1H), 1.86 – 1.76 (m, 2H), 1.08 (s, 9H). ¹H NMR (400 MHz, CDCl₃) δ 171.6, 162.7, 140.0, 136.7, 136.6, 135.5, 133.4, 129.4, 127.7, 127.1, 125.4, 125.0, 124.7, 122.5, 111.9, 82.1, 64.2, 51.8, 40.0, 31.2, 29.4, 27.0, 26.7, 18.4. HRMS: m/z (ESI) calculated [M+Na]⁺: 591.1996, measured: 591.1996. IR (neat): 2940, 2870, 2338, 2170, 1751, 1737, 1550, 1429, 1170, 700 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3s** (R_f = 0.39, PE:EA = 3:1) (Yellow oil, 75.2 mg, 77%, 9:1). ¹H

NMR (400 MHz, CDCl₃) δ 7.77 – 7.75 (m, 4H), 7.57 (s,

1H), 7.39 - 7.34 (m, 6H), 7.19 (d, J = 3.2 Hz, 1H), 6.49 (d, J = 2.0 Hz, 1H), 4.61 - 4.52 (m, 2H), 3.69 (s, 3H), 3.32 - 3.28 (m, 1H), 2.73 (dd, J = 15.6, 8.0 Hz, 1H), 2.65 (dd, J = 15.6, 6.8 Hz, 1H), 2.12 - 2.01 (m, 2H), 1.05 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 146.4, 135.5, 134.4, 133.3, 129.5, 127.7, 119.5, 118.1, 111.9, 110.8, 82.6, 62.6, 51.9, 39.8, 33.4, 27.0, 26.7, 18.5. HRMS: m/z (ESI) calculated [M+Na]⁺: 511.1911, measured: 511.1913. IR (neat): 2928, 2855, 2169, 1735, 1484, 1452, 1326, 1152, 1107, 819, 747, 740 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to get 3t $(R_f = 0.46, PE:EA = 3:1)$ (Yellow oil, 51.4 mg of 5:1

mixture, 50%, 5:1). ¹H NMR (400 MHz, CDCl₃) δ 5.26 (t, J = 7.6 Hz, 1H), 3.68 (s, 3H), 3.00 – 2.97 (m, 1H), 2.68 – 2.58 (m, 4H), 2.49 (dd, J = 15.2, 7.2 Hz, 1H), 2.26 (td, J = 8.8, 4.0 Hz, 1H), 2.04 - 1.89 (m, 2H), 1.80 - 1.68 (m, 7H), 1.12 - 0.95 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 140.7, 115.4, 114.3, 107.7, 83.9, 51.8, 39.9, 37.5, 36.4, 34.8, 30.4, 28.8, 25.9, 18.5, 11.0. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 446.3197, measured: 446.3200. IR (neat): 2943, 2865, 2324, 1737, 1458, 1165, 910, 882, 731, 675 cm⁻¹.

mixture, 60%, 7:1). ¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 3H), 2.95 – 2.89 (m, 1H), 2.56 (dd, J = 15.6, 8.0 Hz, 1H), 2.45 (dd, J = 15.6, 8.0 Hz, 1H), 2.40 (t, J = 7.2 Hz, 2H), 1.95 – 1.90 (m, 1H), 1.84 – 1.76 (m, 1H), 1.72 – 1.64 (m, 1H), 161 – 1.54 (m, 1H), 1.07 -0.94 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 119.3, 108.5, 83.1, 51.7, 40.1, 33.2, 28.7, 23.2, 18.5, 16.8, 11.0. HRMS: m/z (ESI) calculated [M+NH₄]+: 353.2619, measured: 353.2628. IR (neat): 2943, 2865, 2324, 1737, 1458, 1165, 910, 882, 731, 675 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3v** $(R_f = 0.52, PE:EA = 1:1)$ (Pale yellow solid, 65.8 mg of

6:1 mixture, 60%, 6:1). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 1 H), 7.55 (t, J = 8.4 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 5.68 (s, 1H), 4.19S22

