Electronic Supplementary Information

Visible-light-driven C(sp²)-H arylation of phenols with arylbromides enabled by electron donor-acceptor excitation

Da-Liang Zhu,^{a,b} Shan Jiang,^a David James Young,^c Qi Wu,^a Hai-Yan Li,^a and Hong-Xi Li*^a

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

^bSchool of Chemistry and Environmental Engineering, Analysis and Testing Centre, Yancheng Teachers University, Yancheng 224007, China.

^cCollege of Engineering, IT and Environment, Charles Darwin University, Darwin,

NT 0909, Australia.

Email: lihx@suda.edu.cn

Table of Contents

General information	3
General procedure for <i>ortho</i> -arylation of phenolsSi	3
Gram scale reaction under the irradiation of blue LEDs or natural sunlightSi	3
Figure S1. The reaction vessels (a, b, c) and gram scale reaction (d, e, f) with blue LEDs on natural sunlight irradiation	or 4
Figure S2. Molecular structure of 3aa with 30% thermal probability ellipsoids	4
Table S1. Optimization of reaction condition Sector	5
Table S2. Caesium carbonate purchased from different sources	6
Table S3. Control experiments in the presence of transition metalSet	6
Figure S3. Comparison of ¹ H NMR spectra of $2a$ and the phenolate anion in d_6 -DMSOS'	7
Figure S4. The ¹ H NMR titration between 1a and 2j in d_6 -DMSOS	8
Figure S5. UV/Vis absorption spectra of DMSO solutions (0.1 M) of 2a (I), 1i (II), mixture of 2a and 1i (III), mixture of 2a and Cs_2CO_3 (IV), and mixture of 2a , 1i and Cs_2CO_3 (V)	a 9
Stoichiometry of the EDA complex in solutionStoichiometry of the EDA complex in solution	9
Figure S6. Job's plot for ratio between 1i and 2a in DMSO with excess Cs ₂ CO ₃ with UV/vi absorption spectrometry	.s 9
Figure S7. The absorption spectrum of the solution of 1i , 2a and Cs_2CO_3 in DMSO (0.1 M) (pin line) under N ₂ and the emission spectra of blue LEDs (blue line), green LEDs (green line) and re LEDs (red line)	k d 0
Figure S8. The light on/off experiments	0
Determination of quantum yield	1
NMR data of products	2
X-ray diffraction crystallography	8
Table S4. Crystal data and structure refinement parameters	8
References	9
NMD speetro	n

General information

Compounds **1** and **2** and all reagents were commercially available and used without further purification. All solvents were obtained from commercial sources and were purified according to standard procedures. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded at ambient temperature on a Varian UNITY plus-400 spectrometer. High-performance liquid chromatography (HPLC) was conducted on a LC-20AT with MeOH and H₂O as the mobile phase. High resolution mass spectra (HRMS) were obtained with a MICRO TOF-Q III. Infrared (IR) spectra were recorded on a VERTEX 70+HYPERION 2000 (4000-500 cm⁻¹).

General procedure for ortho-arylation of phenols

A 10 mL test tube was equipped with aryl bromide (0.2 mmol, 1.0 equiv), phenol (0.8 mmol, 4.0 equiv), Cs_2CO_3 (130 mg, 0.4 mmol, 2 equiv) and 0.5 mL degassed, anhydrous dimethyl sulfoxide (DMSO). The reaction was stirred under a nitrogen atmosphere and irradiated with blue LEDs (the maximum power density = 0.12 mW·cm⁻²) for 14 h, with fan cooling. After this period, the reaction was diluted with 3 mL of water and extracted with ethyl acetate (3 × 3 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Pure product was obtained by thin-layer chromatography (TLC) using petroleum ether (PE) and ethyl acetate (EA) as the eluent.

Gram scale reaction under the irradiation of blue LEDs or natural sunlight

1-(4-Bromophenyl)ethan-1-one (1.18 g, 6 mmol, 1.0 equiv), phenol (2.26 g, 24 mmol, 8.0 equiv), and Cs₂CO₃ (3.90 g, 12 mmol, 2 equiv) were weighed into a dried 50 mL flask and degassed, anhydrous DMSO (15 mL) was added. The reaction was stirred under a nitrogen atmosphere and irradiated by blue LEDs or natural sunlight (the maximum power density = 6.57 mW·cm⁻²) for 48 h or 10 h, respectively. After this period, the reaction was diluted with 50 mL of water and extracted with ethyl acetate (3 × 50 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The pure product was obtained by flash column chromatography on silica gel using PE and EA as the eluent: 0.75 g, 59% yield (blue LEDs soft rope light) or 0.74 g, 58% yield (natural sunlight).

Figure S1. The reaction vessels (a, b, c) and gram scale reaction (d, e, f) with blue LEDs or natural sunlight irradiation.

Figure S2. Molecular structure of 3aa with 30% thermal probability ellipsoids.

Table S1. Optimization of reaction conditions.^a

	Br 1a	Ê + 〔 →←⊂	2a blue Ll	EDs 0		HO	
_	: 1a	2a	Base	Solvent	Y	vield (%))
Entry	(mmol)	(mmol)	(equiv)	(mL)	3aa	4	5
1	0.2	0.8	$Cs_2CO_3(2)$	DMSO (0.5)	61	10	10
2	0.2	0.8	$Cs_2CO_3(2)$	DMF (0.5)	41	0	46
3	0.2	0.8	$Cs_2CO_3(2)$	MeCN (0.5)	25	4	6
4	0.2	0.8	$Cs_2CO_3(2)$	CHCl ₃ (0.5)	0	0	0
5	0.2	0.4	K ₂ CO ₃ (2)	DMSO(1)	22	7	19
6	0.2	0.4	K ₃ PO ₄ (2)	DMSO(1)	27	6	19
7	0.2	0.4	CsF (2)	DMSO(1)	21	4	17
8	0.2	0.4	<i>t</i> -BuNH(<i>i</i> -Pr) (2)	DMSO(1)	0	0	0
9	0.2	0.4	$Cs_2CO_3(2)$	DMSO (1)	40	9	14
10	0.2	0.8	-	DMSO (0.5)	0	0	0
11 ^b	0.2	0.8	$Cs_2CO_3(2)$	DMSO (0.5)	0	0	0
12°	0.2	0.8	$Cs_2CO_3(2)$	DMSO (0.5)	55	11	6
13 ^d	0.2	0.8	$Cs_2CO_3(2)$	DMSO (0.5)	58	9	12
14 ^e	0.2	0.8	$Cs_2CO_3(2)$	DMSO (0.5)	26	0	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.8 mmol), Cs_2CO_3 (0.4 mmol), 0.5 mL DMSO, N_2 , irradiation under blue LEDs for 14 h with fan cooling, HPLC yield. ^{*b*}In the dark. ^{*c*}Irradiation under a 300 W xenon lamp with a 420 nm cutoff filter for 5 h. ^{*d*}Under sunlight (the maximum power density was about 6.57 mW cm⁻²) for 6 h. ^{*e*}The reaction was carried out in air.

