Support information

Visible-light mediated intramolecular radical cyclizations of α -brominated

amide-tethered alkylidenecyclopropanes

Ben Mao,^a Xiao-Yu Zhang,^a Yin Wei,^{*b} and Min Shi^{*a,b}

 ^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. <u>weiyin@sioc.ac.cn</u>, <u>mshi@mail.sioc.ac.cn</u>.
 ^bState Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 20032, China.

CONTENTS

1. General Remarks.	S2
2. Optimization of Reaction Conditions	S3
3. General Procedure for the Synthesis of Substrates 1	S6
4. General Procedure for the Synthesis of Products 2.	S10
5. Mechanistic Studies	S11
6. Proposed Reaction Mechanisms	S15
7. X-ray data	S19
8. Characterization Data of Substrates	S21
9. Characterization Data of Products.	S41
10. Spectroscopic Data of Substrates (NMR Spectrum)	S55
11. Spectroscopic Data of Products (NMR Spectrum)	S90
12. References	S118

1. General Remarks.

Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. NMR spectra were recorded with a Bruker spectrometer at 400 MHz (¹H NMR), 600 MHz (¹H NMR), 100 MHz (¹³C NMR), 150 MHz (¹³C NMR) and 564 MHz (¹⁹F NMR) in CDCl₃, respectively. Chemical shift was reported in ppm down field from internal TMS. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm⁻¹. Mass spectra were recorded by ESI, EI and HRMS was measured on a HP-5989 instrument. X-ray structure was determined on a Bruker Smart-1000 X-ray Diffraction meter. Commercially available reagents were used without further purification. Organic solvents used were dried by standard methods when necessary. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash column chromatography was performed by using GENERAL-REAGENT silica gel (300-400 mesh). All reactions were performed under argon using standard Schlenk techniques. The 15 W and 30 W Blue LED (Manufacturer: Liang yuan-Light Factory, Model: PAR 38, Wavelength: 425 nm) was directly purchased from the supermarket.

2. Optimization of Reaction Conditions

		$\nabla $			\checkmark°
	/	⊾ ↓ Br _	Photocatalyst (5 mol%)		N—
			Additive, Solvent, rt 30 W Blue LED, 18 h		\Box
		1a		2a	
	Entry ^a	Photocatalyst	Additive (equiv)	Solvent	Yield (%) ^b
	1	[Ru(bpy) ₃](PF ₆) ₂	Et ₃ N (4.0)	CH ₃ CN	38
	2	[Ir[dF(CF ₃)ppy] ₂ (bpy)]PF	₆ Et ₃ N (4.0)	CH ₃ CN	36
	3	4CzIPN	Et ₃ N (4.0)	CH ₃ CN	65
	4	lr(ppy) ₃	Et ₃ N (4.0)	CH ₃ CN	50
	5	4CzIPN	TMEDA (4.0)	CH ₃ CN	30
	6	4CzIPN	DIPEA (4.0)	CH ₃ CN	40
	7	4CzIPN	K ₂ CO ₃ (4.0)	CH ₃ CN	NR
	8	4CzIPN	Et ₃ N (4.0)	DCE	51
	9	4CzIPN	Et ₃ N (4.0)	Dioxane	58
	10	4CzIPN	Et ₃ N (4.0)	DME	72 (62) ^c
	11	4CzIPN	Et ₃ N (4.0)	THF	69
	12	4CzIPN	Et ₃ N (4.0)	DCM	33
	13	4CzIPN	Et ₃ N (4.0)	acetone	55
	14	4CzIPN	Et ₃ N (10.0)	DME	42
	15	4CzIPN	Et ₃ N (2.0)	DME	61
	16 ^d	—	Et ₃ N (4.0)	DME	NR
	17 ^e	4CzIPN	Et ₃ N (4.0)	DME	NR
	18 ^f	4CzIPN	_	DME	NR

Table S1 Optimization of Reaction Conditions

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), photocatalyst (0.005 mmol, 5.0 mol%) and additive (0.4 mmol, 4.0 equiv) were placed in a reaction tube and Ar was charged. Then 1.0 mL solvent was added and the mixture was stirred exposing to blue LED light (30 W) at room temperature for 18 h. ^bYields were determined by ¹H NMR using 1,3,5-trimethoxybenzen as an internal standard. ^cIsolated yield on 0.2 mmol scale. ^dReaction was conducted in the absence of photocatalyst. ^eReaction was conducted in the absence of additive.

To get **2a** in higher yield, we tried to optimize the reaction conditions and the selected results are shown in Table S1. The photocatalysts with different reduction potentials were employed in the reaction system along with utilizing Et₃N as an additive and CH₃CN as solvent and we found that these photocatalysts could promote the reaction smoothly and the organophotocatalyst 4CzIPN gave the best result, affording **2a** in 65% yield (Table S1, entries 1-4, for more information see Table S2). Next, the other alkyl amines such as TMEDA (N,N,N',N'-tetramethylethylenediamine) and DIPEA (N,N-diisopropylethylamine) were used in this reaction, furnishing **2a** in 30% and 40% yields, respectively (Table S1, entries 5 and 6). The use of inorganic base K₂CO₃ as additive failed to afford **2a**, indicating that aminoalkyl radical generated from alkyl amine played the key role in this XAT promoted intramolecular cyclization reaction (Table S1, entry 7). The evaluation of solvent effects displayed that DME (1,2-dimethoxyethane) was the solvent of choice, providing the desired product 2a in 72% yield (Table S1, entries 8-13). Decreasing the amount of Et₃N to 2.0 equivalents (Table S1, entry 15) or increasing to 10.0 equivalents (Table S1, entry 14) were both conducive, however, giving 2a in lower yield. The control experiments demonstrated that the reaction cannot proceed in the absence of photocatalyst, light source irradiation or Et₃N (Table S1, entries 16-18).

	Photocal Et ₃ N CH ₃ C 30 W Bl	talyst (5 mol%) (4.0 equiv) N (0.1 M), rt ue LED, 18 h		-
entry ^a	Photocatalyst	E (PC*+/PC*)	E (PC/PC'-)	2a yield ^e (%)
1	4CzIPN	-1.04 V	-1.21 V	65
2	[Ir[dF(CF ₃)ppy] ₂ (dtbpy)]PF ₆	-0.89 V	-1.37 V	55
3	[Ir[dF(Me)ppy] ₂ (dtbbpy)]PF ₆	-0.92 V	-1.44 V	23
4	[Ru(bpy) ₃](PF ₆) ₂	-0.81 V	-1.33 V	38
5	[Ir[dF(CF ₃)ppy] ₂ (bpy)]PF ₆	-1.00 V	-1.37 V	36
6	Fluorescein ^d	-1.55 V	-1.22 V	44
7	lr(ppy) ₃	-1.73 V	-2.19 V	50
8	[lr(dtbbpy)(ppy) ₂]PF ₆	-0.96 V	-1.51 V	42
9	[Ir(dF(CF ₃)ppy) ₂ (5,5'-CF ₃ bpy)]PF ₆	-0.69 V	-0.43 V	29
10 ^b	4CzIPN	-1.04 V	-1.21 V	63
11 ^c	4CzIPN	-1.04 V	-1.21 V	62

 Table S2 Screening of optimal photocatalyst

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), photocatalyst (0.005 mmol, 5.0 mol%) and Et₃N (0.4 mmol, 4.0 equiv) were placed in a reaction tube and Ar was charged. Then 0.5 mL solvent was added and the mixture was stirred exposing to blue LED light (30 W) at room temperature for 18 h. ^b15 W Blue LED was used. ^cThe reaction time is 24 h. ^dThe value of redox potentials here taken that of Fluorescein Na salt due to 4.0 equivalents of Et₃N were used. ^eYields were determined by ¹H NMR using 1,3,5-trimethoxybenzen as an internal standard.

In this intramolecular cyclization reaction, all the photocatalysts used can provide the final product. However, when comparing the reduction potentials of **1a** ($E_{red} = -1.57 \text{ V} vs \text{ SCE}$, see Cyclic Voltammetry Experiments below) with the involved photocatalysts except for Ir(ppy)₃ (entry 7), the direct SET (single electron transfer) process could not proceed between the photocatalyst and the substrata **1a**. This result indicates that the mechanism of the cascade reaction involves a XAT (halogen atom transfer) process, which is in accordance with the previously reported conclusion.¹ All the data of reduction potentials in the excited and reduced state of photocatalyst are referred to the previous literature.²⁻⁷

Table S3 Screening of optimal additive

	4CzIPN (5 mol%) additive CH ₃ CN (0.1 M), rt 30 W Blue LED, 18 h	
^a entry	additive (equiv)	yield ^b (%)
1	K ₂ CO ₃ (2.0)	NR
2	DABCO (2.0)	NR
3	pyridine (4.0)	trace
4	TBAF (4.0)	NR
5	DIPA (4.0)	49
6	DIPEA (4.0)	40
7	TMEDA (4.0)	30
8	Et ₃ N (2.0)	61
9	Et ₃ N (4.0)	65
10	Et ₃ N (6.0)	63
11	Et ₃ N (10.0)	42

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), 4CzIPN (0.005 mmol, 5.0 mol%) and additive were placed in a reaction tube and Ar was charged. Then 0.5 mL solvent was added and the mixture was stirred exposing to blue LED light (30 W) at room temperature for 18 h. ^bYields were determined by ¹H NMR using 1,3,5-trimethoxybenzen as an internal standard.

Table S4 Screening of optimal solvent

\bigcirc	O N Br 1a	4CzIPN (5 mol%) Et ₃ N (4.0), solvent, rt 30 W Blue LED, 18 h	
entry ^a		solvent	2a yield ^c (%)
1		DCM	33
2		DMSO	32
3		DCE	51
4		Dioxane	58
5		EtOAc	52
6		THF	69
7		acetone	55
8		Et ₂ O	40
9		DME	72(62) ^d
10		EtOH	42
11 ^b		DME	71

^aReaction conditions: **1a** (0.1 mmol, 1.0 equiv), 4CzIPN (0.005 mmol, 5.0 mol%) and Et₃N (0.4 mmol, 4.0 equiv) were placed in a reaction tube and Ar was charged. Then 0.5 mL solvent was added and the mixture was stirred exposing to blue LED light (30 W) at room temperature for 18 h. ^b6.0 equiv Et₃N instead. ^cYields were determined by ¹H NMR using 1,3,5-trimethoxybenzen as an internal standard. ^dIsolated yield on 0.2 mmol

3. General Procedure for the Synthesis of Substrates 1.

Compound S1 and procedure for the synthesis of substrates 1 was modified according to the previous literature.⁸

A solution of 3-bromopropyltriphenylphosphonium bromide (5.57 g, 13 mmol) and NaH (60% in oil, 0.96 g, 24 mmol) in THF (30 mL) was stirred at 65 °C in an oil bath under Ar for 4 h. Afterwards compound **S** (10 mmol) in THF (10 mL) was added and the reaction solution was stirred at 65 °C in an oil bath for another 8 h. Upon completion, the reaction was cooled to room temperature and the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 40/1) to afford the products **S1** in moderate yields.

A solution of compound S1 (2.0 mmol) in THF (20 mL) was stirred at -78 °C under Ar, "BuLi (2.0 mmol) was added dropwise for 20 min by a syringe pump. Upon completion, the reaction system continued to be stirred at -78 °C for another 20 minutes, then R³X was injected in one portion and the temperature of the reaction system gradually was warmed to room temperature. The reaction was quenched by water after 2 h and extracted with EtOAc for 3 times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the compounds S2 in high yields.

Method A

A solution of compound S2 (1.0 equiv) in DCM (10 mL) was stirred at 0 °C in an ice bath under Ar. Then Et₃N (1.5 equiv) and the corresponding acyl chloride or acyl bromide (1.2 equiv) were added respectively. The reaction system was warmed to room temperature 1 h later and the mixture was reacted for another 2 h. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the substrates 1a - 1v, 1x and 1y in high yields.

Method B

A solution of compound S2 (2.0 mmol), the corresponding carboxylic acid (2.0 mmol) and 4dimethylaminopyridine (0.1 mmol) in DCM (10 mL) was stirred at 0 °C in an ice bath for 10 min. Afterwards, the solution of dicyclohexylcarbodiimide (2.2 mmol) in DCM (5 mL) was added dropwise for 15 min. The reaction system was warmed to room temperature and stirred overnight. Upon completion, the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (PE/EA = 10/1) to afford the products 1z, 1aa and 1ac - 1af in moderate to high yields.

Synthesis of substrate 1w

Compound S3 was prepared from (2-hydroxyphenyl)(phenyl)methanone and the procedure was the same as the way mentioned above.