(t, J = 6.0 Hz, 2H), 3.69 (s, 3H), 3.05 – 3.01 (m, 1H), 2.63 (dd, J = 15.6, 7.6 Hz, 1H), 2.52 (dd, J = 15.6, 7.6 Hz, 1H), 2.22 – 2.18 (m, 1H), 2.11 - 2.06 (m, 1H), 1.83 – 1.77 (m, 1H), 1.72 – 1.65 (m, 1H), 1.12 – 0.95 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 165.5, 162.9, 153.3, 132.3, 123.8, 122.9, 116.7, 115.7, 109.0, 90.4, 82.8, 68.8, 51.7, 40.2, 31.1, 29.1, 26.3, 18.5, 11.0. HRMS: m/z (ESI) calculated [M+H]⁺: 471.2561, measured: 471.2565. IR (neat): 2924, 2860, 2324, 2169, 1743, 1462, 1229, 1164, 1107, 918, 674, 660 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **3w** ($R_f = 0.56$, PE:EA = 2:1), (Yellow oil, 111.5 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.81 (m, 4H), 7.43

-7.36 (m, 6H), 7.20 (d, J = 8.8 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.66 (s, 1H), 3.96 (t, J = 6.8 Hz, 2H), 3.72 (s, 3H), 3.13 – 3.10 (m, 1H), 2.92 – 2.88 (m, 2H), 2.69 (dd, J = 15.6, 7.2 Hz, 1H), 2.61 – 2.48 (m, 2H), 2.44 – 2.40 (m, 1H), 2.29 – 1.96 (m, 5H), 1.86 – 1.42 (m, 14H), 1.06 (s, 9H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 220.8, 171.8, 157.0, 137.6, 135.4, 133.5, 131.7, 129.3, 127.5, 126.2, 114.4, 112.6, 112.0, 81.2, 67.6, 51.7, 50.3, 47.9, 43.9, 39.9, 38.3, 35.8, 34.3, 31.5, 29.55, 29.5, 29.2, 27.0, 26.9, 26.5, 25.8, 25.7, 21.5, 18.4, 13.8. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 706.4286, measured: 706.4303. IR (neat): 2929, 2856, 2338, 2170, 1736, 1499, 1429, 1158, 1107, 818, 700 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to get 3x ($R_f = 0.64$, PE:EA = 3:1) (Yellow oil, 110.1 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.80

-7.78 (m, 4H), 7.41 -7.34 (m, 6H), 5.38 -5.37 (m, 1H), 4.63 -4.61 (m, 1H), 3.69 (s, 3H), 3.09 -3.04 (m, 1H), 2.65 (dd, J = 14.8, 7.6 Hz, 1H), 2.55 (dd, J = 15.6, 6.8 Hz, 1H), 2.32 -2.24 (m, 4H), 2.03 -1.96 (m, 2H), 1.87 -1.84 (m, 3H), 1.60 -0.86 (m, 56H), 0.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 171.9, 139.7, 135.5, 133.6, 129.3, 127.6, 120.6, 112.8, 81.1, 73.6, 56.6, 56.1, 51.7, 50.0, 42.3, 40.0, 39.7, 39.5, 38.1, 37.0, 36.6, 36.2, 35.8, 34.7, 34.5, 31.9, 31.8, 29.6, 29.3, 29.2, 29.1, 28.2, 28.0, 27.8, 27.2, 27.0, 25.0, 24.3, 23.8, 22.8, 22.6, 21.0, 19.3, 18.7, 18.4, 11.8. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 892.6634, measured: 892.6656. IR (neat): 2930, 2854, 2171, 1734, 1464, 1430, 1166, 1108, 740, 699 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to get **4a** ($R_f = 0.37$, PE:EA = 3:1) (Yellow oil, 42.1 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 –