Br 1a +	OH Cs ₂ CO ₃ (2 equiv) DMSO (0.5 mL) blue LEDs	
Entry	Sources	Yield (%)
1	Energy Chemical (99.9%)	61
2	J&K (99%)	57
3	Damas-Beta (99.9%)	58
4	Aladdin (99.9%)	60
5	Alfa Aesar (>99.994%)	59

Table S2. Caesium carbonate purchased from different sources.^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.8 mmol), Cs_2CO_3 (0.4 mmol), 0.5 mL DMSO, N_2 , irradiation under blue LEDs for 14 h with fan cooling, HPLC yield.

Table S3. Control experiments in the presence of transition metal ions.^a

Entry	Additive (2 mol %)	Yield (%)		
		3aa	4	5
1	FeSO ₄	56	11	10
2	CoCl ₂	58	11	10
3	NiBr ₂	55	10	8
4	Pd(OAc) ₂	36	7	6

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.8 mmol), Cs₂CO₃ (0.4 mmol), Additive (2 mol %), 0.5 mL DMSO, N₂, irradiation under blue LEDs for 14 h with fan cooling, HPLC yield.

Figure S3. Comparison of ¹H NMR spectra of 2a and the phenolate anion in d_6 -DMSO

Figure S4. The ¹H NMR titration between **1a** and **2j** in d_6 -DMSO.

Figure S5. UV/Vis absorption spectra of DMSO solutions (0.1 M) of 2a (I), 1i (II), mixture of 2a and 1i (III), mixture of 2a and Cs₂CO₃ (IV), and mixture of 2a, 1i and Cs₂CO₃ (V).

Stoichiometry of the EDA complex in solution

The stoichiometry of the EDA complex formed between 4-bromobenzaldehyde (1i) and phenol (2a) in DMSO with excess Cs_2CO_3 was measured using the Job's plot method.^{S1} The Job's plot was recorded by measuring the absorption at 525 nm of different ratios of 1i and 2a in DMSO with excess Cs_2CO_3 , and the total concentration of the two components remained constant at 0.1 M. The maximum absorbance was observed at 50% molar fraction, suggesting that the stoichiometry of the EDA complex is 1:1.

Figure S6. Job's plot for ratio between 1i and 2a in DMSO with excess Cs_2CO_3 with UV/vis absorption spectrometry.

Figure S7. The absorption spectrum of the solution of 1i, 2a and Cs_2CO_3 in DMSO (0.1 M) (pink line) under N_2 and the emission spectra of blue LEDs (blue line), green LEDs (green line) and red LEDs (red line).

Figure S8. The light on/off experiments.

Determination of quantum yield^{S2}

Under the optimized reaction conditions, the yield of **3aa** reached 47% when the volume of the solvent was changed to 2 mL, because the measurement of quantum yield cannot be performed when the volume of the DMSO was 0.5 mL. Therefore, we used the 2 mL of DMSO to measure the quantum yield of the catalytic system.

A cuvette was equipped with **1a** (0.2 mmol, 1.0 equiv), **2a** (0.8 mmol, 4.0 equiv), Cs_2CO_3 (130 mg, 0.4 mmol, 2 equiv) and 2.0 mL degassed, anhydrous DMSO. The reaction was irradiated ($\lambda = 455$ nm, 0.14 mW·cm⁻²) for 1800 s. After that, the yield of product was determined by HPLC. The quantum yield was determined as follows:

ϕ = Mole number for product/Mole number for absorption of photons = 0.654 $\phi = \frac{nN_A/t}{fP\lambda/hc}$

n: the mole number of the product **3aa**; t: reaction time (1800 s); N_A: 6.02×10^{23} /mol; f: 1-10^{-A} (455 nm, A = 0.708); P: P = E*S (E: illumination intensity, E = 0.14 mW/cm²; S: the area of irradiation S = 1 cm²); λ : wavelength (λ = 4.55×10⁻⁷ m); h: planck constant (h = 6.626×10⁻³⁴ J*s); c: velocity of light (c = 3×10⁸ m/s).

NMR data of products

1-(2'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (3aa)^{S3}

The general procedure was followed using1-(4-bromophenyl)ethan-1-one (0.2 mmol) and phenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3aa** (25.0 mg, 59%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.06 (d, *J* = 7.8 Hz, 2H), 7.63 (d, *J* = 7.9 Hz, 2H), 7.34 – 7.24 (m, 2H), 7.09 – 6.94 (m, 2H), 5.40 (s, 1H), 2.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.0, 152.7, 142.7, 136.3, 130.5, 130.0, 129.6, 129.2, 127.4, 121.4, 116.5, 26.9. m.p. = 146.3-146.2 °C. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₄H₁₂O₂Na⁺ 235.0730; Found 235.0703.

4'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3ab)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 4hydroxybenzonitrile (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ab** (33.7 mg, 71%).

¹H NMR (400 MHz, d_6 -DMSO, ppm) δ = 11.00 (s, 1H), 8.00 (d, J = 7.7 Hz, 2H), 7.79 (s, 1H), 7.70 (dd, J = 16.7, 8.0 Hz, 3H), 7.11 (d, J = 8.4 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (101 MHz, d_6 -DMSO, ppm) δ = 197.6, 158.8, 141.1, 135.6, 134.6, 133.7, 129.4, 128.0, 127.9, 119.3, 117.1, 101.8, 26.8. m.p. = 180.9-181.5 °C. IR (ATR, cm⁻¹): 3386, 2977, 2922, 2225, 1662, 1599, 1557, 1508, 1496, 1420, 1395, 1347, 1298, 1279, 1175, 1134, 1113, 957, 847, 825, 776, 738, 718, 675, 603. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₁NO₂Na⁺ 260.0682; Found 260.0670.

1,1'-(6-hydroxy-[1,1'-biphenyl]-3,4'-diyl)bis(ethan-1-one) (3ac)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 1-(4-

hydroxyphenyl)ethan-1-one (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ac** (34.5 mg, 68%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.05 (d, *J* = 7.8 Hz, 2H), 7.98 – 7.87 (m, 2H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.07 (d, *L* = 8.2 Hz, 1H), 2.64 (a, 2H), 2.59 (a, 2H), ¹³C NMR (101 MHz, CDCl, ppm)

7.7 Hz, 2H), 7.07 (d, J = 8.2 Hz, 1H), 2.64 (s, 3H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.2$, 197.2, 157.5, 141.8, 136.6, 131.6, 130.8, 130.7, 129.7, 129.2, 127.5, 116.5, 26.9, 26.6. m.p. = 132.3-132.9 °C. IR (ATR, cm⁻¹): 3400, 2964, 2923, 1679, 1651, 1573, 1509, 1462, 1398, 1356, 1314, 1277, 1241, 1186, 1144, 1082, 1049, 959, 838, 818, 768, 734, 711, 666, 619, 593. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₆H₁₄O₃Na⁺ 277.0835; Found 277.0826.