A solution of compound **S3** (1.0 equiv) in DCM (10 mL) was stirred at 0 °C in an ice bath under Ar. Then Et_3N (1.5 equiv) and the corresponding acyl bromide (1.2 equiv) were added respectively. The reaction system was warmed to room temperature after 1 h later and the reaction mixture was stirred for another 2 h. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the substrate **1w** (580 mg, 81% yield).

Synthesis of substrate 1ab

A solution of *O*-benzylserine (1.95 g, 10.0 mmol, 1.0 equiv), HBr (48% solution, 2.5 mL) and KBr (4.04 g, 34 mmol, 3.4 equiv) in water (10 mL) was stirred at -15 °C for 10 min. Then the solution of NaNO₂ (0.86 g, 12.5 mmol, 1.25 equiv) in water (5 mL) was added dropwise for 20 min by a syringe pump. After the addition, the reaction system was slowly warmed up to room temperature and the reaction mixture was stirred for another 3 hours. Upon completion, the solution was extracted with Et_2O for three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford 3-(benzyloxy)-2-bromopropanoic acid (2.26 g, 8.7 mmol, 87% yield) as a pale yellow oil, which was used for the next reaction without further purification.⁹

To an oven dried 50 mL round-bottom flask equipped with a magnetic stir bar, 3-(benzyloxy)-2-bromopropanoic acid (518 mg, 2.0 mmol, 1.0 equiv) and DCM (5 mL) were added and the mixture was stirred in an ice bath for 10 min, Cl₂CHOMe (0.19 mL, 2.1 mmol, 1.05 equiv) was injected into the solution slowly and was stirred for another 1 h.¹⁰ Afterwards, the mixture was transferred into the solution of compound **M** (471 mg, 2.0 mmol, 1.0 equiv) and Et₃N (3.0 mmol, 1.5 equiv) in DCM and the resulting mixture was stirred overnight. The reaction was quenched by water and extracted with DCM for 3 times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel (PE/EA = 10/1) to afford the substrate **1ab** (423 mg, 44% yield).

4. General Procedure for the Synthesis of Products 2.

In an flame dried Schlenk tube (20 mL) equipped with a magnetic stir bar, substrate 1 (0.2 mmol) and photocatalyst 4CzIPN (0.01 mmol, 5 mol%) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Et₃N (0.8 mmol, 4.0 equiv) and degassed DME (2.0 mL, 0.1 M) were injected into the tube sequentially. The mixture was placed 5 cm away from the blue LED (30 W) and stirred for 18 h at room temperature. Upon completion, EtOAc (5 mL) was added into the tube to dilute the mixture.

5. Mechanistic Studies

5.1 Radical Trapping Experiment

In an flame dried Schlenk tube (20 mL) equipped with a magnetic stir bar, substrate **1a** (0.2 mmol), photocatalyst 4CzIPN (0.01 mmol, 5 mol%) and TEMPO (0.8 mmol, 4.0 equiv) were added. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Et₃N (0.8 mmol, 4.0 equiv) and degassed DME (2 mL, 0.1 M) were injected into the tube sequentially. The mixture was placed 5 cm away from the blue LED (30 W) and stirred for 18 h at room temperature. Upon completion, 1,3,5-trimethoxybenzene (0.1 mmol, 0.5 equiv) as an internal standard was added into the tube, then EtOAc (5 mL) was added to dilute the mixture. The mixture was concentrated in *vacuo* and the yield of product **2a** was determined by ¹H NMR spectroscopy.

5.2 Sub-stoichiometry amount of Et₃N with additional base used Experiment

In four Schlenk tubes (20 mL) equipped with magnetic stir bars, substrate **1a** (0.1 mmol), photocatalyst 4CzIPN (0.005 mmol, 5 mol%) and K₂HPO₄ (0.4 mmol, 4.0 equiv) were added into each tube. The tube was degassed by alternating vacuum evacuation (10 min) and argon backfill for three times. Then different amount of Et₃N (200 mol%), Et₃N (20 mol%), Et₃N (5 mol%), Et₃N (-) were added into tubes, respectively. Degassed DME (2 mL) and H₂O (0.2 mL) were injected into the tube sequentially. The mixture was placed 5 cm away from the blue LED (30 W) and stirred for 18 h at room temperature. Upon completion, 1,3,5-trimethoxybenzene (0.1 mmol) as an internal standard was added into the tube, then EtOAc (5

mL) was added to dilute the mixture. The mixture was concentrated in *vacuo* and the yield of product **2a** was determined by ¹H NMR spectroscopy.

For the catalytic use of Et_3N (5 mol%) combine with inorganic base, theoretically the final product should be obtained in a maximum yield of 15% if every molecular of Et_3N promoted XAT process up to 3. The final product was obtained in 57% yield under this condition, however, indicating other species responsible for cleavage of the C-halogen bond existed in the reaction. Additionally, the requirement of simultaneous oxidation of $4CzIPN^{-1}$ and the intermediate **III** (see proposed mechanism in scheme 6) would generate the redox imbalance. Hence, a radical chain process should exist in the reaction, where α -aminoalkyl radicals acting as initiators.¹¹ Thus, the catalytic amount of Et_3N can initiate the reaction and the inorganic bases probably play as auxiliary bases for deprotonation of intermediate **IV** shown in Scheme 6. Besides, considering radical intermediate **III** was an electron-rich species and in a conjugated system, it probably underwent a XAT or SET event with substrate **1a** to afford **2a** along with the regeneration of intermediate **I**.

Figure S1. Proposed radical chain process.

5.3 Emission Quenching Studies¹²

All the emission intensities were recorded by Varian Cary Eclipse spectrometer. Solutions of 4CzIPN (2 x 10^{-5} M) in dry DME were excited at 372 nm and the emission intensity was collected at 527 - 528 nm. Solutions of different concentration of Et₃N and substrate **1i** (white solid, highest yield among all the substrates) were prepared respectively and introduced to a 1 cm path length quartz cuvette equipped with a Teflon® septum.

For the Et_3N : y = 364.07x + 0.9983, $R^2 = 0.9938$;

For the substrate 1i: y = 21.74x + 1.0025, $R^2 = 0.9800$;

Figure S2.

5.4 Cyclic Voltammetry Experiments

Cyclic Voltammetry was performed on a CH Instruments Electrochemical Workstation model CS350H. A solution of the substrate **1a** in MeCN (0.001 M) was tested with 0.1 M Bu₄NPF₆ as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and a saturated calomel electrode reference electrode. Ar was bubbled into the system for 20 min to degas the solution. Scan rate = 0.1 V/s, 2 sweep segments, a sample interval of 0.001 V.

Figure S3. S13

5.5 Quantum Yield Determination ¹³

To further investigate the mechanism of the reactions, we employed the model reaction of **1a** to **2a** to measure the quantum yield.

A cuvette equipped with a magnetic stir bar was added substrate **1a** (0.1 mmol), Et₃N (0.4 mmol) and dry 1,2-dimethoxyethane (2.0 mL). After which, 4CzIPN (0.005 mmol) was added at room temperature. The heterogeneous mixture was degassed by bubbling argon for 20 min and placed at a distance (app. 5 cm) from 100 W Blue LED for 1 h, The reaction mixture was concentrated in *vacuo* and analyzed by ¹H NMR spectrum using CH_2Br_2 as an internal standard. The quantum yield is calculated to be 0.26.

$$\phi = \frac{n_x}{n_p} = \frac{n_x}{\frac{\Delta E \times S \times t}{N_A hv}} = \frac{n_x \times N_A \times h \times c}{\Delta E \times S \times t \times \lambda}$$
$$= \frac{0.045 \times 10^{-3} mol \times 6.022 \times 10^{23} \times 6.626 \times 10^{-34} J \cdot s \times 2.998 \times 10^8 m \cdot s^{-1}}{(7.0 \times 10^{-3} W \cdot cm^{-2} \times 2cm^2) \times 3600 s \times 415 \times 10^{-9} m} = 0.26$$

 n_x is the amount of photochemical or photophysical events x occurred during irradiation, n_p is the number of photons absorbed by the reactant. E is the radiant power. S is the irradiated area: 2 cm²; t is the irradiated time: 3600 s; N_A is the Avogadro constant: 6.022×10^{23} /mol; h is the Planck constant: 6.626×10^{-34} J • s; v is the frequency of incident light; c is velocity of light 2.998×10^8 m/s). λ is the wavelength: 415 nm; n_x was analyzed by ¹H NMR, ΔE was measured by ILT1400 Portable Radiometer/Photometer.

The quantum yield expected to be > 1 in chain process, however, we still cannot exclude the possible radical chain mechanism of this reaction considering the factors of existence of inefficient initiation step or short-lived chains.¹⁴

6. Proposed Reaction Mechanisms

Figure S4. Proposed mechanism for the production of 2a.

Figure S5. Proposed mechanism for the production of three-membered ring unopened by-product.

In this intramolecular radical cyclization, impurities with regular chemical shifts were found in the ¹H NMR (see spectra of **2h** and **2j** taken as examples shown below). We speculated it could be the three-membered ring unopened by-product and proposed a plausible mechanism for the by-product (Figure S5, substrate 1h was taken as an example). The intermediate **II** possibly underwent a SET event with 4CzIPN⁻⁻ to provide the anionic intermediate **V**, which afforded the by-product **VI** via protonation. Notably, presumably due to the similar polarity and molecular weight, it was hard to separate these two kinds of compounds.

7, 591 7, 443 7, 443 7, 443 7, 444 7, 444 7, 446 7, 446 7, 446 7, 233 7, 333 7, 333 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 233 7, 252 7, 252 7, 252 7, 252 7, 252 7, 252 7, 252 2, 2657 2, 27522,

7. X-ray data.

Single crystals of **2a** were grown in EtOH and hexanes. EtOH (2.0 mL) was added to **2a** (29 mg in a 4 mL vial) followed by hexanes (0.5 mL). The 4 mL vial was capped with a needle and placed at room temperature in the experimental cabinet for 2 weeks, whereupon the crystals were formed.

The crystal data of **2a** have been deposited in CCDC with number 2082928. Empirical Formula: $C_{20}H_{19}NO$; Formula Weight: 289.36; Crystal Color, Habit: colorless, Crystal Dimensions: 0.200 x 0.150 x 0.130mm; Crystal System: Orthorhombic; Lattice Parameters: a = 9.2952(3)Å, b = 15.1908(6)Å, c = 21.6017(8)Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, $V = 3050.19(19)Å^3$; Space group: P b c a; Z = 8; $D_{calc} = 1.260$ g/cm³; $F_{000} = 1232$; Final R induces [I>2sigma(I)]: R1 = 0.0370; wR2 = 0.0909.

	incincinc for L at	
Empirical formula	C ₂₀ H ₁₉ NO	
Formula weight	289.36	
Temperature	213(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 9.2952(3) Å	α= 90°.
	b = 15.1908(6) Å	β= 90°.
	c = 21.6017(8) Å	$\gamma = 90^{\circ}$.
Volume	3050.19(19) Å ³	
Z	8	
Density (calculated)	1.260 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	1232	
Crystal size	0.200 x 0.150 x 0.130 mm ³	
Theta range for data collection	2.737 to 25.998°.	
Index ranges	-11<=h<=11, -18<=k<=1	6, -26<=l<=23
Reflections collected	14282	
Independent reflections	2976 [R(int) = 0.0275]	
Completeness to theta = 25.242°	99.2 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6646	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2976 / 0 / 202	
Goodness-of-fit on F ²	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0370, wR2 = 0.09	09
R indices (all data)	R1 = 0.0447, wR2 = 0.09	70
Extinction coefficient	0.019(2)	
Largest diff. peak and hole	0.215 and -0.160 e.Å ⁻³	

Table S5. Crystal data and structure refinement for 2a.

8. Characterization Data of Substrates

2-bromo-*N***-(2-(cyclopropylidene(phenyl)methyl)phenyl)***-N***-4methylpropanamide (1a)**: A white solid, 570 mg, 75% yield, major : minor = 6.7 : 1. M.p.: 177-178 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.49 - 7.43 (m, 4H), 7.31 - 7.27 (m, 2H), 7.23 - 7.19 (m, 3H), 4.31 (q, *J* = 7.0 Hz, 1H, *minor isomer*) & 4.05 (q, *J* = 6.7 Hz, 1H), 2.71 (s, 3H, *minor isomer*) & 2.63 (s, 3H), 1.72 (d, *J* = 7.0 Hz, 3H, *minor isomer*), 1.52 - 1.48 (m, 1H), 1.46 (d, *J* = 6.7 Hz, 3H), 1.33 - 1.24 (m, 2H), 1.13 - 1.05 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 170.7 & 169.2 (*minor isomer*), 141.7 (*minor isomer*) & 141.4, 141.1 (*minor isomer*), 140.7 (*minor isomer*), 140.1, 140.0, 132.3, 131.8, 129.1, 128.7, 128.6, 128.4, 128.2, 127.7, 127.6, 127.3, 127.1, 126.7, 126.6 (there are multiple peaks between 132.3 - 126.6 due to rotamers), 39.3 (*minor isomer*), 2.7 (*minor isomer*) & 2.0; IR(EtOH): v 3055, 2971, 2935, 1731, 1659, 1488, 1446, 1376, 1074, 766, 753, 698 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₀NONaBr 392.0620; found 392.0619.