7.83 (m, 2H), 7.72 – 7.70 (m, 2H), 7.37 – 7.36 (m, 2H), 7.26 (br, 3H), 3.75 (t, J = 7.2 Hz, 2H), 3.70 (s, 3H), 3.15 – 3.11 (m, 1H), 2.63 (dd, J = 15.6, 7.6 Hz, 1H), 2.53 (dd, J = 15.2, 6.8 Hz, 1H), 2.02 – 1.98 (m, 1H), 1.91 – 1.84 (m, 1H), 1.70 – 1.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 168.4, 133.9, 132.1, 131.6, 128.1, 127.9, 123.3, 123.2, 90.4, 82.6, 51.8, 39.9, 37.6, 31.7, 28.6, 26.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 393.1809, measured: 393.1820. IR (neat): 2948, 2321, 1771, 1736, 1707, 1490, 1395, 1361, 882, 719 cm⁻¹.

(m, 1H), 2.66 (dd, J = 15.6, 7.2 Hz, 1H), 2.55 (dd, J = 15.6, 7.2 Hz, 1H), 2.18 – 2.02

(m, 2H), 1.82 – 1.75 (m, 1H), 1.72 – 1.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 166.5, 131.6, 129.4, 129.2, 127.9, 93.7, 52.2, 51.9, 39.7, 33.2, 32.3, 30.4, 28.3. HRMS: m/z (ESI) calculated [M+H]⁺: 367.0539, measured: 367.0545. IR (neat): 2950, 1718, 1604, 1434, 1271, 1171, 1107, 857, 768, 695 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (20:1 to 5:1) to get **4c** ($R_f = 0.64$, PE:EA = 5:1) (Yellow oil, 64.4 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 3.70 (s, 3H), 3.39 (t, J = 6.8 Hz, 2H), 3.09 – 3.06 (m, 1H), 2.60 (dd,

J = 15.2, 7.6 Hz, 1H), 2.52 (dd, J = 15.6, 6.8 Hz, 1H), 1.87 – 1.80 (m, 2H), 1.56 – 1.31 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 132.1, 131.8, 128.5, 118.5, 111.0, 96.4, 80.8, 51.8, 39.6, 34.8, 34.0, 32.7, 29.2, 29.0, 28.9, 28.6, 28.0, 27.1. HRMS: m/z (ESI) calculated [M+H]⁺: 404.1220, measured: 404.1208. IR (neat): 2928, 2855, 2227, 1734, 1711, 1603, 1435, 1203, 1168, 1017, 839, 641 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **4d** ($R_f = 0.44$, PE:EA = 2:1) (Yellow oil, 63.8 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.8 Hz, 2H), 7.85 – 7.82 (m, 2H), 7.74 – 7.70 (m,

2H), 7.50 (d, J = 9.2 Hz, 2H), 3.75 (t, J = 7.2 Hz, 2H), 3.71 (s, 3H), 3.18 – 3.14 (m, 1H), 2.63 (dd, J = 16.0, 8.0 Hz, 1H), 2.54 (dd, J = 16.0, 8.0 Hz, 1H), 2.02 – 1.95 (m, 2H), 1.69 – 1.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 168.3, 146.7, 133.9, 132.4, 132.0, 130.2, 123.4, 123.2, 96.4, 81.1. 51.8, 39.7, 37.5, 31.4, 28.6, 26.3. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 438.1660, measured: 438.1662. IR (neat): 2948, 1771, 1706, 1593, 1515, 1395, 1339, 1168, 853, 718 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to get **4e** ($R_f = 0.53$, PE:EA = 3:1) (Pale yellow oil, 65.6 mg, 74%). ¹H NMR