1-(4'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-yl)propan-1-one (3ad)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 1-(4-hydroxyphenyl)propan-1-one (0.4 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ad** (35.9 mg, 67%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.04$ (d, J = 8.0 Hz, 2H), 7.95 (s, 1H), 7.91 (d, J = 8.6 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.4 Hz, 1H), 6.99 (s, 1H), 2.99 (q, J = 7.2 Hz, 2H), 2.64 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 200.2$, 198.5, 157.6, 142.1, 136.3, 131.3, 130.4, 130.3, 129.7, 129.1, 127.5, 116.5, 31.7, 26.9, 8.7. m.p. = 110.3-110.9 °C. IR (ATR, cm⁻¹): 3351, 2974, 2937, 2905, 1664, 1588, 1515, 1460, 1427, 1401, 1343, 1288, 1271, 1195, 1145, 1086, 1051, 1010, 966, 856, 836, 796, 751, 680, 641, 604. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₇H₁₆O₃Na⁺ 291.0992; Found 291.0978.

methyl 4'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3ae)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and methyl 4-hydroxybenzoate (0.4 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the yellowish solid **3ae** (37.8 mg, 70%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.06 (d, *J* = 7.6 Hz, 2H), 8.01 (s, 1H), 7.97 (d, *J* = 8.4 Hz,

1H), 7.64 (d, J = 7.4 Hz, 2H), 7.04 (d, J = 8.3 Hz, 1H), 6.45 (s, 1H), 3.91 (s, 3H), 2.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.3$, 167.0, 157.1, 141.8, 136.5, 132.6, 131.7, 129.6, 129.2, 127.3, 123.2, 116.5, 52.3, 26.9. m.p. = 147.1-147.8 °C. IR (ATR, cm⁻¹): 3332, 2957, 2918, 2848, 1691, 1679, 1602, 1495, 1451, 1427, 1397, 1358, 1318, 1308, 1272, 1254, 1190, 1142, 1119, 1079, 1026, 959, 908, 875, 839, 823, 806, 766, 745, 722, 697, 640, 599. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₆H₁₄O₄Na⁺ 293.0784; Found 293.0779.

ethyl 4'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3af)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and ethyl 4hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3af** (41.5 mg, 73%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.02$ (d, J = 9.0 Hz, 3H), 7.95 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 7.7 Hz, 2H), 7.06 (s, 1H), 7.04 (d, J = 8.2 Hz, 1H), 4.36 (q, J = 6.7 Hz, 2H), 2.63 (s, 3H), 1.38 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.5$, 166.7, 157.3, 142.1, 136.3, 132.6, 131.7, 129.7, 129.1, 127.3, 123.3, 116.4, 61.2, 26.8, 14.6. m.p. = 147.6-148.5 °C. IR (ATR, cm⁻¹): 3358, 2976, 2930, 2901, 1682, 1597, 1514, 1496, 1393, 1354, 1300, 1233, 1135, 1049, 1035, 960, 855, 838, 764, 744, 726, 687, 636. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₇H₁₆O₄Na⁺ 307.0941; Found 307.0943.

1-(2'-hydroxy-5'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (3ag)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 4-(trifluoromethyl)phenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ag** (37.0 mg, 66%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.05 (d, *J* = 7.5 Hz, 2H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.53 (d, *J* = 10.3 Hz, 2H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.60 (s, 1H), 2.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.7, 155.7, 141.6, 136.5, 129.7, 129.3, 127.9 (q, ³*J*_{C-F} = 3.7 Hz), 127.7, 127.1 (q, ³*J*_{C-F} = 3.7 Hz), 124.5 (q, ¹*J*_{C-F} = 271.3 Hz), 123.6 (q, ²*J*_{C-F} = 32.9 Hz), 116.8, 26.9. ¹⁹F NMR (377 MHz,

CDCl₃, ppm) δ = -61.5. m.p. = 141.3-142.0 °C. IR (ATR, cm⁻¹): 3360, 2954, 2923, 1667, 1656, 1619, 1598, 1555, 1520, 1433, 1400, 1359, 1329, 1270, 1253, 1206, 1152, 1126, 1099, 1083, 1027, 960, 909, 827, 773, 754, 685, 648, 625. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₁F₃O₂Na⁺ 303.0603; Found 303.0625.

1-(2'-hydroxy-5'-methyl-[1,1'-biphenyl]-4-yl)ethan-1-one (3ah)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and *p*-cresol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ah** (18.1 mg, 40%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.05$ (d, J = 7.4 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.08 (s, 2H), 6.87 (d, J = 8.0 Hz, 1H), 5.03 (s, 1H), 2.65 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.0$, 150.4, 142.9, 136.2, 130.9, 130.6, 130.5, 129.5, 129.2, 127.1, 116.3, 26.9, 20.7. m.p. = 110.3-110.7 °C. IR (ATR, cm⁻¹): 3373, 2956, 2921, 2851, 1665, 1602, 1492, 1456, 1424, 1396, 1375, 1356, 1324, 1271, 1189, 1168, 1088, 1051, 962, 882, 841, 820, 778, 754, 726, 680, 636. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₅H₁₄O₂Na⁺ 249.0886; Found 249.0863.

1-(2'-hydroxy-5'-methoxy-[1,1'-biphenyl]-4-yl)ethan-1-one (3ai)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 4methoxyphenol (0.4 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ai** (18.4 mg, 38%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.06$ (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 8.5 Hz, 1H), 6.88 – 6.80 (m, 2H), 4.91 (s, 1H), 3.80 (s, 3H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.0$, 154.1, 146.6, 142.7, 136.4, 129.5, 129.2, 127.9, 117.3, 115.5, 115.4, 56.1, 26.9. m.p. = 137.1-137.9 °C. IR (ATR, cm⁻¹): 3331, 2993, 2924, 2847, 1665, 1600, 1487, 1467, 1441, 1423, 1400, 1350, 1327, 1261, 1217, 1168, 1108, 1032, 955, 884, 849, 836, 828, 783, 752, 738, 720, 675, 636, 607. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₄O₃Na⁺ 265.0835; Found 265.0826.

1-(2'-hydroxy-5'-isopropyl-[1,1'-biphenyl]-4-yl)ethan-1-one (3aj)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 4isopropylphenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3aj** (21.3 mg, 42%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.06$ (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.19 – 7.10 (m, 2H), 6.91 (d, J = 8.2 Hz, 1H), 5.13 (s, 1H), 2.90 (dt, J = 13.7, 6.8 Hz, 1H), 2.65 (s, 3H), 1.26 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.0$, 150.6, 143.1, 141.9, 136.2, 129.6, 129.2, 128.4, 127.9, 127.0, 116.3, 33.6, 26.9, 24.4. m.p. = 100.9-101.7 °C. IR (ATR, cm⁻¹): 3385, 2954, 2919, 2850, 1671, 1604, 1496, 1461, 1430, 1401, 1378, 1358, 1291, 1271, 1250, 1187, 1116, 1082, 1052, 961, 883, 836, 823, 775, 738, 722, 691, 642, 624, 604; QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₇H₁₈O₂Na⁺ 277.1199; Found 277.1184.