2-bromo-*N***-(2-(cyclopropylidene(4-fluorophenyl)methyl)phenyl)**-*N*-methylpropanamide (**1b**): A white solid, 545 mg, 70% yield, major : minor = 5 : 1. M.p.: 147-149 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.50 - 7.40 (m, 4H), 7.20 - 7.14 (m, 2H), 6.97 (t, *J* = 8.7 Hz, 2H), 4.29 (q, *J* = 7.0 Hz, 1H, *minor isomer*) & 4.04 (q, *J* = 6.7 Hz, 1H), 2.63 (s, 3H) & 2.50 (s, 3H, *minor isomer*), 1.72 (d, *J* = 7.1 Hz, 3H, *minor isomer*) & 1.51 (d, *J*

= 6.7 Hz, 3H), 1.48 - 1.45 (m, 2H), 1.32 - 1.28 (m, 1H), 1.13 - 1.05 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.6 (*minor isomer*) &169.2, 161.9 (d, J = 246.1 Hz), 141.0, 139.6, 136.1 (d, J = 3.5 Hz), 132.1, 131.6, 129.2, 128.8, 128.4, 128.2 (d, J = 8.3 Hz), 127.6, 126.7, 115.3 (d, J = 21.3 Hz), 115.2, 42.5 (*minor isomer*) & 39.0, 37.28 & 37.25 (*minor isomer*), 23.3 (*minor isomer*) & 20.9, 4.7 & 4.4 (*minor isomer*), 2.5 (minor isomer) & 2.2; ¹⁹F NMR (564 MHz, CDCl₃) δ -114.6 & -115.0 (*minor isomer*); IR (acetone) v 3039, 2966, 2919, 1654, 1593, 1506, 1484, 1446, 1379, 1221, 1155, 1094, 829, 805, 773, 749 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₂₀NOFBr 388.0706; found 388.0711.

2-bromo-N-(2-((4-chlorophenyl)(cyclopropylidene)methyl)phenyl)-N-

methylpropanamide (1c): A white solid, 572 mg, 71% yield, major : minor = 3.3 : 1. M.p.: 152-154 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃,TMS) δ 7.51 - 7.45 (m, 2H), 7.45 - 7.40 (m, 2H), 7.25 - 7.19 (m, 2H), 7.14 (d, J = 8.6 Hz, 2H), 4.23 (q, J = 6.8 Hz, 1H, *minor isomer*) & 3.97 (q, J = 6.6 Hz, 1H), 2.71 (s, 3H) & 2.55 (s, 3H, *minor isomer*), 1.57 (d, J = 6.9 Hz, 3H, *minor isomer*) 1.48 (t, J = 7.2 Hz, 2H), 1.34 (d, J = 6.6 Hz, 3H), 1.28 (t, J = 6.8 Hz, 1H), 1.17 - 1.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 169.7 (*minor isomer*) & 169.2, 141.2 (*minor isomer*) & 141.1, 139.9 (*minor isomer*) & 139.4, 139.1 (*minor isomer*) & 138.5, 133.1, 132.8, 132.1, 131.7, 129.7, 129.3, 128.8, 128.5, 128.45, 128.42, 128.3, 127.9, 127.7, 127.6, 126.9 (there are multiple peaks between 133.1 - 126.9 due to rotamers), 42.4 (*minor isomer*) & 39.0, 37.4, 23.3 (*minor isomer*) & 20.9, 4.8 & 4.5 (*minor isomer*), 2.5 (*minor isomer*) & 2.2; IR (EtOH): v 2973, 2921, 1666, 1489, 1448, 1381, 1091, 1044, 879, 821, 757 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₁₉NONaClBr 426.0230; found 426.0237.

2-bromo-N-(2-((4-bromophenyl)(cyclopropylidene)methyl)phenyl)-N-

methylpropanamide (1d): A yellow solid, 645 mg, 72% yield, major : minor = 3.7 : 1. M.p.: 131-133 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.49 - 7.45 (m, 2H), 7.44 - 7.39 (m, 4H), 7.08 (d, J = 8.5 Hz, 2H), 4.22 (q, J = 6.9 Hz, 1H, *minor isomer*) & 3.97 (q, J = 6.6 Hz, 1H), 2.71 (s, 3H) & 2.55 (s, 3H, *minor isomer*), 1.56 (d, J = 6.8 Hz, 3H, *minor isomer*) 1.51 - 1.44 (m, 2H), 1.34 (d, J = 6.6 Hz, 3H), 1.33 - 1.27 (m, 1H), 1.16 - 1.07 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.2, 141.1, 139.3, 139.0, 131.7, 131.5, 131.4, 129.3, 128.8, 128.7, 128.5, 128.3, 127.8, 127.7, 121.2, 42.4 (*minor isomer*) & 39.0, 37.4, 20.3(*minor isomer*) & 20.9, 4.8 & 4.6 (*minor isomer*), 2.6 (*minor isomer*) & 2.2; IR (EtOH): v 2971, 2924, 1666, 1486, 1447, 1382, 1089, 1045, 879, 771, 756 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₁₉NONaBr₂ 469.9725; found 469.9714.

2-bromo-N-(2-(cyclopropylidene(4-methoxyphenyl)methyl)phenyl)-N-

methylpropanamide (1e): A yellow solid, 640 mg, 80% yield, major : minor = 5 : 1. M.p.: 133-135 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47 - 7.39 (m, 4H), 7.15 (d, J = 8.8 Hz, 2H), 6.83 - 6.77 (m, 2H), 4.25 (q, J = 6.9 Hz, 1H, *minor isomer*) & 4.00 (q, J = 6.6 Hz, 1H), 3.79 (s, 3H, *minor isomer*) & 3.78 (s, 3H), 2.73 (s, 3H) & 2.55 (s, 3H, *minor isomer*), 1.57 (d, J = 6.9 Hz, 3H, *minor isomer*), 1.46 (t, J = 8.4 Hz, 2H), 1.32 (d, J = 6.6 Hz, 3H), 1.28 - 1.20 (m, 1H), 1.12 - 1.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 169.6 (*minor isomer*) & 169.2, 158.8 & 158.7 (*minor isomer*), 141.3 (*minor isomer*) & 141.1,

140.6 (*minor isomer*) & 140.1, 133.2 (*minor isomer*) & 132.6, 132.1 (*minor isomer*) & 131.7, 128.9, 128.6, 128.4, 128.2, 128.0, 127.8, 127.6, 124.8, 113.7, 55.2, 42.6 (*minor isomer*) & 39.3, 37.4, 23.3 (*minor isomer*) & 21.0, 4.6 & 4.4 (*minor isomer*), 2.3 (*minor isomer*) & 2.0; IR (EtOH): v 2971, 2927, 1654, 1509, 1446, 1385, 1300, 1245, 1167, 1029, 825, 790, 777 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₂NO₂NaBr 422.0726; found 422.0719.

2-bromo-N-(2-(cyclopropylidene(4-isopropylphenyl)methyl)phenyl)-N-

methylpropanamide (1f): A yellow oil, 580 mg, 70% yield, major : minor = 8.3 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47 - 7.44 (m, 3H), 7.43 - 7.39 (m, 1H), 7.13 (s, 4H), 4.31 (q, J = 7.0 Hz, 1H, *minor isomer*) & 4.02 (q, J = 6.7 Hz, 1H), 2.90 - 2.81 (m, 1H), 2.67 (s, 3H) & 2.47 (s, 3H, *minor isomer*), 1.48 (t, J = 7.2 Hz, 2H), 1.40 (d, J = 6.7 Hz, 3H), 1.24 - 1.22 (m, 1H), 1.20 (d, J = 6.9 Hz, 6H), 1.11 - 1.03 (m, 1H); ¹³C NMR (150 MHz, CDCl₃,TMS,) δ 170.7, 148.1, 141.4, 140.3, 137.4, 131.8, 129.0, 128.6, 128.5, 127.8, 126.7, 126.4, 125.6, 37.6, 33.8, 24.0, 23.9, 23.2, 15.6, 4.8, 2.0; IR (acetone): v 2959, 2919, 2861, 1659, 1589, 1485, 1446, 1372, 1099, 1060, 843, 826, 762 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₃H₂₇NOBr 412.1270; found 412.1279.

2-bromo-*N***-(2-((4-(tert-butyl)phenyl)(cyclopropylidene)methyl)phenyl)**-*N***methylpropanamide (1g)**: A white solid, 632 mg, 74% yield, major : minor = 5 : 1. M.p.: 97-99 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.46 (d, *J* = 2.7 Hz, 3H),

7.43 - 7.40 (m, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 4.01 (q, J = 6.7 Hz, 1H) & 3.95 (q, J = 6.5 Hz, 1H, *minor isomer*), 2.76 (s, 3H, *minor isomer*) & 2.68 (s, 3H), 1.72 (d, J = 7.0 Hz, 3H, *minor isomer*), 1.48 (t, J = 7.5 Hz, 2H), 1.37 (d, J = 6.7 Hz, 3H), 1.27 (s, 9H), 1.23 - 1.15 (m, 1H), 1.13 - 1.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS, *major isomer*) δ 170.6, 150.3, 141.3, 140.2, 136.9, 131.8, 128.9, 128.6, 128.2, 127.7, 126.3, 125.6, 125.2, 37.5, 34.4, 31.2, 23.1, 15.5, 4.7, 1.9; IR (EtOH): v 2963, 2866, 1640, 1486, 1447, 1384, 1267, 1088, 1045, 837, 758 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₄H₂₉NOBr 426.1427; found 426.1421.

2-bromo-*N***-(2-(cyclopropylidene(4-(trifluoromethyl)phenyl)methyl)phenyl)**-*N***methylpropanamide (1h)**: A white solid, 530 mg, 61% yield, major : minor = 3.4 : 1. M.p.: 101-103 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS, *major isomer*) δ 7.54 (d, *J* = 7.9 Hz, 2H), 7.53 - 7.47 (m, 2H), 7.49 - 7.41 (m, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 4.23 (q, *J* = 6.9 Hz, 1H, *minor isomer*) & 3.96 (q, *J* = 6.6 Hz, 1H), 2.69 (s, 3H) & 2.51 (s, 3H, *minor isomer*), 1.57 (d, *J* = 6.9 Hz, 3H, *minor isomer*), 1.53 (td, *J* = 7.0, 3.7 Hz, 2H), 1.39 - 1.34 (m, 1H), 1.31 (d, *J* = 6.6 Hz, 3H), 1.22 - 1.11 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.3, 143.6, 141.1, 139.1, 131.8, 129.54, 129.50, 129.3 (q, *J* = 33.2 Hz), 128.9, 128.6, 127.3, 126.9, 125.4 (q, *J* = 4.0 Hz), 124.0 (q, *J* = 271.3 Hz), 42.3 (*minor isomer*) & 38.9, 37.4, 23.3 (*minor isomer*) & 20.9, 4.9 & 4.7 (*minor isomer*), 2.7 (*minor isomer*) & 2.3; ¹⁹F NMR (564 MHz, CDCl₃) δ -62.4 (*minor isomer*) & -62.5; IR (acetone): v 3060, 2976, 2919, 1666, 1615, 1487, 1445, 1373, 1311, 1217, 1163, 1119, 1068, 1015, 848, 770, 753 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₀NOF₃Br 438.0674; found 438.0679.

2-bromo-N-(2-(cyclopropylidene(3,5-dimethylphenyl)methyl)phenyl)-N-

methylpropanamide (1i): A white solid, 625 mg, 75% yield, major : minor = 5 : 1. M.p.: 112-114 °C. Eluent: PE/EA = 10/1. ¹H NMR (600 MHz, CDCl₃, TMS) δ 7.52- 7.38 (m, 4H), 6.89- 6.83 (m, 1H), 6.82 - 6.79 (m, 2H), 4.23 (q, J = 6.9 Hz, 1H, *minor isomer*) & 3.96 (q, J = 6.5 Hz, 1H), 2.76 (s, 3H) & 2.54 (s, 1H, *minor isomer*), 2.26 (s, 6H, *minor isomer*) & 2.24 (s, 6H), 1.57 (d, J = 6.8 Hz, 3H, *minor isomer*), 1.51 - 1.46 (m, 2H), 1.26 (d, J = 6.6 Hz, 3H), 1.21 (td, J = 9.2, 6.0 Hz, 1H), 1.09 (td, J = 9.2, 6.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.2, 141.1, 140.1, 139.7, 137.8, 131.8, 129.0, 128.9, 128.6, 128.3, 126.1, 124.4, 39.4, 37.3, 21.3, 20.8, 4.9, 2.0; IR (EtOH) v 2971, 2911, 1667, 1598, 1485, 1447, 1373, 1270, 1044, 769, 701, 655 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₄NONaBr 420.0933; found 420.0925.