(400 MHz, CDCl₃) δ 7.84 – 7.83 (m, 2H), 7.72 – 7.71 (m, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 3.75 (t, *J* = 7.2 Hz, 2H), 3.70 (s, 3H), 3.16 – 3.13 (m, 1H), 2.63 (dd, *J* = 15.2, 7.6 Hz, 1H), 2.53 (dd, *J* = 15.6, 7.6 Hz, 1H), 2.02 – 1.97 (m, 1H), 1.91 – 1.84 (m, 1H), 1.70 – 1.56 (m, 2H). ¹⁹F NMR (376 MHz) δ -62.8 (s). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 168.3, 133.9, 132.0, 131.8, 129.3, 127.1, 125.0 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 271.0 Hz), 123.1, 93.2, 81.4, 51.9, 51.7, 39.5, 37.5, 31.5, 28.5, 26.3. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 461.1683, measured: 461.1688. IR (neat): 2944, 1712, 1438, 1398, 1324, 1167, 1067, 845, 721 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 3:1) to get **4f** ($R_f = 0.49$, PE:EA = 3:1) (Yellow oil, 34.9 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 6H), 6.96 – 6.85 (m, 3H), 4.02 (t, J = 6.4 Hz, 2H), 3.71 (s, 3H), 3.18 –

3.11 (m, 1H), 2.65 (dd, J = 15.6, 7.6 Hz, 1H), 2.56 (dd, J = 15.6, 6.8 Hz, 1H), 2.12 – 2.03 (m, 1H), 1.99 – 1.92 (m, 1H), 1.85 – 1.77 (m, 1H), 1.74 – 1.65 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 158.9, 133.8, 132.9, 129.4, 128.5, 121.9, 120.6, 114.4, 91.9, 81.5, 67.2, 51.8, 39.9, 31.1, 28.7, 27.1. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 374.1517, measured: 374.1522. IR (neat): 2949, 1735, 1599, 1489, 1395, 1241, 1166, 1088, 827, 752, 690 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 5:1) to $\frac{526}{526}$

 $(R_f = 0.58, PE:EA = 5:1)$ (Yellow oil, 50.1 mg, 48%). ¹H NMR (400 MHz, get 4g $CDCl_3$) δ 7.37 – 7.33 (m, 2H), 7.20 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.96 (dd, J = 8.8, 8.4 Hz, 2H), 4.04 (t, J = 6.8 Hz, 2H), 3.71 (s, 3H), 3.67 (q, J = 7.2 Hz, 1H),3.07 - 3.06 (m, 1H), 2.66 (dd, J = 15.2, 8.0 Hz, 1H), 2.55 (dd, J = 15.2, 6.8 Hz, 1H), 2.43 (d, J = 7.2 Hz, 2H), 1.85 – 1.82 (m, 1H), 1.60 – 1.49 (m, 9H), 1.34 – 1.25 (m, 8H), 0.89 (d, J = 6.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.1. ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 172.0, 161.8 (d, J = 247.5 Hz), 140.4, 137.9, 133.4 (d, J = 7.6 Hz), 129.2, 127.1, 119.6 (d, J = 3.8 Hz), 115.3 (d, 22.0 Hz), 91.0, 81.0, 64.7, 51.7, 45.2, 45.0, 40.0, 34.6, 30.1, 29.3, 29.2, 29.1, 28.8, 28.5, 27.2, 25.7, 22.3, 18.4. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 540.3484, measured: 540.3473. IR (neat): 2929, 2856, 1730, 1506, 1461, 1222, 1157, 1116, 837, 732 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **4h** ($R_f = 0.35$, PE:EA = 2:1) (Yellow oil, 38.5 mg, 55%). ¹H NMR (400 MHz, CDCl₃) 7.37 – 7.36 (m, 1H), 7.27 – 7.18 (m, 3H), 3.72 (s, 3H), 3.63 4h (t, J = 6.8 Hz, 2H), 3.07 - 3.04 (m, 1H), 2.61 (dd, J = 15.6, 8.0 Hz, 1H), 2.52 (dd, J = 15.6, 8.0 Hz, 1H)15.6, 7.2 Hz, 1H), 1.57 – 1.51 (m, 5H), 1.33 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) 172.0, 133.9, 131.5, 129.7, 129.3, 128.0, 125.3, 92.8, 80.8, 62.9, 51.7, 39.8, 34.5, 32.7, 29.4, 29.3, 29.1, 28.8, 27.1, 25.6. HRMS: m/z (ESI) calculated [M+NH₄]+: 368.1987, measured: 368.1993. IR (neat): 3349, 2926, 2854, 1736, 1592, 1436, 1165, 1054, 879, 682 cm⁻¹.