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 4-(*tert*-butyl)phenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ak** (21.4 mg, 40%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.05$ (d, J = 7.4 Hz, 2H), 7.64 (d, J = 7.5 Hz, 2H), 7.34 – 7.26 (m, 2H), 6.92 (d, J = 8.2 Hz, 1H), 5.39 (s, 1H), 2.64 (s, 3H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.2$, 150.5, 144.1, 143.5, 143.4, 136.1, 129.6, 129.1, 127.4, 126.9, 126.7, 116.0, 34.4, 31.7, 26.9. m.p. = 135.4-136.2 °C. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₈H₂₀O₂Na⁺ 291.1356; Found 291.1358.

1-(2'-hydroxy-5'-propyl-[1,1'-biphenyl]-4-yl)ethan-1-one (3al)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 4propylphenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3al** (21.8 mg, 43%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.05$ (d, J = 7.5 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.09 (s, 2H), 6.89 (d, J = 7.7 Hz, 1H), 5.11 (s, 1H), 2.65 (s, 3H), 2.57 (t, J = 7.3 Hz, 2H), 1.64 (dd, J = 14.2, 7.0 Hz, 2H), 0.95 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.0$, 150.6, 143.0, 136.2, 135.6, 130.4, 129.9, 129.6, 129.2, 127.0, 116.3, 37.4, 26.9, 25.0, 14.0. m.p. = 86.8-87.2 °C. IR (ATR, cm⁻¹): 3375, 2960, 2918, 2849, 1672, 1657, 1601, 1556, 1513, 1499, 1464, 1428, 1398, 1356, 1270, 1179, 1133, 1116, 1092, 1049, 1014, 961, 899, 880, 842, 819, 787, 746, 720, 676, 633, 611. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₇H₁₈O₂Na⁺ 277.1199; Found 277.1190.

1-(3',5'-dichloro-2'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (3am)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 2,4dichlorophenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3am** (24.1 mg, 43%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.02$ (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 2.0 Hz, 1H), 7.24 (d, J = 1.8 Hz, 1H), 5.91 (s, 1H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.0$, 147.6, 141.0, 136.6, 129.7, 129.6, 129.4, 128.7, 128.5, 125.8, 121.7, 26.9. m.p. = 138.5-139.7 °C. IR (ATR, cm⁻¹): 3363, 2973, 2919, 1676, 1606, 1493, 1462, 1393, 1350, 1309, 1270, 1220, 1150, 1091, 1054, 959, 883, 854, 842, 821, 753, 745, 721, 709, 641, 606. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₄H₁₀Cl₂O₂Na⁺ 302.9950; Found 302.9962.

1-(3'-chloro-2'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (3an)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 2chlorophenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3an** (19.7 mg, 40%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.03$ (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 7.9 Hz, 1H), 7.25 (d, J = 6.4 Hz, 1H), 6.97 (t, J = 7.8 Hz, 1H), 5.85 (s, 1H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.0$, 148.7, 142.3, 136.2, 129.6, 129.6, 129.1, 128.7, 128.6, 121.5, 121.1, 26.9. m.p. = 143.2-143.9 °C. IR (ATR, cm⁻¹): 3360, 2973, 2926, 1661, 1605, 1552, 1453, 1402, 1354, 1306, 1272, 1225, 1185, 1158, 1126, 1088, 1049, 1012, 960, 882, 849, 826, 811, 799, 785, 745, 718, 648, 618. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₁₁ClO₂Na⁺ 269.0340; Found 269.0341.

1,1'-(2-hydroxy-[1,1'-biphenyl]-3,4'-diyl)bis(ethan-1-one) (3ao)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 1-(2-hydroxyphenyl)ethan-1-one (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ao** (22.9 mg, 45%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 12.92 (s, 1H), 8.02 (d, *J* = 7.5 Hz, 2H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 7.2 Hz, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 2.70 (s, 3H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 205.1, 198.1, 160.0, 142.1, 137.3, 136.1, 131.1, 130.1, 129.8, 128.4, 120.2, 119.1, 27.2, 26.9. m.p. = 80.6-81.5 °C. IR (ATR, cm⁻¹): 3363, 2976, 2934, 2899, 1669, 1603, 1512, 1492, 1448, 1398, 1380, 1352, 1272, 1228, 1204, 1182, 1091, 1052, 1004, 948, 880, 861, 831, 798, 745, 721, 701, 634. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₆H₁₄O₃Na⁺ 277.0835; Found 277.0821.

methyl 4'-acetyl-2-hydroxy-[1,1'-biphenyl]-3-carboxylate (3ap)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and methyl 2-hydroxybenzoate (0.4 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ap** (23.8 mg, 44%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 11.37 (s, 1H), 8.03 (d, *J* = 7.4 Hz, 2H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 7.4 Hz, 2H), 7.54 (d, *J* = 7.3 Hz, 1H), 6.99 (t, *J* = 7.3 Hz, 1H), 3.98 (s, 3H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.0, 171.1, 159.1, 142.3, 136.6, 136.1, 130.3,

129.8, 129.4, 128.4, 119.4, 113.0, 52.8, 26.9. m.p. = 145.0-145.8 °C. IR (ATR, cm⁻¹): 3367, 2957, 2926, 1676, 1664, 1606, 1427, 1400, 1330, 1305, 1291, 1263, 1245, 1195, 1148, 1079, 1058, 956, 927, 908, 879, 844, 828, 813, 756, 728, 704, 601. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₆H₁₄O₄Na⁺ 293.0784; Found 293.0796.

1-(2'-hydroxy-3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (3aq)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 2-(trifluoromethyl)phenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3aq** (26.9 mg, 48%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.05$ (d, J = 7.7 Hz, 2H), 7.58 (d, J = 7.8 Hz, 3H), 7.43 (d, J = 7.5 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H), 5.89 (s, 1H), 2.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 197.8$, 150.8 (q, ${}^{4}J_{C-F} = 1.5$ Hz), 140.9, 136.9, 134.2, 129.8, 129.4, 129.4, 127.3 (q, ${}^{3}J_{C-F} = 5.0$ Hz), 124.1 (q, ${}^{1}J_{C-F} = 272.6$ Hz), 120.8, 117.8 (q, ${}^{2}J_{C-F} = 30.7$ Hz), 26.8. ¹⁹F NMR (377 MHz, CDCl₃, ppm) $\delta = -61.6$. m.p. = 143.3-144.1 °C. IR (ATR, cm⁻¹): 3223, 2978, 2925, 1667, 1596, 1560, 1511, 1467, 1430, 1403, 1365, 1331, 1272, 1242, 1179, 1129, 1109, 1078, 1051, 1035, 960, 921, 882, 859, 831, 818, 798, 750, 688, 646, 621, 608. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₁F₃O₂Na⁺ 303.0603; Found 303.0602.