2-bromo-N-(2-(cyclopropylidene(3-methoxyphenyl)methyl)phenyl)-N-

methylpropanamide (1j): A yellow oil, 620 mg, 77% yield, major : minor = 7 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.48 - 7.39 (m, 4H), 7.23 - 7.16 (m, 1H), 6.83 - 6.73 (m, 3H), 4.25 (q, *J* = 6.9 Hz, 1H, *minor isomer*) & 4.00 (q, *J* = 6.6 Hz, 1H), 3.77 (s, 3H, *minor isomer*) & 3.75 (s, 3H), 2.76 (s, 3H) & 2.55 (s, 3H, *minor isomer*), 1.57 (d, *J* = 6.9 Hz, 3H, *minor isomer*), 1.54 - 1.47 (m, 2H), 1.30 (d, *J* = 6.6 Hz, 3H), 1.27 - 1.20 (m, 1H), 1.15 - 1.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS, *major isomer*) δ 169.6 (*minor isomer*) & 169.2, 159.44 & 159.37 (minor isomer), 141.9 (minor isomer) & 141.3, 141.0, 140.3 (minor isomer) & 139.7, 132.0 (minor isomer) & 131.7, 129.3, 129.0, 128.6, 128.33, 128.30, 126.8, 126.2, 119.7 (minor isomer) & 119.3, 112.9 (minor isomer) & 112.8, 112.5 (minor isomer) & 112.1, 55.1, 42.5 (minor isomer) & 39.3, 37.3 & 37.2 (minor isomer), 23.2 (minor isomer) & 20.9, 4.8 & 4.5 (minor isomer), 2.4 (minor isomer) & 2.0; IR (acetone) v 2974, 2924, 2832, 1665, 1596, 1577, 1486, 1447, 1425, 1361, 1259, 1221, 1164, 1045, 977, 773, 746, 689 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ Calcd. for C₂₁H₂₃NO₂Br 400.0906; found 400.0912.

2-bromo-*N***-(2-(cyclopropylidene(o-tolyl)methyl)phenyl)**-*N*-methylpropanamide (1k): A brown oil, 546 mg, 71% yield, major : minor = 3 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.55 (d, *J* = 7.6 Hz, 1H), 7.50 - 7.36 (m, 2H), 7.31 (dt, *J* = 7.7, 2.8 Hz, 1H), 7.17 - 7.09 (m, 3H), 7.00 (dd, *J* = 5.6, 3.5 Hz, 1H), 4.20 (q, *J* = 6.9 Hz, 1H, *minor isomer*) & 3.88 (q, *J* = 6.6 Hz, 1H), 2.52 (s, 3H) & 2.25 (s, 1H, *minor isomer*), 2.06 (s, 3H) & 2.03 (s, 3H, *minor isomer*), 1.26 - 1.17 (m, 1H), 1.55 (d, *J* = 6.9 Hz, 3H, *minor isomer*) 1.45 - 1.33 (m, 5H), 1.32 (d, *J* = 6.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 169.4 (*minor isomer*) & 168.9, 141.6 (*minor isomer*) & 141.2, 140.7 (*minor isomer*) & 140.6, 139.9 (*minor isomer*) & 139.5, 135.8 (*minor isomer*) & 135.7, 132.3 (*minor isomer*) & 132.0, 130.7, 130.2, 129.9, 129.3, 129.1, 128.74, 128.68, 127.4, 126.1(*minor isomer*) & 125.5, 41.7 (*minor isomer*), 3.5 (*minor isomer*) & 3.3; IR (neat) v 2974, 2923, 1669, 1483, 1444, 1414, 1372, 1108, 1064, 762, 737, 724 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₂NONaBr 406.0777; found 406.0781.

2-bromo-N-(2-(cyclopropylidene(naphthalen-2-yl)methyl)phenyl)-N-

methylpropanamide (11): A white solid, 630 mg, 75% yield, major : minor = 4 : 1. M.p.: 195-197 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.77 (d, J = 8.6 Hz, 2H), 7.70 - 7.66 (m, 1H), 7.56 - 7.48 (m, 4H), 7.45 (d, J = 10.2 Hz, 2H), 7.41 (dd, J = 6.3, 3.3 Hz, 2H), 4.29 (q, J = 6.8 Hz, 1H, *minor isomer*) & 4.02 (q, J = 6.5 Hz, 1H), 2.67 (s, 3H) & 2.41 (s, 3H, *minor isomer*), 1.60 - 1.54 (m, 2H), 1.46 - 1.25 (m, 2H), 1.16 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.8 (*minor isomer*) & 169.3, 141.3, 140.0, 137.5, 133.2, 132.6, 131.9, 129.2, 128.8, 128.7, 128.6, 128.3, 128.0, 127.7, 127.4, 126.3, 126.0, 125.4, 124.9, 42.6 (*minor isomer*) & 39.3, 37.5, 23.3 (*minor isomer*) & 21.0, 5.1, 2.2; IR (neat) v 3055, 2971, 2914, 1666, 1596, 1487, 1447, 1422, 1383, 1269 1062, 817, 774, 749 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₄H₂₂NONaBr 442.0777; found 442.0781.

2-bromo-N-(4-chloro-2-(cyclopropylidene(phenyl)methyl)phenyl)-N-

methylpropanamide (1m): A pale yellow oil, 612 mg, 76% yield, major : minor = 5 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.44 (dq, J = 5.5, 2.5 Hz, 2H), 7.37 (d, J = 9.1 Hz, 1H), 7.32 - 7.27 (m, 2H), 7.26 - 7.18 (m, 3H), 4.22 (q, J = 6.9 Hz, 1H, *minor isomer*) & 3.93 (q, J = 6.6 Hz, 1H), 2.67 (s, 3H) & 2.44 (s, 3H, *minor isomer*), 1.56 (d, J = 6.9 Hz, 3H, *minor isomer*), 1.50 (t, J = 7.9 Hz, 2H), 1.38 - 1.31 (m, 1H), 1.28 (d, J = 6.7 Hz, 3H), 1.21 - 1.10 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.1, 141.8, 139.7, 139.4, 134.4, 131.6, 129.9, 129.2, 128.6, 127.6, 126.7, 39.0, 37.2, 20.9, 4.8, 2.3; IR (EtOH) v 2972, 2918, 2867, 1655, 1483, 1445, 1400, 1375, 1274, 1090, 1047, 880, 775, 748, 696 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₁₉NONaClBr 426.0230; found 426.0232.

2-bromo-N-(4-bromo-2-(cyclopropylidene(phenyl)methyl)phenyl)-N-

methylpropanamide (1n): A light yellow solid, 580 mg, 64% yield, major : minor = 5 : 1. M.p.: 141-143 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.61 - 7.56 (m, 2H), 7.34 - 7.27 (m, 3H), 7.25 - 7.17 (m, 3H), 4.21 (q, J = 6.8 Hz, 1H, *minor isomer*) & 3.93 (q, J = 6.5 Hz, 1H), 2.67 (s, 3H) & 2.44 (s, 3H, *minor isomer*), 1.57 (d, J = 6.9 Hz, 1H, *minor isomer*), 1.50 (t, J = 7.9 Hz, 2H), 1.39 - 1.31 (m, 1H), 1.28 (d, J = 6.6 Hz, 3H), 1.21 - 1.10 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.2, 142.0, 140.2, 139.4, 134.5, 132.2, 130.1, 128.6, 127.9, 127.6, 126.7, 122.5, 39.0, 37.3, 20.9, 4.8, 2.3; IR (neat) v 3057, 2968, 1666, 1480, 1424, 1397, 1373, 1277, 1114, 1079, 908, 825, 769, 728, 697 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₂₀NOBr₂ 447.9906; found 447.9915.

2-bromo-N-(2-(cyclopropylidene(phenyl)methyl)-4-methoxyphenyl)-N-

methylpropanamide (10): A light yellow solid, 542 mg, 67% yield, major : minor = 4 : 1. M.p.: 134-135 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.35 - 7.32 (m, 1H), 7.31 - 7.27 (m, 2H), 7.25 - 7.20 (m, 3H), 7.00 - 6.94 (m, 2H), 4.28 (q, *J* = 6.9 Hz, 1H, *minor isomer*) & 4.00 (q, *J* = 6.6 Hz, 1H), 3.89 (s, 3H), 2.67 (s, 3H) & 2.44 (s, 3H, *minor isomer*), 1.57 (d, *J* = 6.9 Hz, 3H, *minor isomer*), 1.49 (t, *J* = 7.6 Hz, 2H), 1.30 - 1.27 (m, 1H), 1.26 (d, J = 6.5 Hz, 3H), 1.13 (dt, J = 9.0, 7.5 Hz, 1H) ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.7, 159.3, 141.2, 139.8, 133.9, 129.4, 128.6, 128.4, 128.3, 127.4, 127.2, 126.7, 126.6, 117.2, 113.6, 55.6, 42.4, 39.3, 37.5, 21.0, 4.8, 2.2; IR (neat) v 2959, 2909, 1664, 1597, 1493, 1462, 1445, 1370, 1297, 1236, 1173, 1034, 822, 803, 766, 700 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₃NOBr 400.0912; found 400.0913.

2-bromo-N-(2-(cyclopropylidene(phenyl)methyl)-4-(trifluoromethyl)phenyl)-N-

methylpropanamide (1p): A light green solid, 320 mg, 37% yield, major : minor = 5 : 1. M.p.: 107-109 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.73 (d, J = 7.8 Hz, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.33 - 7.23 (m, 3H), 7.18 (d, J = 6.9 Hz, 2H), 4.17 (q, J = 6.9 Hz, 1H, *minor isomer*) & 3.90 (q, J = 6.5 Hz, 1H), 2.71 (s, 3H) & 2.49 (s, 3H, *minor isomer*), 1.57 (d, J = 6.9 Hz, 3H, *minor isomer*), 1.53 (t, J = 8.0 Hz, 2H), 1.40 - 1.32 (m, 1H), 1.30 (d, J = 6.6 Hz, 3H), 1.22 - 1.11 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 168.8, 144.2, 140.9, 139.2, 130.8 (q, J = 32.4 Hz), 129.1, 128.6 (q, J = 4.1 Hz), 128.5, 128.3, 127.6, 127.0, 126.6, 126.0 (q, J = 4.1 Hz), 123.6 (q, J = 270.9 Hz), 38.9, 37.1, 20.8, 4.8, 2.2; ¹⁹F NMR (564 MHz, CDCl₃) δ -62.37 & -62.43 (*minor isomer*); IR(neat): 2978, 1667, 1612, 1496, 1426, 1376, 1206, 1123, 1080, 975, 793, 762, 670; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₁₉NOF₃NaBr 460.0494; found 460.0493.

light green solid, 680 mg, 75% yield, major : minor = 6.7 : 1. M.p.: 191-193 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.46 - 7.41 (m, 2H), 7.37 - 7.28 (m, 4H), 7.26 - 7.21 (m, 5H), 7.13 (dd, J = 7.5, 2.0 Hz, 2H), 6.98 (d, J = 7.5 Hz, 1H), 5.10 (d, J = 14.6 Hz, 1H) & 4.80 (d, J = 14.6 Hz, 1H, *minor isomer*), 4.25 (q, J = 6.9 Hz, 1H, *minor isomer*) & 3.94 (q, J = 6.6 Hz, 1H), 3.34 (d, J = 14.7 Hz, 1H) & 2.98 (d, J = 14.7 Hz, 1H, *minor isomer*), 1.59 (d, J = 6.9 Hz, 3H, *minor isomer*), 1.56 - 1.46 (m, 2H), 1.33 - 1.27 (m, 1H), 1.26 (d, J = 6.6 Hz, 3H), 1.17 (td, J = 9.2, 6.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 169.4 (*minor isomer*) & 169.0, 140.3 (*minor isomer*), 140.1 (*minor isomer*), 139.8, 139.6, 139.3 (*minor isomer*) & 138.9, 136.9, 132.0 (*minor isomer*) & 131.5, 129.4, 128.5, 128.21, 128.17, 128.0, 127.1, 126.9, 126.6, 126.5, 51.3, 42.9 (*minor isomer*) & 39.1, 23.1 (*minor isomer*) & 20.6, 4.4 & 4.2 (*minor isomer*), 2.2 (*minor isomer*) & 2.0; IR(EtOH): v 3057, 3026, 2974, 2929, 1664, 1485, 1447, 1397, 1174, 1042, 765, 749, 697 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₄NONaBr 468.0933; found 468.0939.