purified The crude material was by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get 4i $(R_f = 0.64, PE:EA = 10:1)$ (Yellow oil, 64.5 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.35 (td, J = 8.0, 2.4 Hz, 1H), 3.72

(s, 3H), 3.16 - 3.12 (m, 1H), 2.68 (dd, J = 15.6, 8.0 Hz, 1H), 2.55 (dd, J = 16.0, 6.8 Hz, 1H), 1.68 - 1.48 (m, 4H), 1.29 - 1.24 (m, 26H), 0.87 (t, J = 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 132.4, 132.3, 132.1, 127.8, 127.5, 117.5, 115.4, 98.9, 78.5, 51.8, 39.5, 34.3, 31.9, 29.7, 29.6, 29.57, 29.4, 29.3, 29.2, 29.0, 27.1, 22.6, 14.1. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 455.3632, measured: 455.3644. IR (neat): 2914, 2849, 1733, 1594, 1469, 1247, 1168, 1021, 766, 736 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 to 1:1) to get **4j** ($R_f = 0.43$, PE:EA = 3:1), (Yellow oil, 46.8 mg, 47%). ¹H NMR (400 MHz, CDCl₃) 7.52 – 7.51 (m, 3H), 7.44 (br, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.13 (t,

J = 8.0 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 3.72 (s, 3H), 3.06 – 3.03 (m, 1H), 2.60 (dd, J = 15.2, 7.6 Hz, 1H), 2.51 (dd, J = 15.6, 7.2 Hz, 1H), 2.33 (t, J = 7.6 Hz, 2H), 1.73 – 1.67 (m, 2H), 1.56 – 1.24 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) 172.0, 171.5, 138.0, 134.3, 130.8, 130.2, 129.6, 128.9, 125.5, 124.0, 121.9, 119.7, 92.9, 80.6, 51.7, 39.8, 34.4, 29.2, 29.18, 29.1, 29.09, 28.8, 27.1, 25.5. HRMS: m/z (ESI) calculated [M+H]⁺: 498.1638, measured: 498.1647. IR (neat): 2949, 1735, 1599, 1489, 1395, 1241, 1166, 1088, 827, 752, 690 cm⁻¹.

(m, 6H), 4.17 (q, J = 6.8 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 3.11 – 3.07 (m, 1H), 2.68 (dd, J = 15.6, 8.0 Hz, 1H), 2.55 (dd, J = 15.6, 7.2 Hz, 1H), 1.93 – 1.86 (m, 2H), 1.70 – 1.49 (m, 6H), 1.25 (t, J = 7.2 Hz, 3H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 135.5, 133.5, 129.4, 127.6, 112.6, 81.3, 60.6, 40.2, 34.2, 33.6, 32.6, 29.4, 27.7,

27.0, 26.4, 18.4, 14.2. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 530.2084, measured: 530.2079. IR (neat): 2928, 2855, 2324, 2169, 1737, 1430, 1166, 1107.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (30:1 to 10:1) to get **4l** ($R_f = 0.71$, PE:EA = 10:1), (Yellow oil, 60.1 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.76 (m,

4H), 7.41 – 7.34 (m, 6H), 4.79 – 4.76 (m, 1H), 3.40 (t, J = 6.4 Hz, 2H), 3.08 – 3.06 (m, 1H), 2.65 (dd, J = 15.2, 7.2 Hz, 1H), 2.51 (dd, J = 14.8, 7.2 Hz, 1H), 1.92 – 1.81 (m, 2H), 1.68 – 1.11 (m, 16H), 1.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 135.6, 133.6, 129.4, 127.6, 112.7, 81.3, 73.0, 40.5, 34.3, 33.7, 32.7, 29.5, 27.8, 27.0, 26.4, 21.8, 18.5. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 584.2554, measured: 584.2552. IR (neat): 2931, 2856, 2170, 1729, 1451, 1172, 1112, 740, 699 cm⁻¹.