1-(2'-hydroxy-4',6'-bis(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (3ar)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 3,5bis(trifluoromethyl)phenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ar** (34.1 mg, 49%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.07$ (d, J = 8.0 Hz, 2H), 7.59 (s, 1H), 7.48 (s, 1H), 7.43 (d, J = 7.9 Hz, 2H), 5.93 (s, 1H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.2$, 154.8, 137.7, 137.0, 132.3 (q, ² $J_{C-F} = 33.9$ Hz), 131.0 (q, ² $J_{C-F} = 30.9$ Hz), 130.7, 129.4, 129.1, 123.3 (q, ¹ $J_{C-F} = 272.5$ Hz), 123.1 (q, ¹ $J_{C-F} = 274.4$ Hz), 116.8 (q, ³ $J_{C-F} = 3.5$ Hz), 115.1 (qd, ³ $J_{C-F} = 7.5$, 3.7 Hz), 26.8. ¹⁹F NMR (377 MHz, CDCl₃, ppm) $\delta = -58.0$, -63.2. m.p. = 173.4-174.8 °C. IR (ATR, cm⁻¹): 3378, 2954, 2918, 2850, 1670, 1604, 1487, 1448, 1380, 1312, 1273, 1163, 1115, 1092, 1052, 1023, 1003, 956, 880, 855, 837, 768, 726, 692, 668, 641, 623, 598. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₆H₁₀F₆O₂Na⁺ 371.0477; Found 371.0482.

1-(2',4'-dibromo-6'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (3as)

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and 3,5dibromophenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3as** (34.5 mg, 47%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.10$ (d, J = 8.0 Hz, 2H), 7.43 (d, J = 7.4 Hz, 3H), 7.15 (s, 1H), 5.19 (s, 1H), 2.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 197.7$, 154.3, 139.6, 137.5, 130.9, 129.4, 127.7, 127.6, 124.0, 123.0, 118.6, 26.9. m.p. = 191.1-191.8 °C. IR (ATR, cm⁻¹): 3356, 2954, 2914, 2849, 1728, 1664, 1602, 1568, 1462, 1404, 1382, 1357, 1331, 1267, 1234, 1181, 1097, 1050, 1017, 1001, 956, 909, 881, 860, 844, 831, 786, 748, 728, 640, 618, 602. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₄H₁₀Br₂O₂Na⁺ 390.8940; Found 390.8959.

1-(4-(2-hydroxynaphthalen-1-yl)phenyl)ethan-1-one (3at)^{S5}

The general procedure was followed using 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and naphthalen-2-ol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3at** (26.7 mg, 51%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.16$ (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.36 (s, 3H), 7.26 (d, J = 6.3 Hz, 1H), 5.27 (s, 1H), 2.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.0$, 150.2, 140.1, 137.1, 133.1, 131.8, 130.3, 129.6, 129.1, 128.4, 127.0, 124.5, 123.8, 120.3, 117.8, 26.9. m.p. = 200.3-200.7 °C. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₈H₁₄O₂Na⁺ 285.0886; Found 285.0867.

methyl 6-hydroxy-4'-propionyl-[1,1'-biphenyl]-3-carboxylate (3be)

The general procedure was followed using 1-(4-bromophenyl)propan-1-one (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using

PE and EA (v/v = 2/1) as eluent, to yield the white solid **3be** (40.3 mg, 71%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.07 – 7.99 (m, 3H), 7.95 (d, *J* = 8.3 Hz, 1H), 7.62 (d, *J* = 7.7 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.67 (s, 1H), 3.90 (s, 3H), 3.03 (dd, *J* = 13.1, 6.2 Hz, 2H), 1.24 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 201.0, 167.1, 157.2, 141.6, 136.2, 132.6, 131.7, 129.6, 128.8, 127.4, 123.1, 116.5, 52.3, 32.1, 8.5. m.p. = 145.3-146.0 °C. IR (ATR, cm⁻¹): 3374, 2985, 2895, 1686, 1602, 1507, 1437, 1349, 1311, 1226, 1127, 960, 849, 796, 765, 729, 645, 633. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₇H₁₆O₄Na⁺ 307.0941; Found 307.0932.

methyl 4'-butyryl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3ce)

The general procedure was followed using 1-(4-bromophenyl)butan-1-one (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ce** (43.5 mg, 73%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.07$ (d, J = 6.6 Hz, 2H), 7.99 (d, J = 14.8 Hz, 2H), 7.62 (d, J = 6.5 Hz, 2H), 7.02 (d, J = 7.7 Hz, 1H), 3.90 (s, 3H), 2.99 (s, 2H), 1.80 (d, J = 6.1 Hz, 2H), 1.04 (d, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 200.3$, 166.9, 156.8, 141.2, 136.7, 132.5, 131.8, 129.6, 129.1, 127.4, 123.4, 116.4, 52.3, 40.9, 18.0, 14.1. m.p. = 96.5-97.2 °C. IR (ATR, cm⁻¹): 3355, 2922, 2848, 1712, 1667, 1602, 1411, 1369, 1306, 1234, 1114, 1005, 971, 904, 832, 766, 732, 637. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₈H₁₈O₄Na⁺ 321.1097; Found 321.1088.

methyl 6-hydroxy-4'-pentanoyl-[1,1'-biphenyl]-3-carboxylate (3de)

The general procedure was followed using 1-(4-bromophenyl)pentan-1-one (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3de** (43.7 mg, 70%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.08 - 7.99$ (m, 3H), 7.95 (d, J = 8.3 Hz, 1H), 7.63 (d, J = 7.6 Hz, 2H), 7.04 (d, J = 8.3 Hz, 1H), 6.80 (s, 1H), 3.90 (s, 3H), 2.99 (t, J = 7.0 Hz, 2H), 1.72 (dd, J = 13.9, 6.8 Hz, 2H), 1.42 (dd, J = 14.4, 7.2 Hz, 2H), 0.95 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 200.9$, 167.1, 157.3, 141.6, 136.3, 132.6, 131.7, 129.6, 128.9, 127.4, 123.0, 116.5, 52.3, 38.7, 26.8, 22.7, 14.1. m.p. = 116.6-117.4 °C. IR (ATR, cm⁻¹): 3324, 2989, 2899,

1700, 1665, 1605, 1399, 1365, 1301, 1261, 1241, 1213, 1140, 1113, 977, 848, 768, 742, 726, 665. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₉H₂₀O₄Na⁺ 335.1254; Found 335.1267.

methyl 4'-benzoyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3ee)

The general procedure was followed using (4-bromophenyl)(phenyl)methanone (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ee** (45.8 mg, 69%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.04$ (d, J = 1.9 Hz, 1H), 7.99 (dd, J = 8.5, 2.0 Hz, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.85 (d, J = 7.7 Hz, 2H), 7.63 (dd, J = 12.6, 7.8 Hz, 3H), 7.51 (t, J = 7.6 Hz, 2H), 7.04 (d, J = 8.5 Hz, 1H), 6.00 (s, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 196.5$, 166.9, 156.9, 140.8, 137.6, 137.3, 132.9, 132.6, 131.8, 131.1, 130.3, 129.3, 128.6, 127.4, 123.4, 116.5, 52.3. m.p. = 165.3-165.8 °C. IR (ATR, cm⁻¹): 3253, 2985, 2887, 1687, 1651, 1601, 1428, 1386, 1320, 1280, 1205, 1129, 967, 946, 928, 845, 762, 729, 691, 633. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₂₁H₁₆O₄Na⁺ 355.0941; Found 355.0929.