2-bromo-*N***-butyl-***N***-(2-(cyclopropylidene(phenyl)methyl)phenyl)propenamide** (1r): A pale yellow oil, 672 mg, 83% yield, major : minor = 8 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.53 - 7.39 (m, 4H), 7.30 - 7.26 (m, 2H), 7.21 (d, *J* = 7.2 Hz, 3H), 4.21 (q, *J* = 6.9 Hz, 1H, *minor isomer*) & 3.85 (q, *J* = 6.5 Hz, 1H), 3.66 - 3.63 (m, 1H) & 3.27 - 3.12 (m, 1H, *minor isomer*), 2.48 - 2.45 (m, 1H) & 2.24 - 2.17 (m, 1H, *minor isomer*), 1.61 (d, *J* = 6.9 Hz, 3H, *minor isomer*) 1.59 - 1.50 (m, 2H), 1.49 - 1.43 (m, 1H), 1.43 - 1.31 (m, 2H), 1.27 - 1.17 (m, 2H), 1.15 (d, *J* = 6.5 Hz, 3H), 1.14 - 1.09 (m, 1H), 0.82 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 168.9, 140.1, 140.0, 139.9, 132.1, 129.5, 128.7, 128.52, 128.46, 127.3, 126.7, 48.9, 40.3, 29.1, 21.0, 20.1, 13.8, 4.8, 2.3; IR (EtOH): v 2974, 2929, 2866, 1663, 1486, 1446, 1403, 1372, 1267, 1078, 1046, 880, 765, 753 cm⁻¹; HRMS

(ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₆NONaBr 434.1090; found 434.1085.

2-bromo-*N***-(2-(cyclopropylidene(phenyl)methyl)phenyl)**-*N***-isopropylpropanamide** (1s): A yellow oil, 580mg, 73% yield, major : minor = 10 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.50 - 7.38 (m, 4H), 7.31 - 7.27 (m, 1H), 7.26 - 7.18 (m, 4H), 4.15 (q, *J* = 6.8 Hz, 1H, *minor isomer*) & 3.74 (q, *J* = 6.5 Hz, 1H), 3.70 - 3.60 (m, 1H) & 3.37 (m, 1H, *minor isomer*), 1.58 (d, *J* = 6.6 Hz, 3H, *minor isomer*), 1.56 - 1.38 (m, 2H), 1.17 (dd, *J* = 8.9, 6.4 Hz, 2H), 1.11 (t, *J* = 6.7 Hz, 6H), 1.01 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 168.9, 140.22, 140.19, 140.1, 132.3, 129.7, 128.6, 128.5, 128.4, 127.2, 126.9, 54.4, 42.1, 21.1, 20.4, 18.8, 4.8, 2.4; IR (EtOH) v 3052, 3974, 2922, 1658, 1594, 1485, 1445, 1424, 1373, 1349, 1281, 1059, 981, 907, 764, 727, 696, 679 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₄NONaBr 420.0933; found 420.0936.

2-bromo-*N***-(2-(cyclopropylidene(phenyl)methyl)phenyl)**-*N***-ethylpropanamide** (1t): A yellow oil, 465 mg, 55% yield, major : minor = 5 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.51 - 7.41 (m, 4H), 7.26 (t, *J* = 3.5 Hz, 2H), 7.21 (d, *J* = 7.5 Hz, 3H), 4.20 (q, *J* = 6.9 Hz, 1H, *minor isomer*) & 3.85 (q, *J* = 6.5 Hz, 1H), 3.65 (dq, *J* = 14.2, 7.1 Hz, 1H) & 3.26 (dq, *J* = 14.2, 7.1 Hz, 1H, *minor isomer*), 2.52 (dq, *J* = 14.1, 7.1 Hz, 1H) & 2.34 - 2.24 (m, 1H, *minor isomer*), 1.55 - 1.40 (m, 2H), 1.21 (dd, *J* = 9.2, 5.8 Hz, 1H), 1.18 (d, *J* = 6.5 Hz, 3H), 1.15 - 1.09 (m, 1H), 1.04 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS,)

δ 168.7, 140.1, 140.0, 139.9, 132.0, 129.4, 128.7, 128.6, 128.5, 127.3, 126.7, 44.2, 40.2, 21.0, 12.2, 4.7, 2.2; IR (neat) v 3060, 2968, 2931, 1662, 1486, 1446, 1401, 1372, 1260, 764, 733, 696 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₃NOBr 384.0957; found 384.0959.

N-allyl-2-bromo-*N*-(2-(cyclopropylidene(phenyl)methyl)phenyl)propenamide (1u): A yellow oil, 380 mg, 48% yield, major : minor = 6 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS, *major isomer*) δ 7.50 - 7.41 (m, 4H), 7.29 (d, *J* = 7.7 Hz, 2H), 7.22 (t, *J* = 7.8 Hz, 3H), 5.85 - 5.73 (m, 1H), 5.13 - 5.02 (m, 2H) & 4.98 - 4.90 (m, 2H, *minor isomer*), 4.24 (q, *J* = 6.9 Hz, 1H, *minor isomer*), 4.20 - 4.10 (m, 1H), 3.94 (q, *J* = 6.5 Hz, 1H), 3.88 - 3.81 (m, 1H, *minor isomer*), 2.95 (dd, *J* = 15.1, 7.3 Hz, 1H) & 2.67 (dd, *J* = 15.0, 8.0 Hz, 1H, *minor isomer*), 1.58 (d, *J* = 6.9 Hz, 3H, *minor isomer*), 1.51-1.47 (m, 2H), 1.32 - 1.20 (m, 4H), 1.18 - 1.07 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS, *major isomer*) δ 168.9, 140.1, 140.0, 139.9, 132.5, 131.8, 129.4, 128.8, 128.6, 128.5, 127.4, 126.9, 126.8, 117.5, 51.9, 39.8, 20.8, 4.8, 2.2; IR (neat) v 3066, 2973, 2917, 1661, 1486, 1447, 1396, 907, 755, 727, 697 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₂NONaBr 418.0777; found 418.0774.

2-bromo-*N***-(2-(cyclopropylidene(phenyl)methyl)phenyl)**-*N***-tosylpropanamide** (1v): A white solid, 572 mg, 56% yield, major : minor = 6 : 1. M.p.: 188-190 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.70 - 7.59 (m, 2H), 7.58 - 7.52 (m, 2H), 7.40 - 7.35 (m, 2H), 7.31 (dd, *J* = 7.9, 2.6 Hz, 4H), 7.22 - 7.17 (m, 1H), 3.50

(q, J = 6.5 Hz, 1H) & 3.22 (q, J = 7.2 Hz, 1H, *minor isomer*), 2.43 (d, J = 3.9 Hz, 3H), 1.69 - 1.63 (m, 1H), 1.51 -1.42 (m, 1H), 1.40 - 1.33 (m, 1H), 1.23 - 1.14 (m, 1H), 0.72 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.1, 144.9, 144.5, 143.3, 139.8, 135.6, 133.8, 132.8, 132.1, 130.7, 130.5, 129.6, 129.3, 129.2, 128.7, 128.5, 128.1, 127.2, 127.1, 126.8, 126.1, 40.3, 21.7, 19.6, 6.2 (*minor isomer*) & 4.4, 2.9 & 1.3 (*minor isomer*); IR (EtOH) v 2976, 2927, 1696, 1440, 1358, 1173, 1147, 1086, 1046, 874, 812, 757, 696 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₄NO₃NaSBr 532.0552; found 532.0544.

2-(cyclopropylidene(phenyl)methyl)phenyl 2-bromopropanoate (1w): A yellow oil, 580 mg, 81% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43 - 7.36 (m, 4H), 7.34 - 7.29 (m, 1H), 7.26 (s, 2H), 7.23 - 7.18 (m, 1H), 7.15 (d, *J* = 8.3 Hz, 1H), 4.01 (q, *J* = 6.9 Hz, 1H), 1.61 - 1.56 (m, 1H), 1.54 (d, *J* = 6.3 Hz, 1H), 1.49 (d, *J* = 7.0 Hz, 3H), 1.30 - 1.17 (m, 2H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 168.1, 148.1, 139.8, 133.9, 131.6, 128.4, 128.2, 126.9, 126.7, 126.4, 122.2, 39.6, 21.2, 5.4, 2.1; IR (EtOH) v 2977, 2935, 1747, 1641, 1442, 1336, 1215, 1185, 1140, 1073, 1045, 905, 878, 843, 767, 745 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₇BrO₂Na 379.0306; found 379.0308.

2-bromo-*N***-(2-(cyclopropylidene(phenyl)methyl)phenyl)**-*N***-methylacetamide** (1x): A white solid, 563 mg, 79% yield. M.p.: 125-127 °C, Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.48 - 7.40 (m, 3H), 7.33 - 7.19 (m, 6H), 3.52 (d, *J* = 11.3 Hz, 1H), 3.32 (d, *J* = 11.2 Hz, 1H), 2.72 (s, 3H), 1.58-1.45 (m, 2H), 1.26-1.19 (m, 2H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 166.2, 141.4, 140.2, 139.7, 132.1, 129.0, 128.8, 128.4, 128.1, 127.4, 126.9,

37.1, 27.6, 4.8, 2.3; IR (EtOH) v 3052, 2966, 1665, 1593, 1484, 1445, 1433, 1379, 1300, 1099, 1074, 1047, 898, 773, 764, 753, 697 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₈NONaBr 378.0464; found 378.0466.

2-bromo-N-(2-(cyclopropylidene(phenyl)methyl)phenyl)-N-methylbutanamide (1y): A white solid, 620 mg, 81% yield, major : minor = 3 : 1. M.p.: 180-182 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.53 - 7.43 (m, 4H), 7.28 (s, 2H), 7.22 - 7.19 (m, 3H), 4.05 (t, *J* = 7.1 Hz, 1H, *minor isomer*), 3.71 (dd, *J* = 10.0, 4.3 Hz, 1H), 2.72 (s, 3H) & 2.49 (s, 3H, *minor isomer*), 1.90 - 1.76 (m, 2H), 1.49 (t, *J* = 7.8 Hz, 2H), 1.40 - 1.22 (m, 2H), 1.21 - 1.06 (m, 2H), 0.75 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS,) δ 168.9, 141.2 (*minor isomer*) & 141.0, 140.6 (*minor isomer*), 140.5 (*minor isomer*), 140.1, 139.8, 132.0 (*minor isomer*) & 131.8, 128.9, 128.73, 128.70, 128.6, 128.5, 128.3, 128.1, 128.0, 127.2, 127.0, 126.8, 126.8, 126.6 (there are multiple peaks between 128.9 - 126.6 due to rotamers), 49.4 (*minor isomer*) & 48.0, 37.4 & 37.1 (*minor isomer*), 29.8 (*minor isomer*) & 2.2; IR (EtOH) v 3055, 2972, 2930, 1661, 1596, 1486, 1446, 1424, 1384, 1340, 1302, 1076, 903, 765, 729, 696 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₂NONaBr 406.0777; found 406.0782.

S35

light yellow oil, 480 mg, 58% yield, major : minor = 2 : 1. ¹H NMR (400 MHz, CDCl₃, TMS, *major isomer*) δ 7.45 (t, *J* = 4.2 Hz, 3H), 7.30 - 7.27 (m, 3H), 7.23 - 7.20 (m, 3H), 4.13 (dd, *J* = 8.5, 5.8 Hz, 1H, *minor isomer*) & 3.75 (dd, *J* = 10.0, 4.3 Hz, 1H), 2.72 (s, 3H) & 2.49 (s, 3H, *minor isomer*), 1.90 - 1.70 (m, 2H), 1.48 (t, *J* = 8.1 Hz, 2H), 1.36 - 1.27 (m, 2H), 1.21 - 1.15 (m, 2H), 1.14 - 1.05 (m, 2H), 0.86 (t, *J* = 7.1 Hz, 3H) & 0.74 (t, *J* = 7.1 Hz, 3H, *minor isomer*); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 169.1, 141.0, 140.2, 139.8, 132.1 (*minor isomer*) & 131.9, 129.0, 128.9, 128.8, 128.71, 128.66, 128.4, 128.2, 128.1, 127.3, 127.2, 127.1, 127.0, 126.7 (there are multiple peaks between 129.0 - 126.7 due to rotamers), 48.2 (*minor isomer*), 2.4 & 21.5 (*minor isomer*), 14.0 & 13.7 (*minor isomer*), 4.7 & 4.5 (*minor isomer*), 2.45 & 2.37 (*minor isomer*); IR (neat) v 2956, 2929 2870, 1660, 1596, 1486, 1446, 1385, 1103, 908, 765, 751, 696 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₆NONaBr 434.1090; found 434.1088.