7.36 (m, 6H), 3.41 (t, J = 6.8 Hz, 2H), 3.05 – 3.01 (m, 1H), 2.60 (dd, J = 15.6, 7.6 Hz, 1H), 2.45 (dd, J = 15.2, 7.2 Hz, 1H), 1.92 – 1.85 (m, 2H), 1.67 – 1.45 (m, 15H), 1.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 135.5, 133.6, 129.3, 127.6, 113.0, 81.0, 80.8, 41.3, 34.2, 33.7, 32.7, 29.4, 28.1, 27.8, 27.0, 26.4, 18.5. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 558.2397, measured: 558.2395. IR (neat): 2930, 2856, 2170, 1728, 1427, 1391, 1149, 1107, 741, 699 cm⁻¹.

The crude material was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (30:1 to 10:1) to get **4n** ($R_f = 0.72$, PE:EA = 10:1) (Yellow oil, 87.2 mg, 70%, dr 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.78 (m, 4H), 7.44 – 7.36 (m, 6H), 4.76 – 4.69 (m, 1H), 3.40 (t, J = 6.8 Hz, 2H), 3.10 – 3.06 (m, 1H), 2.73 – 2.66 (m, 1H), 2.56 – 2.49 (m, 1H), 2.01 – 1.85 (m, 4H), 1.71 – 1.34 (m, 10H), 1.17 – 0.99 (m, 12H), 0.92 – 0.72 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 135.5, 133.6, 129.3, 127.6, 112.7, 81.2, 74.6, 46.9, 40.9, 40.4, 34.3, 34.2, 33.6, 32.6, 31.3, 29.4, 27.8, 27.0, 26.4, 26.2, 23.3, 21.9, 20.7, 18.5, 16.2. HRMS: m/z (ESI) calculated [M+NH₄]⁺: 640.3180, measured: 640.3177. IR (neat): 2929, 2857, 2322, 2172, 1729, 1428, 1175, 1108, 741, 699 cm⁻¹.

TBDPS MeO₂C NPhth + NPhth MeO₂C TBDPS 3a 3aa 6:1 7.849 7.841 7.836 7.828 7.819 7.811 3.85 00 7.805 7.798 80,8 3.80 7.774 7.762 8 7.756 7.708 7.700 3.75 7.694 7.686 7.681 7.674 7.372 3aa 7.363 7.359 7.348 7.342 7.260 3.70 6 45 2.96 3.65 3.789 3.771 3.754 3.60 3.683 PPM 3.673 3.147 4 3.131 3a 3.115 45 2.692 2.671 — 3aa 2.653 3a 2.582 0 2.544 2.527 2.055 3aa 1/22.08 3a+3aa 1.928 1.911 1.693 1.679 1.001.0 N 1.669 1.656 3a+3aa 1.647 228 1.636 1.041 1.033 9,73

5. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

PPM

S69

S112

S114

- C. Chen, Y. Luo, L. Fu, P. Chen, Y. Lan and G. Liu, J. Am. Chem. Soc. 2018, 140, 3 1207.
- J. P. Brand, C. Chevalley, R. Scopelliti and J. Waser, Chem. Eur. J. 2012, 18, 5655. 4
- 5 P. Bertus and P. Pale, Tetrahedron Lett. 1996, 37, 2019.

1

2

- 6 C. Menendez, S. Gau, C. Lherbet, F. Rodriguez, C. Inard, M. R. Pasca and M. Baltas, Eur. J. Med. Chem. 2011, 46, 5524.
- 7 E. Tomás-Mendivil, P. Y. Toullec, J. Díez, S. Conejero, V. Michelet and V. Cadierno, Org. Lett. 2012, 14, 2520.
- G. A. Krafft, and J. A. Katzenellenbogen, J. Am. Chem. Soc. 1981, 103, 5459. 8

9 L. Fu, S. Zhou, X. Wan, P. Chen and G. Liu, J. Am. Chem. Soc. 2018, 140, 10965.