methyl 4'-(cyclopropanecarbonyl)-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3fe)

The general procedure was followed using (4-bromophenyl)(cyclopropyl)methanone (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3fe** (42.6 mg, 72%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.11$ (d, J = 7.3 Hz, 2H), 8.02 (s, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 7.1 Hz, 2H), 7.03 (d, J = 8.0 Hz, 1H), 6.37 (s, 1H), 3.90 (s, 3H), 2.71 (s, 1H), 1.28 (s, 2H), 1.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 200.7$, 167.0, 157.1, 141.2, 137.4, 132.6, 131.7, 129.5, 129.0, 127.4, 123.2, 116.4, 52.3, 17.6, 12.2. m.p. = 122.4-123.2 °C. IR (ATR, cm⁻¹): 3156, 2973, 2895, 1724, 1632, 1601, 1432, 1405, 1384, 1303, 1291, 1227, 1138, 1115, 1032, 994, 870, 844, 762, 732, 642. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₈H₁₆O₄Na⁺ 319.0941; Found 319.0946.

1-(5'-acetyl-2'-hydroxy-[1,1'-biphenyl]-4-yl)propan-1-one (3bc)

The general procedure was followed using 1-(4-bromophenyl)propan-1-one (0.2 mmol) and 1-(4-hydroxyphenyl)ethan-1-one (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3bc** (38.6 mg, 72%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.07 (d, *J* = 8.3 Hz, 2H), 7.96 – 7.89 (m, 2H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.45 (s, 1H), 3.05 (q, *J* = 7.2 Hz, 2H), 2.59 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 200.8, 197.2, 157.4, 141.4, 136.4, 131.5, 130.8, 129.6, 128.9, 127.5, 116.5, 32.1, 26.6, 8.5. m.p. = 105.1-105.9 °C. IR (ATR, cm⁻¹): 3294, 3192, 3063, 2963, 2920, 2851, 2362, 2335, 1665, 1594, 1510, 1458, 1399, 1354, 1280, 1223, 1135, 1078, 1012, 952, 850, 821, 798, 674, 643. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₇H₁₆O₃Na⁺ 291.0992; Found 291.0997.

1-(4'-benzoyl-6-hydroxy-[1,1'-biphenyl]-3-yl)ethan-1-one (3ec)

The general procedure was followed using (4-bromophenyl)(phenyl)methanone (0.2 mmol) and 1-(4-hydroxyphenyl)ethan-1-one (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ec** (42.3 mg, 67%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.97 (d, *J* = 2.2 Hz, 1H), 7.92 (dd, *J* = 8.4, 1.9 Hz, 3H), 7.85 (s, 1H), 7.84 (t, *J* = 1.6 Hz, 1H), 7.67 – 7.63 (m, 2H), 7.61 (dt, *J* = 2.5, 1.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 1H), 6.47 (s, 1H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.1, 196.6, 157.4, 140.9, 137.5, 137.2, 132.9, 131.6, 131.0, 130.8, 130.8, 130.3, 129.3, 128.6, 127.5, 116.5, 26.6. m.p. = 73.2-74.1 °C. IR (ATR, cm⁻¹): 3188, 2955, 2922, 2853, 2367, 2336, 2255, 1648, 1594, 1511, 1427, 1395, 1359, 1278, 1240, 1131, 1079, 922, 848, 827, 696, 640. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₂₁H₁₆O₃Na⁺ 339.0992; Found 339.0983.

methyl 4'-acetyl-3'-fluoro-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3ge)

The general procedure was followed using 1-(4-bromo-2-fluorophenyl)ethan-1-one (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ge** (34.0 mg, 59%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.07 – 7.90 (m, 3H), 7.40 (dd, *J* = 16.4, 10.3 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.59 (s, 1H), 3.91 (s, 3H), 2.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.1 (d, ³*J*_{C-F} = 3.4 Hz), 166.9, 162.5 (d, ¹*J*_{C-F} = 255.7 Hz), 157.1, 144.0 (d, ³*J*_{C-F} = 9.2 Hz), 132.3 (d, ²*J*_{C-F} = 46.8 Hz), 131.3 (d, ⁴*J*_{C-F} = 2.9 Hz), 126.2, 126.2, 125.3 (d, ⁴*J*_{C-F} = 7.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ = -108.0, -108.5. m.p. = 154.9-155.8 °C. IR (ATR, cm⁻¹): 3273, 2954, 2924, 1689, 1677, 1621, 1605, 1433, 1390, 1360, 1325, 1272, 1260, 1191, 1127, 964, 930, 872, 835, 769, 740, 724, 693, 656. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₆H₁₃FO₄Na⁺ 311.0690; Found 311.0698.

methyl 4'-acetyl-3'-chloro-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3he)

The general procedure was followed using 1-(4-bromo-2-chlorophenyl)ethan-1-one (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3he** (35.3 mg, 58%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.99 (s, 2H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.62 (s, 1H), 7.50 (d, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 7.9 Hz, 1H), 5.85 (s, 1H), 3.91 (s, 3H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 200.2, 166.7, 156.7, 140.9, 138.3, 132.5, 132.3, 132.0, 131.5, 130.3, 127.9, 126.1, 123.6, 116.5, 52.3, 31.0. m.p. = 135.3-136.1 °C. IR (ATR, cm⁻¹): 3273, 1685, 1604, 1510, 1432, 1380, 1316, 1260, 1138, 1041, 974, 876, 828, 752, 737, 688, 636. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₆H₁₃ClO₄Na⁺ 327.0395; Found 327.0379.

2'-hydroxy-[1,1'-biphenyl]-4-carbaldehyde (3ia)

The general procedure was followed using 4-bromobenzaldehyde (0.2 mmol) and phenol (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ia** (22.6 mg, 57%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 10.05 (s, 1H), 7.98 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 6.8 Hz, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 1H), 5.43 (s, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 192.3, 152.7, 144.3, 135.4, 130.7, 130.5, 130.2, 130.1, 127.2, 121.4, 116.6. m.p. = 107.7-108.3 °C. IR (ATR, cm⁻¹): 3378, 2978, 2923, 2844, 1668, 1600, 1559, 1451, 1410, 1378, 1300, 1276, 1256, 1214, 1168, 1091, 1051, 1002, 881, 846, 835, 822, 756, 722, 710, 662. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₃H₁₀O₂Na⁺ 221.0573; Found 221.0570.

methyl 4'-formyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3ie)

The general procedure was followed using 4-bromobenzaldehyde (0.2 mmol) and methyl 4hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3ie** (34.8 mg, 68%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 10.06 (s, 1H), 8.02 (s, 1H), 7.99 (d, *J* = 7.7 Hz, 3H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.07 (s, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 192.1, 166.9, 156.9, 143.1, 135.9, 132.7, 131.9, 130.5, 130.1, 127.2, 123.5, 116.5, 52.3. m.p. = 142.3-143.1 °C. IR (ATR, cm⁻¹): 3258, 2985, 2891, 1690, 1600, 1424, 1387, 1317, 1283, 1251, 1208, 1129, 967, 838, 799, 731, 690, 645. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₅H₁₂O₄Na⁺ 279.0628; Found 279.0615.

methyl 3'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (3je)

The general procedure was followed using 1-(3-bromophenyl)ethan-1-one (0.2 mmol) and methyl 4-hydroxybenzoate (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3je** (25.4 mg, 47%).