2-bromo-N-(2-(cyclopropylidene(phenyl)methyl)phenyl)-N-methyl-3-

phenylpropanamide (1aa): A white solid, 565 mg, 63% yield, major : minor = 5 : 3. M.p.: 213-215 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.48 - 7.41 (m, 3H), 7.25 - 7.20 (m, 6H), 7.08 - 7.02 (m, 2H), 6.87 (d, J = 6.5 Hz, 2H), 5.87 (d, J = 7.9 Hz, 1H), 4.20 (dd, J = 8.9, 6.6 Hz, 1H) & 4.06 (dd, J = 9.4, 5.1 Hz, 1H, *minor isomer*), 3.29 (dd, J = 13.3, 9.0 Hz, 1H) & 3.09 (dd, J = 15.1, 9.5 Hz, 1H, *minor isomer*), 2.96 (dd, J = 13.3, 6.5 Hz, 1H), 2.75 (s, 3H, *minor isomer*) & 2.35 (s, 3H), 1.33 - 1.28 (m, 2H), 1.27 - 1.18 (m, 2H); ¹³C NMR (150 MHz, CDCl₃, TMS, *major isomer*) δ 168.5 (*minor isomer*) & 168.3, 140.87 (*minor isomer*) & 140.85, 140.76 & 140.6 (*minor isomer*), 140.3 & 139.7 (*minor isomer*), 137.6 (*minor isomer*) & 137.2, 131.9 (*minor isomer*) & 131.6, 129.5, 129.4, 129.1, 129.0,
128.9, 128.73, 128.69, 128.5, 128.4, 128.28, 128.25, 128.19, 128.04, 128.01, 127.21, 127.15, 127.0, 126.9, 126.8 (there are multiple peaks between 129.5 - 126.8 due to rotamers), 46.7 & 45.4 (*minor isomer*), 43.1 & 39.9 (*minor isomer*), 37.8 (*minor isomer*) & 37.1, 4.5 (*minor isomer*) & 4.4, 2.7 (*minor isomer*) & 2.6; IR (neat) v 3029, 2928, 2958, 1664, 1493, 1445, 1373, 1229, 902, 774, 752, 700, 665 cm⁻¹; HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for C₂₆H₂₄NONaBr 468.0933; found 468.0925.

3-(benzyloxy)-2-bromo-N-(2-(cyclopropylidene(phenyl)methyl)phenyl)-N-

methylpropanamide (1ab): A brown oil, 423 mg, 44% yield, major : minor = 3 : 1. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS, *major isomer*) δ 7.45 - 7.41 (m, 3H), 7.39 - 7.34 (m, 3H), 7.34 - 7.31 (m, 3H), 7.25 - 7.24 (m, 2H), 7.20 - 7.15 (m, 3H), 4.48 (s, 2H), 4.26 (dd, *J* = 8.4, 6.1 Hz, 1H, *minor isomer*), 4.01 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.80 (dd, *J* = 9.8, 8.5 Hz, 1H, *minor isomer*), 3.63 (dd, *J* = 10.8, 8.4 Hz, 1H), 3.56 (dd, *J* = 9.8, 6.1 Hz, 1H, *minor isomer*), 3.29 (dd, *J* = 10.8, 4.9 Hz, 1H), 2.62 (s, 3H), 2.49 (s, 3H, *minor isomer*), 1.34 - 1.29 (m, 2H), 1.25 - 1.17 (m, 2H); ¹³C NMR (150 MHz, CDCl₃, TMS δ 167.4, 140.7, 140.4, 140.3, 137.5, 131.9, 129.0, 128.8, 128.6, 128.5, 128.4, 128.33, 128.26, 128.2, 128.1, 127.9, 127.8, 127.7, 127.2, 127.1, 126.9, 74.0 & 73.2 (*minor isomer*), 72.6 (*minor isomer*), 2.6 (*minor isomer*) & 2.1; IR (neat) v 3074, 3024, 2920, 2867, 1769, 1659, 1452, 1112, 1075, 1027, 908, 729, 696 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₇H₂₆NO₂NaBr 498.1039; found 498.1037.

2-bromo-N-(2-(cyclopropylidene(phenyl)methyl)phenyl)-N-methyl-2-phenylacetamide

(1ac): A white solid, 445 mg, 51% yield, major : minor = 5 : 3. M.p.: 213-215 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.55 (d, *J* = 8.6 Hz, 1H), 7.50 - 7.41 (m, 2H), 7.32 (d, *J* = 4.3 Hz, 4H), 7.25 - 7.16 (m, 5H), 7.06 (dd, *J* = 7.6, 1.7 Hz, 2H), 6.62 (d, *J* = 7.8 Hz, 1H), 5.29 (s, 1H) & 5.22 (s, 1H, *minor isomer*), 2.70 (s, 3H, *minor isomer*) & 2.50 (s, 3H), 1.71 (td, *J* = 9.0, 5.5 Hz, 1H), 1.50 - 1.37 (m, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 166.6, 141.0, 140.5, 140.3, 137.0, 131.9, 128.8, 128.75, 128.73, 128.6, 128.34, 128.30, 128.26, 128.1, 127.3, 127.1, 49.5, 37.3, 4.9, 2.3; IR (neat) v 3065, 3026, 2974, 1663, 1596, 1485, 1446, 1373, 1103, 908, 765, 751, 726, 694 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₅H₂₂NONaBr 454.0777; found 454.0770.

2-bromo-2-(4-chlorophenyl)-N-(2-(cyclopropylidene(phenyl)methyl)phenyl)-N-

methylacetamide (1ad): A white solid, 380 mg, 40% yield, major : minor = 4 : 1. M.p.: 210-212 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS, *major isomer*) δ 7.55 (d, *J* = 7.6 Hz, 1H), 7.50 - 7.42 (m, 2H), 7.31 (d, *J* = 6.1 Hz, 4H), 7.25 (s, 1H), 7.17 (d, *J* = 8.5 Hz, 2H), 7.00 (d, *J* = 8.5 Hz, 2H), 6.64 (dd, *J* = 7.9, 1.3 Hz, 1H), 5.25 (s, 1H) & 5.15 (s, 1H, *minor isomer*), 2.72 (s, 3H, *minor isomer*) & 2.49 (s, 3H), 1.75 - 1.66 (m, 1H), 1.52 - 1.40 (m, 2H), 1.32 - 1.23 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 166.3, 140.9, 140.41, 140.37, 135.6, 134.7, 132.0, 130.6, 129.6, 128.9, 128.83, 128.81, 128.7, 128.6, 128.4, 127.3, 127.1, 48.3, 37.3, 4.8, 2.3; IR (neat) v 3066, 2973, 2931, 1664, 1488, 1373, 1091, 1015, 907, 832, 766, 750, 726, 696 cm⁻¹. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₅H₂₁NONaClBr 488.0387; found 488.0383.

2-bromo-*N*-(2-(cyclopropylidene(phenyl)methyl)phenyl)-*N*,3-dimethylbutanamide (1ae): A yellow oil, 326 mg, 41% yield, major : minor = 100 : 94. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.4, 1.9 Hz, 1H), 7.47 -7.36 (m, 6H), 7.29 (d, J = 5.6 Hz, 5H), 7.24 - 7.17 (m, 4H), 7.09 (dd, J = 7.6, 1.5 Hz, 1H), 3.94 (d, J = 7.3 Hz, 1H, minor isomer), 3.55 (d, J = 9.3 Hz, 1H), 2.60 (s, 3H), 2.48 (s, 3H, minor isomer), 2.18 - 2.04 (m, 1H, minor isomer), 1.96 (dq, J = 13.6, 6.7 Hz, 1H), 1.52 (td, J = 8.4, 7.8, 4.6 Hz, 1H), 1.46 - 1.38 (m, 2H), 1.35 (td, J = 8.2, 4.0 Hz, 2H), 1.25 - 1.20 (m, 1H), 1.19 - 1.11 (m, 2H), 0.95 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.76 (d, J = 6.7 Hz, 3H), 0.69 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 168.9, 168.6 (minor isomer), 141.3 (minor isomer), 141.0, 140.7, 140.4, 139.9 (minor isomer), 132.1 (minor isomer), 132.0, 129.6, 129.2, 129.0, 128.9, 128.7, 128.6, 128.6, 128.5, 128.3, 128.2, 127.3, 127.3, 127.1, 127.0, 126.9, 55.7 (minor isomer), 52.9, 37.8, 37.3 (minor isomer), 33.5 (minor isomer), 31.9, 20.7, 20.6 (minor isomer), 19.8 (minor isomer), 19.5, 4.6, 4.5 (minor isomer), 2.4 (minor isomer), 2.3; IR (neat) v 2971, 2934, 2875, 1659, 1486, 1445, 1378, 909, 765, 751, 728, 696 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₄NONaBr 420.0933; found 420.0934.

2-bromo-2-chloro-*N*-(**2-(cyclopropylidene(phenyl)methyl)phenyl)**-*N*-methylacetamide (1af): A white solid, 473 mg, 60% yield, major : minor = 2 : 1. M.p.: 163-165 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.51 - 7.48 (m, 3H), 7.30 - 7.28 (m, 3H), 7.24 - 7.21 (m, 3H), 5.75 (s, 1H, *minor isomer*) & 5.69 (s, 1H), 2.58 (s, 3H), 1.47 - 1.36 (m, 2H), 1.31 - 1.23 (m, 2H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 164.1, 140.2, 140.0, 132.0, 129.4, 129.3, 128.45, 128.41, 128.0, 127.5, 127.0, 52.0 (*minor isomer*) & 50.4, 37.8 (*minor isomer*) & 37.7, 4.7, 2.4 (*minor isomer*) & 2.1; IR (neat) v 3049, 2971, 1674, 1594, 1483, 1445, 1381, 1299, 1106, 794, 776, 766, 754, 698 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₇NONaClBr 412.0074; found 412.0072.

9. Characterization Data of Products.

5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2a): A white solid, 36 mg, 62% yield. m.p.: 176-178 °C. Eluent: PE/EA = 10/1. ¹H NMR (600 MHz, CDCl₃, TMS) δ 7.46 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.41 - 7.37 (m, 1H), 7.35 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.22 - 7.17 (m, 2H), 7.14 (td, *J* = 7.3, 1.4 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 6.2 Hz, 1H), 3.37 (s, 3H), 3.00 (qd, *J* = 7.1, 2.4 Hz, 1H), 2.92 (td, *J* = 16.1, 6.3 Hz, 1H), 2.82 (dd, *J* = 14.1, 5.1 Hz, 1H), 2.63 (dd, *J* = 16.7, 4.4 Hz, 1H), 2.27 (tdd, *J* = 16.8, 6.1, 2.5 Hz, 1H), 1.39 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.7, 142.8, 140.0, 136.0, 135.0, 131.7, 130.8, 130.2, 128.0, 127.4, 126.7, 126.4, 126.2, 123.9, 122.1, 40.1, 35.6, 28.2, 23.4, 12.6; IR (EtOH) v 2971, 2879, 2830, 1651, 1601, 1445, 1366, 1090, 1046, 766, 735, 724, 651 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₂₀NO 290.1539; found 290.1537.

11-fluoro-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2b): A white solid, 30 mg, 48% yield. m.p. 135-137 °C. Eluent: PE/EA = 10/1. ¹H NMR (600 MHz, CDCl₃, TMS) δ 7.44 - 7.38 (m, 2H), 7.35 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.19 (ddd, *J* = 7.8, 7.1, 1.4 Hz, 1H), 6.94 - 6.89 (m, 2H), 6.78 (tdd, *J* = 8.5, 2.8, 1.0 Hz, 1H), 3.38 (s, 3H), 2.97 (qd, *J* = 7.0, 2.3 Hz, 1H), 2.89 (dd, *J* = 16.7, 5.9 Hz, 1H), 2.80 (dd, *J* = 16.3, 5.1 Hz, 1H), 2.62 (dd, *J* = 16.7, 6.4 Hz, 1H), 2.25 (tdd, *J* = 16.9, 6.0, 2.5 Hz, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.7, 161.4 (d, *J* = 245.5 Hz), 142.7, 139.0, 138.5 (d, *J* = 7.7 Hz), 131.5, 131.1 (d, *J* = 3.5 Hz), 130.0, 129.9, 128.1, 127.8 (d, *J* = 8.3 Hz), 123.9, 122.1, 114.4 (d, *J* = 21.3 Hz), 112.6 (d, *J* = 20.7 Hz), 39.9, 35.6, 28.3, 23.1, 12.6; ¹⁹F NMR (564 MHz, CDCl₃) δ -115.6; IR (acetone) v 2937, 1666, 1598, 1488, 1446, 1363, 1268, 1244, 1225, 1089, 922, 864, 765 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₁₉NOF 308.1445; found 308.1441.