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.09$ (s, 1H), 7.98 (d, J = 9.8 Hz, 3H), 7.71 (d, J = 7.4 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 5.76 (s, 1H), 3.90 (s, 3H), 2.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.1$, 166.9, 156.8, 138.1, 137.1, 134.0, 132.6, 131.6, 129.7, 129.3, 128.2, 127.5, 123.4, 116.3, 52.2, 27.0. m.p. = 73.7-74.5 °C. IR (ATR, cm⁻¹): 3327, 2955, 2925, 2852, 1718, 1688, 1665, 1602, 1510, 1434, 1399, 1356, 1318, 1263, 1202, 1113, 1043, 981, 892, 832, 795, 767, 735, 688, 622. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₆H₁₄O₄Na⁺ 293.0784; Found 293.0796.

5'-acetyl-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3kc)

The general procedure was followed using 3-bromobenzonitrile (0.2 mmol) and 1-(4-hydroxyphenyl)ethan-1-one (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3kc** (22.8 mg, 48%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.91 (dd, *J* = 9.5, 7.3 Hz, 3H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 6.8 Hz, 1H), 7.02 (d, *J* = 9.0 Hz, 1H), 6.50 (s, 1H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.0, 157.3, 138.3, 133.9, 133.2, 131.7, 131.5, 131.0, 130.9, 129.8, 126.5, 118.8, 116.5, 113.1, 26.6. m.p. = 89.7-90.2 °C. IR (ATR, cm⁻¹): 3169, 3060, 2928, 2769, 2225, 1642, 1583, 1430, 1400, 1363, 1269, 1131, 1083, 963, 898, 823, 791, 689, 639. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₁NO₂Na⁺ 260.0682; Found 260.0676.

5'-acetyl-2'-hydroxy-5-(trifluoromethyl)-[1,1'-biphenyl]-3-carbonitrile (3lc)

The general procedure was followed using 3-bromo-5-(trifluoromethyl)benzonitrile (0.2 mmol) and 1-(4-hydroxyphenyl)ethan-1-one (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3lc** (31.7 mg, 52%).

¹H NMR (400 MHz, d_6 -DMSO, ppm) $\delta = 11.01$ (s, 1H), 8.38 (s, 1H), 8.29 (d, J = 12.6 Hz, 2H), 8.02 (d, J = 2.2 Hz, 1H), 7.90 (dd, J = 8.6, 2.2 Hz, 1H), 7.09 (d, J = 8.6 Hz, 1H), 2.55 (s, 3H). ¹³C NMR (101 MHz, d_6 -DMSO, ppm) $\delta = 196.2$, 158.9, 139.9, 136.7, 131.8, 130.8, 130.3 (q, ³ $J_{C-F} =$ 3.7 Hz), 130.1 (q, ² $J_{C-F} = 32.8$ Hz), 129.2, 127.7 (q, ³ $J_{C-F} = 3.4$ Hz), 123.9, 123.3 (q, ¹ $J_{C-F} = 273.0$ Hz), 117.6, 116.2, 112.8, 26.5. ¹⁹F NMR (376 MHz, d_6 -DMSO, ppm) $\delta = -61.4$. m.p. = 117.7-118.5 °C. IR (ATR, cm⁻¹): 3067, 2928, 2759, 2361, 2336, 2234, 1648, 1585, 1445, 1401, 1372, 1344, 1283, 1220, 1164, 1129, 1062, 968, 892, 836, 727, 695, 647. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₆H₁₀F₃NO₂Na⁺ 328.0556; Found 328.0565.

5'-acetyl-2'-hydroxy-[1,1'-biphenyl]-2-carbonitrile (3mc)

The general procedure was followed using 2-bromobenzonitrile (0.2 mmol) and 1-(4-hydroxyphenyl)ethan-1-one (0.8 mmol). The crude product was purified by preparative TLC, using PE and EA (v/v = 2/1) as eluent, to yield the white solid **3mc** (19.4 mg, 41%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.74 (d, *J* = 2.0 Hz, 1H), 8.43 (dd, *J* = 8.0, 1.0 Hz, 1H), 8.26 (d, *J* = 8.1 Hz, 1H), 8.07 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.92 – 7.87 (m, 1H), 7.68 – 7.63 (m, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 2.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.7, 160.7, 154.5, 135.5, 134.3, 133.7, 131.0, 130.7, 129.8, 123.8, 122.3, 121.4, 118.5, 118.3, 26.9. m.p. = 121.3-122.0 °C. IR (ATR, cm⁻¹): 3077, 2921, 2851, 2361, 2336, 2224, 1749, 1672, 1604, 1567, 1490, 1416, 1356, 1251, 1214, 1089, 1028, 959, 895, 829, 769, 727, 683, 628. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₅H₁₁NO₂Na⁺ 260.0682; Found 260.0699.

1-(dibenzo[b,d]furan-3-yl)ethan-1-one^{S3}

In a nitrogen filled glove box, **3aa** (0.20 mmol), $Pd(OAc)_2$ (4.5 mg, 0.020 mmol, 10 mol %), 3nitropyridine (2.5 mg, 0.020 mmol, 10 mol %), C_6F_6 (0.3 mL), DMI (0.2 mL) and BzOO*t*Bu (76 μ L, 0.40 mmol, 2.0 equiv) were added into 15 mL tube. The resulting solution was stirred at 90 °C for 4 h. After cooling to room temperature, the crude product was purified by preparative TLC, using PE and EA (v/v = 20/1) as eluent, to yield the white solid 1-(dibenzo[*b,d*]furan-2-yl)ethan-1-one (19.7 mg, 47%).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.17 (s, 1H), 7.99 (d, *J* = 7.9 Hz, 3H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.3 Hz, 1H), 2.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.6, 157.8, 156.2, 136.3, 128.9, 128.8, 123.5, 123.4, 123.4, 121.7, 120.7, 112.3, 112.0, 27.1. QTOF-MS *m/z* [M + H]⁺ Calcd for C₁₄H₁₁O₂⁺ 211.0754; Found 211.0751.

X-ray diffraction crystallography

The crystal structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques with the *SHELXL-2018/3* program.^{S6} Crystallographic data are summarized in Table S4. Additionally, complete data have been deposited with the Cambridge Crystallographic Data Centre under the number CCDC 2108994. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Compound	3 aa		
CCDC number	2108994		
formula	$C_{14}H_{12}O_2$		
Fw	212.24		
crystal system	monoclinic		
space group	$P2_{1}/n$		
<i>a</i> (Å)	6.8356(3)		
b (Å)	22.7724(11)		
<i>c</i> (Å)	7.0408(3)		
α (°)	90		
β (°)	101.861(5)		
γ (°)	90		
$V(\text{\AA}^3)$	1072.59(9)		
Ζ	4		
$D_{\rm c}/{ m g~cm^{-3}}$	1.314		
<i>F</i> (000)	448		
μ/mm^{-1}	0.699		
Total reflections	2265		
Unique reflections	1751		
$R_{\rm int}$	0.0411		
$R_1^a \left[I > 2\sigma(I) \right]$	0.0654		
$wR_2^b[I > 2\sigma(I)]$	0.1660		
GOF ^c	1.058		

where n = number of reflections and p = total numbers of parameters refined.