11-chloro-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2c): A colorless oil, 38 mg, 58% yield. Eluent: PE/EA = 10/1. Containing trace amount of threemembered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43 - 7.37 (m, 2H), 7.35 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.08 - 7.03 (m, 1H), 6.88 (d, *J* = 8.3 Hz, 1H), 3.37 (s, 3H), 3.01 - 2.94 (m, 1H), 2.88 (dd, *J* = 15.5, 6.2 Hz, 1H), 2.79 (dd, *J* = 14.3, 5.2 Hz, 1H), 2.63 (dd, *J* = 17.1, 6.7 Hz, 1H), 2.25 (tdd, *J* = 16.8, 6.3, 2.5 Hz, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.6, 142.7, 140.2, 137.9, 133.5, 132.1, 131.3, 131.1, 129.9, 128.3, 127.6, 127.4, 126.2, 124.0, 122.2, 40.1, 35.7, 28.0, 23.2, 12.6; IR (neat) v2970, 2935, 2885, 1666, 1597, 1479, 1445, 1362, 1260, 1218, 1084, 1046, 879, 832, 758 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₁₉NOCl 324.1149; found 324.1153.

11-bromo-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2d): A colorless oil, 40 mg, 54% yield. Eluent: PE/EA = 10/1. Containing trace amount of threemembered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.41 - 7.31 (m, 4H), 7.24 - 7.15 (m, 2H), 6.82 (d, *J* = 8.3 Hz, 1H), 3.37 (s, 3H), 2.96 (td, *J* = 9.8, 8.4 Hz, 1H), 2.88 (dd, *J* = 16.3, 5.6 Hz, 1H), 2.79 (dd, *J* = 15.4, 4.3 Hz, 1H), 2.62 (dd, *J* = 17.9, 5.6 Hz, 1H), 2.24 (tdd, *J* = 16.9, 6.2, 2.5 Hz, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.6, 142.8, 140.4, 138.2, 133.9, 131.3, 130.6, 130.3, 129.9, 129.2, 128.3, 127.9, 124.0, 122.2, 120.3, 40.2, 35.7, 27.9, 23.2, 12.6; IR (EtOH) v 3050, 2940, 2870, 2820, 1663, 1597, 1478, 1446, 1361, 1265, 1228, 1121, 1095, 1002, 904, 822, 763, 730, 701 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₁₉NOBr 368.0644; found 368.0638.

11-methoxy-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (**2e**): A white solid, 41 mg, 64% yield, m.p.: 180-182 °C. Eluent: PE/EA = 10/1. Containing trace amount of three-membered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45 (d, *J* = 6.2 Hz, 1H), 7.40 - 7.32 (m, 2H), 7.21 - 7.15 (m, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 6.79 - 6.75 (m, 1H), 6.63 (dd, *J* = 8.5, 2.7 Hz, 1H), 3.80 (s, 3H), 3.36 (s, 3H), 3.00 - 2.85 (m, 2H), 2.78 (dd, *J* = 16.2, 5.1 Hz, 1H), 2.60 (dd, *J* = 16.6, 6.3 Hz, 1H), 2.25 (tdd, *J* = 16.8, 6.1, 2.5 Hz, 1H), 1.38 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.9, 158.4, 142.7, 137.9, 137.4, 131.9, 130.7, 130.4, 130.1, 127.9, 127.5, 123.8, 122.1, 113.4, 111.0, 55.3, 39.9, 35.7, 30.3, 28.7, 23.3, 12.7; IR (EtOH) v 3057, 2935, 2831, 1662, 1597, 1488, 1451, 1364, 1251, 1227, 1092, 1035, 763, 732, 654 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₂NO₂ 320.1645; found 320.1646.

11-isopropyl-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (**2f**): A colorless oil, 42 mg, 63% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.48 (dd, J = 7.8, 1.6 Hz, 1H), 7.42 - 7.30 (m, 2H), 7.22 - 7.14 (m, 1H), 7.07 (s, 1H), 6.97 (d, J = 6.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 3.34 (s, 3H), 3.02 - 2.94 (m, 1H), 2.87 (t, J = 6.9 Hz, 1H), 2.81 (dd, J = 15.1, 4.2 Hz, 1H), 2.62 (dd, J = 16.0, 5.4 Hz, 1H), 2.26 (tdd, J = 16.9, 6.3, 2.4 Hz, 1H), 1.38 (d, J = 7.1 Hz, 3H), 1.25 (d, J = 5.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 172.8, 147.6, 142.7, 139.0, 136.0, 132.7, 131.8, 130.7, 130.2, 127.9, 126.3, 125.7, 124.1, 123.8, 122.1, 40.0, 35.6, 33.8, 28.9, 28.4, 24.0, 23.5, 12.6; IR (acetone) v 2957, 2924, 2866, 1666, 1597, 1488, 1445, 1361, 1300, 1220, 1118, 1091, 832, 762, 742 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ Calcd. for C₂₃H₂₆NO 332.2008; found 332.2006.

11-(tert-butyl)-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (**2g**): A colorless oil, 50 mg, 72% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.49 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.41 - 7.36 (m, 1H), 7.34 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.23 (s, 1H), 7.21 - 7.15 (m, 1H), 7.13 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 3.34 (s, 3H), 2.99 (td, *J* = 7.0, 2.3 Hz, 1H), 2.92 (dd, *J* = 16.5, 6.5 Hz, 1H), 2.82 (dd, *J* = 16.1, 5.2 Hz, 1H), 2.62 (dd, *J* = 16.8, 4.3 Hz, 1H), 2.27 (tdd, *J* = 16.8, 6.2, 2.5 Hz, 1H), 1.39 (d, *J* = 7.1 Hz, 3H), 1.32 (s, 9H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.7, 149.8, 142.7, 139.1, 135.6, 132.3, 131.8, 130.6, 130.2, 128.0, 126.0, 124.6, 123.8, 123.0, 122.1, 40.1, 35.6, 34.5, 31.3, 28.6, 23.6, 12.6; IR (EtOH) v 2965, 1648, 1589, 1440, 1364, 1267, 1085, 1047, 880, 762, 742 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₄H₂₈NO 346.2165; found 346.2169.

5,7-dimethyl-11-(trifluoromethyl)-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2h): A pale green oil, 37 mg, 52% yield. Eluent: PE/EA = 10/1. Containing trace amount of three-membered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.59 (s, 1H), 7.46 - 7.40 (m, 2H), 7.39 (d, *J* = 5.8 Hz, 1H), 7.35 (d, *J* = 9.8 Hz, 1H), 7.21 (ddd, *J* = 8.2, 6.9, 1.5 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 3.38 (s, 3H), 3.09 - 2.98 (m, 1H), 2.98 - 2.85 (m, 2H), 2.74 - 2.63 (m, 1H), 2.36 - 2.22 (m, 1H), 1.41 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.4, 142.8, 142.5, 136.5, 131.1, 130.2, 130.0, 129.9, 128.5, 128.4 (q, J = 32.4 Hz), 126.4, 124.23 (q, J = 272.3 Hz), 124.15 (q, J = 4.2 Hz), 124.14, 123.2 (q, J = 4.2 Hz), 122.3, 40.4, 35.7, 27.9, 23.2, 12.6; ¹⁹F NMR (564 MHz, CDCl₃) δ -62.4; IR (neat) v 3063, 2940, 1667, 1598, 1448, 1360, 1323, 1277, 1160, 1100, 1096, 1071, 901, 837, 763, 735 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₉NOF₃ 358.1413; found 358.1407.

5,7,10,12-tetramethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2i): A white solid, 46 mg, 74% yield, m.p.: 183-185 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45 - 7.32 (m, 3H), 7.18 (t, *J* = 6.6 Hz, 1H), 6.87 (s, 1H), 6.62 (s, 1H), 3.36 (s, 3H), 3.04 - 2.93 (m, 2H), 2.68 - 2.51 (m, 2H), 2.31 (s, 3H), 2.31 - 2.14(m, 1H), 2.19 (s, 3H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 172.8, 142.7, 139.6, 134.84, 134.82, 134.5, 132.2, 131.2, 131.0, 130.3, 129.6, 127.8, 125.2, 123.8, 122.0, 40.0, 35.6, 23.5, 23.2, 21.0, 19.5, 12.5; IR (neat) v 2946, 2828, 1659, 1598, 1445, 1365, 1221, 1107, 1047, 907, 857, 764, 750 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₂₄NO 318.1852; found 318.1852.

12-methoxy-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one

(2j): A yellow oil, 30 mg, 47% yield. Eluent: PE/EA = 10/1. Containing trace amount of three-membered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47 (d, *J* = 7.9 Hz, 1H), 7.37 - 7.32 (m, 1H), 7.22 - 7.15 (m, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.70 (dd, *J* = 8.2, 2.7 Hz, 1H), 6.53 (d, *J* = 2.6 Hz, 1H), 3.70 (s, 3H), 3.36 (s, 3H), 3.05 - 2.95 (m, 1H), 2.87 - 2.73 (m, 2H), 2.62 (dd, *J* = 15.7, 4.7 Hz, 1H), 2.23 (tdd, *J* = 16.4, 6.9, 2.5 Hz, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.7, 158.1,

142.7, 140.7, 136.0, 131.6, 130.8, 130.1, 128.3, 128.1, 128.0, 124.0, 122.1, 113.3, 111.0, 76.8, 55.3, 40.2, 35.6, 27.3, 23.7, 12.6; IR (EtOH) v 2936, 2836, 1663, 1597, 1489, 1453, 1361, 1302, 1213, 1117, 1043, 908, 807, 785, 763 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{21}H_{22}NO_2$ 320.1645; found 320.1640.

2-chloro-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (**2m**): A pale yellow oil, 41 mg, 63% yield. Eluent: PE/EA = 10/1. Containing trace amount of three-membered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45 (d, *J* = 2.5 Hz, 1H), 7.36 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.28 (d, *J* = 8.8 Hz, 1H), 7.23 - 7.12 (m, 3H), 6.99 - 6.92 (m, 1H), 3.34 (s, 3H), 2.97 (td, *J* = 8.4, 5.4 Hz, 1H), 2.92 - 2.78 (m, 2H), 2.63 (dd, *J* = 16.9, 4.1 Hz, 1H), 2.25 (tdd, *J* = 16.8, 6.5, 2.5 Hz, 1H),1.40 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.4, 141.3, 140.9, 136.0, 134.4, 133.3, 130.1, 129.7, 129.4, 128.2, 127.5, 127.1, 126.5, 126.1, 123.5, 40.2, 35.7, 28.1, 23.5, 12.6; IR (EtOH) v 3073, 2935, 2880, 1667, 1479, 1450, 1401, 1354, 1296, 1221, 1104, 907, 818, 767, 728, 704 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₁₉NOCl 324.1149; found 324.1143.

2-bromo-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2n): A yellow oil, 45 mg, 61% yield. Eluent: PE/EA = 10/1. Containing trace amount of threemembered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.60 (d, *J* = 2.4 Hz, 1H), 7.49 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.24 - 7.14 (m, 4H), 6.97 - 6.92 (m, 1H), 3.34 (s, 3H), 3.01 - 2.93 (m, 1H), 2.92 - 2.77 (m, 2H), 2.63 (dd, *J* = 16.9, 6.2 Hz, 1H), 2.25 (tdd, *J* = 16.8,

6.5, 2.5 Hz, 1H), 1.39 (d, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.4, 141.7, 141.0, 136.0, 134.4, 133.7, 132.7, 131.1, 130.0, 127.5, 127.1, 126.5, 126.1, 123.8, 117.1, 40.2, 35.6, 28.1, 23.5, 12.6; IR (neat) v 2971, 2945, 2878, 2819, 1662, 1478, 1398, 1352, 1297, 1114, 1095, 906, 817, 788, 656 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₁₉NOBr 368.0644; found 368.0638.