References

S1 P. Job, Ann. Chim., 1928, 9, 113.

S2 (a) K. Zhang, L.-Q. Lu, Y. Jia, Y. Wang, F.-D. Lu, F. Pan, and W.-J. Xiao, Angew. Chem. Int. Ed. 2019,

58, 13375–13379; (b) M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426–5434.

S3 Y. Wei and N. Yoshikai, Org. Lett., 2011, 13, 5504–5507.

S4 Z. Zuo, X. Yang, J. Liu, J. Nan, L. Bai, Y. Wang and X. Luan, J. Org. Chem., 2015, 80, 3349–3356.

S5 J. Nan, Z. Zuo, L. Luo, L. Bai, H. Zheng, Y. Yuan, J. Liu, X. Luan and Y. Wang, J. Am. Chem. Soc., 2013, **135**, 17306–17309.

S6 G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, C71, 3-8.

NMR spectra

Figure S9. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(2'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (**3aa**) in CDCl₃

Figure S10. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4'-acetyl-6-hydroxy-[1,1'- biphenyl]-3-carbonitrile (**3ab**) in d_6 -DMSO

biphenyl]-3,4'-diyl)bis(ethan-1-one) (3ac) in CDCl₃ 2.64 $\begin{array}{c} 8.06 \\ \hline 8.04 \\ \hline 7.94 \\ 7.92 \\ \hline 7.92 \\ \hline 7.65 \\ \hline 7.63 \\ -7.26 \\ \hline 7.08 \\ \hline 7.08 \\ \hline 7.06 \\ \hline 7.06 \\ \end{array}$ ~7.65 -7.26 ____8.06 ____8.04 ____7.92 7.92 Z7.08 HO 2.05-12 02 8 N N 8.0 7.0 8.1 7.8 7.7 7.6 7.5 f1 (ppm) 7.4 7.3 7.2 7.1 7.9 L 2.15 3.31 2.05 1.00 8.5 8.0 7.0 2.5 1.5 0.0 7.5 6.5 5.5 5.0 3.5 3.0 2.0 1.0 0.5 6.0 4.5 4.0 fl (ppm) -141.78 -136.56 130.82 129.66 127.52 -116.53 16 -157.52 77.55 77.23 76.91 26.89
26.58 198.7 110 100 f1 (ppm) 50 40 30 20 0 200 190 150 130 120 90 80 70 60 10 180 170 160 140

Figure S11. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1,1'-(6-hydroxy-[1,1'-biphenyl]-3,4'-diyl)bis(ethan-1-one) (**3ac**) in CDCl₃

Figure S12. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(4'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-yl)propan-1-one (**3ad**) in CDCl₃

Figure S13. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (**3ae**) in CDCl₃

Figure S14. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for ethyl 4'-acetyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (**3af**) in CDCl₃

Figure S15. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F NMR (377 MHz) NMR spectra for1-(2'-hydroxy-5'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ag**) in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S16. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(2'-hydroxy-5'-methyl-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ah**) in CDCl₃

Figure S17. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(2'-hydroxy-5'-methoxy-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ai**) in CDCl₃

Figure S18. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(2'-hydroxy-5'-isopropyl-[1,1'-biphenyl]-4-yl)ethan-1-one (**3aj**) in CDCl₃

Figure S19. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(5'-(*tert*-butyl)-2'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ak**) in CDCl₃

Figure S20. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(2'-hydroxy-5'-propyl-[1,1'-biphenyl]-4-yl)ethan-1-one (**3al**) in CDCl₃

Figure S21. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(3',5'-dichloro-2'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (**3am**) in CDCl₃

Figure S22. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(3'-chloro-2'-hydroxy-[1,1'-biphenyl]-4-yl)ethan-1-one (**3an**) in CDCl₃

Figure S23. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1,1'-(2-hydroxy-[1,1'-biphenyl]-3,4'-diyl)bis(ethan-1-one) (**3ao**) in CDCl₃

Figure S24. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4'-acetyl-2-hydroxy-[1,1'-biphenyl]-3-carboxylate (**3ap**) in CDCl₃

Figure S25. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F NMR (377 MHz) NMR spectra for 1-(2'-hydroxy-3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (**3aq**) in CDCl₃

Figure S26. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F NMR (377 MHz) NMR spectra for 1-(2'hydroxy-4',6'-bis(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ar**) in CDCl₃

Figure S28. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(4-(2-hydroxynaphthalen-1-yl)phenyl)ethan-1-one (**3at**) in CDCl₃

Figure S29. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 6-hydroxy-4'propionyl-[1,1'-biphenyl]-3-carboxylate (**3be**) in CDCl₃

Figure S30. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4'-butyryl-6hydroxy-[1,1'-biphenyl]-3-carboxylate (**3ce**) in CDCl₃

Figure S31. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 6-hydroxy-4'pentanoyl-[1,1'-biphenyl]-3-carboxylate (**3de**) in CDCl₃

Figure S32. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4'-benzoyl-6hydroxy-[1,1'-biphenyl]-3-carboxylate (**3ee**) in CDCl₃

Figure S33. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4'- (cyclopropanecarbonyl)-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (**3fe**) in CDCl₃

Figure S34. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(5'-acetyl-2'-hydroxy-[1,1'-biphenyl]-4-yl)propan-1-one (**3bc**) in CDCl₃

Figure S35. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(4'-benzoyl-6-hydroxy-[1,1'-biphenyl]-3-yl)ethan-1-one (**3ec**) in CDCl₃

Figure S36. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for methyl 4'- acetyl-3'-fluoro-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (**3ge**) in CDCl₃

) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Figure S37. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4'-acetyl-3'-chloro-6hydroxy-[1,1'-biphenyl]-3-carboxylate (**3he**) in CDCl₃

Figure S38. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 2'-hydroxy-[1,1'-biphenyl]-4-carbaldehyde (**3ia**) in CDCl₃

Figure S39. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4'-formyl-6-hydroxy-[1,1'-biphenyl]-3-carboxylate (**3ie**) in CDCl₃

Figure S41. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 5'-acetyl-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (**3kc**) in CDCl₃

Figure S42. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (376 MHz) NMR spectra for 5'-acetyl-2'- hydroxy-5-(trifluoromethyl)-[1,1'-biphenyl]-3-carbonitrile (**3lc**) in d_6 -DMSO

Figure S43. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 5'-acetyl-2'-hydroxy-[1,1'-biphenyl]-2-carbonitrile (**3mc**) in CDCl₃

Figure S44. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(dibenzo[b,d]furan-3-yl)ethan-1-one in CDCl₃