2-methoxy-5,7-dimethyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (20): A light green oil, 38 mg, 60% yield. Eluent: PE/EA = 10/1. Containing trace amount of threemembered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.28 - 7.24 (m, 1H), 7.20 (d, *J* = 6.9 Hz, 1H), 7.17 - 7.08 (m, 2H), 7.04 (dd, *J* = 7.3, 1.8 Hz, 1H), 6.99 - 6.92 (m, 2H), 3.77 (s, 3H), 3.32 (s, 3H), 3.04 (qd, *J* = 7.1, 2.3 Hz, 1H), 2.92 (td, *J* = 16.0, 6.2 Hz, 1H), 2.82 (ddd, *J* = 15.2, 6.3, 2.1 Hz, 1H), 2.62 (ddd, *J* = 17.0, 6.5, 2.2 Hz, 1H), 2.25 (tdd, *J* = 16.8, 6.3, 2.5 Hz, 1H), 1.38 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.6, 155.5, 140.2, 136.5, 136.0, 134.9, 132.8, 130.7, 127.5, 126.7, 126.3, 126.2, 123.4, 115.3, 113.3, 55.6, 40.1, 35.7, 28.2, 23.4, 12.7; IR (neat) v 2928, 2830, 1659, 1496, 1461, 1415, 1284, 1222, 1114, 1041, 907, 767, 728 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₂NO₂ 320.1645; found 320.1652.

5,7-dimethyl-2-(trifluoromethyl)-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one(2p): A light green oil, 42 mg, 59% yield. Eluent: PE/EA = 10/1. Containing trace

amount of three-membered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.76 (s, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.46 (d, J = 8.6 Hz, 1H), 7.24 - 7.09 (m, 3H), 6.86 (d, J = 7.5 Hz, 1H), 3.39 (s, 3H), 3.00 - 2.89 (m, 2H), 2.85 (ddd, J = 15.3, 6.5, 2.1 Hz, 1H), 2.66 (ddd, J = 16.8, 6.2, 2.1 Hz, 1H), 2.28 (tdd, J = 16.8, 6.4, 2.5 Hz, 1H), 1.41 (d, J = 7.1 Hz, 3H); ³C NMR (150 MHz, CDCl₃, TMS) δ 172.5, 145.2, 141.2, 136.0, 134.4, 132.0, 130.3, 127.7, 127.6 (q, J = 4.1 Hz), 127.2, 126.6, 126.008 (q, J = 33.8 Hz), 126.005, 124.8 (q, J = 4.1 Hz), 123.9 (q, J = 270.9 Hz), 122.6, 40.3, 35.7, 28.0, 23.5, 12.6; ¹⁹F NMR (564 MHz, CDCl₃) δ - 62.2; IR (EtOH) v 2972, 2881, 1697, 1381, 1310, 1137, 1087, 1045, 879, 803; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₉NOF₃ 358.1413; found 358.1412.

5-benzyl-7-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (**2q**): A green oil, 38 mg, 52% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.37 (t, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.15 - 7.08 (m, 2H), 7.05 - 6.93 (m, 4H), 6.89 (d, *J* = 7.1 Hz, 2H), 6.61 (d, *J* = 7.7 Hz, 1H), 5.57 (d, *J* = 15.4 Hz, 1H), 4.74 (d, *J* = 15.5 Hz, 1H), 3.12 (qd, *J* = 6.9, 2.3 Hz, 1H), 2.92 (td, *J* = 15.9, 6.2 Hz, 1H), 2.82 (ddd, *J* = 15.2, 6.3, 2.0 Hz, 1H), 2.64 (ddd, *J* = 16.7, 6.2, 2.0 Hz, 1H), 2.27 (tdd, *J* = 16.8, 6.3, 2.5 Hz, 1H), 1.44 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.2, 141.0, 139.8, 137.4, 135.942, 135.935, 134.6, 133.4, 131.3, 130.0, 128.3, 127.9, 127.2, 127.1, 126.8, 126.7, 126.6, 126.1, 124.4, 123.0, 50.6, 40.2, 28.2, 23.4, 12.6; IR (EtOH) v 3026, 2937, 2869, 1663, 1597, 1483, 1447, 1375, 1295, 1192, 767, 749, 725, 697 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₃NONa 388.1671; found 388.1680.

5-butyl-7-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2r): A pale yellow oil, 35 mg, 53% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47 - 7.33 (m, 3H), 7.23 - 7.06 (m, 4H), 6.93 (d, *J* = 7.5 Hz, 1H), 4.37 (dt, *J* = 13.6, 7.7 Hz, 1H), 3.57 - 3.48 (m, 1H), 2.98 (qt, *J* = 7.0, 3.7 Hz, 1H), 2.89 (dd, *J* = 16.3, 6.2 Hz, 1H), 2.82 (dd, *J* = 15.2, 4.3 Hz, 1H), 2.61 (dd, *J* = 16.8, 4.2 Hz, 1H), 2.24 (tdd, *J* = 16.8, 6.4, 2.5 Hz, 1H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.34 - 1.27 (m, 2H), 1.10 - 0.94 (m, 2H), 0.64 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.0, 141.3, 140.2, 136.0, 134.9, 133.3, 130.9, 130.0, 128.0, 127.3, 126.6, 126.2, 124.2, 123.1, 47.1, 40.3, 30.0, 28.2, 23.3, 19.6, 13.6, 12.5; IR (acetone) v 2956 2932, 2872, 1663, 1597, 1483, 1447, 1483, 1447, 1375, 1222, 1205, 1092, 1092, 766, 751, 730 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₃H₂₆NO 332.2008; found 332.2011.

5-isopropyl-7-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2s): A colorless oil, 32 mg, 51% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47 - 7.37 (m, 2H), 7.34 (td, *J* = 8.2, 7.6, 1.6 Hz, 1H), 7.25 - 7.18 (m, 2H), 7.17 - 7.08 (m, 2H), 6.97 (d, *J* = 7.3 Hz, 1H), 4.59 - 4.54 (m, 1H), 2.98 (qd, *J* = 7.1, 2.4 Hz, 1H), 2.94 - 2.77 (m, 2H), 2.59 (dd, *J* = 15.8, 5.3 Hz, 1H), 2.26 (tdd, *J* = 16.8, 6.5, 2.5 Hz, 1H), 1.42 (d, *J* = 6.8 Hz, 3H), 1.37 (d, *J* = 7.0 Hz, 3H), 0.99 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 172.3, 140.4, 140.2, 136.0, 135.0, 134.2, 130.8, 129.8, 127.4, 127.2, 126.7, 126.3, 126.1, 125.0, 124.8, 50.2, 41.0, 28.1, 23.4, 22.5, 20.7, 12.4; IR (EtOH) v 2972, 2928, 2867, 1647, 1591, 1483, 1448, 1378, 1295, 1087, 1046, 879, 766, 731 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₂₄NO 318.1852; found 318.1845.

5-ethyl-7-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2t): A brown oil, 32 mg, 52% yield. Eluent: PE/EA = 10/1. Containing trace amount of three-membered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.44 (d, *J* = 7.6 Hz, 1H), 7.42 - 7.35 (m, 2H), 7.20 (d, *J* = 7.5 Hz, 2H), 7.17 - 7.07 (m, 2H), 6.95 (d, *J* = 5.9 Hz, 1H), 4.31 (dq, *J* = 14.2, 7.2 Hz, 1H), 3.60 (dq, *J* = 13.9, 7.0 Hz, 1H), 2.98 (qd, *J* = 7.2, 2.5 Hz, 1H), 2.89 (dd, *J* = 16.3, 6.1 Hz, 1H), 2.82 (dd, *J* = 15.2, 4.4 Hz, 1H), 2.61 (dd, *J* = 14.9, 6.3 Hz, 1H), 2.25 (tdd, *J* = 16.8, 6.4, 2.4 Hz, 1H), 1.39 (d, *J* = 7.0 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 171.4, 141.1, 140.1, 136.1, 135.1, 133.3, 130.8, 130.0, 128.0, 127.4, 126.7, 126.3, 126.2, 124.3, 123.1, 43.0, 40.3, 28.1, 23.3, 13.1, 12.5; IR (neat) v 2956, 2931, 2872, 2830, 1659, 1596, 1482, 1446, 1376, 1277, 1295, 1221, 909, 788, 750, 726 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₂NO 304.1695; found 304.1691.

5-allyl-7-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[**1,2-d]azepin-6-one** (**2u**): A light green oil, 34 mg, 54% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (ddd, J = 8.2, 4.9, 1.5 Hz, 2H), 7.36 (ddd, J = 8.4, 7.1, 1.6 Hz, 1H), 7.22 - 7.07 (m, 4H), 6.93 (dd, J = 7.5, 1.5 Hz, 1H), 5.78 - 5.64 (m, 1H), 5.01 (dd, J = 7.1, 1.5 Hz, 1H), 4.98 (t, J = 1.6 Hz, 1H), 4.62 (ddt, J = 16.0, 5.0, 1.7 Hz, 1H), 4.35 (ddt, J = 15.9, 5.6, 1.6 Hz, 1H), 3.04 (qd, J = 7.1, 2.4 Hz, 1H), 2.92 (td, J = 15.9, 6.2 Hz, 1H), 2.82 (ddd, J = 15.2, 6.3, 2.1 Hz, 1H), 2.62 (ddd, J = 16.4, 6.1, 1.7 Hz, 1H), 2.26 (tdd, J = 16.8, 6.3, 2.5 Hz, 1H), 1.41 (d, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃, TMS) δ 171.8, 141.6, 140.1, 136.1, 135.0, 133.7, 132.7, 131.1, 130.1, 129.7, 128.0, 127.45, 127.37, 126.7, 126.4, 126.2, 124.2, 122.7, 116.3, 50.6, 40.2, 28.2, 23.4, 12.6; IR (neat) v 3055, 2968, 2940, 2884, 1652, 1597, 1490, 1455, 1369, 1226, 1205, 120

932, 919, 727, 704 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₂₂NO 316.1695; found 316.1699.

7-methyl-8,9-dihydrobenzo[b]naphtho[1,2-d]oxepin-6(7H)-one (2w): A colorless oil, 28 mg, 50% yield. Eluent: PE/EA = 10/1. ¹H NMR (600 MHz, CDCl₃, TMS) δ 7.48 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.44 - 7.39 (m, 1H), 7.29 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.26 - 7.17 (m, 3H), 7.17 - 7.11 (m, 1H), 7.04 (dd, *J* = 7.7, 1.3 Hz, 1H), 3.23 (qd, *J* = 7.0, 2.5 Hz, 1H), 2.93 (td, *J* = 16.9, 16.3, 6.3 Hz, 1H), 2.86 (ddd, *J* = 15.2, 6.2, 2.0 Hz, 1H), 2.62 (ddd, *J* = 16.3, 6.0, 1.8 Hz, 1H), 2.32 (tdd, *J* = 16.7, 6.2, 2.6 Hz, 1H), 1.49 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 170.9, 150.8, 136.1, 135.1, 133.9, 131.7, 130.4, 129.2, 127.8, 127.5, 127.4, 126.5, 126.4, 124.3, 120.5, 39.6, 28.0, 23.1, 12.9; IR (EtOH) v 3055, 2935, 2836, 1761, 1602, 1481, 1441, 1247, 1211, 1135, 1085, 1030, 906, 769, 729, 703 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₁₇O₂ 277.1223; found 277.1226.

5-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2x): A white solid, 35 mg, 63% yield, m.p.:145-147 °C. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.41 - 7.31 (m, 2H), 7.22 - 7.09 (m, 4H), 7.03 (d, *J* = 7.4 Hz, 1H), 3.36 (s, 3H), 3.06 (s, 2H), 2.99 (dd, *J* = 15.6, 6.9 Hz, 1H), 2.86 - 2.69 (m, 2H), 2.50 -2.42 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 171.2, 143.0, 136.2, 136.0, 134.6, 131.7, 130.9, 130.1, 128.0, 127.7, 126.8, 126.3, 126.0, 124.0, 122.4, 42.6, 35.8, 30.7, 28.3; IR (EtOH) v 3055, 2922, 2825, 1662, 1598, 1481, 1445, 1356, 1263, 1117, 1090, 908, 765, 747, 727, 661 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₁₈NO 276.1382; found 276.1384.

7-ethyl-5-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2y): A white solid, 35 mg, 57% yield, m.p.:180-182 °C. Eluent: PE/EA = 10/1. Containing trace amount of three-membered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.48 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.41 - 7.35 (m, 2H), 7.22 - 7.17 (m, 2H), 7.17 - 7.07 (m, 2H), 6.95 (dd, *J* = 7.5, 1.5 Hz, 1H), 3.36 (s, 3H), 2.92 (td, *J* = 16.5, 16.0 Hz, 1H), 2.82 (dd, *J* = 14.1, 7.2 Hz, 1H), 2.71 (td, *J* = 8.7, 6.6 Hz, 1H), 2.56 (dd, *J* = 16.5, 6.1 Hz, 1H), 2.25 (tdd, *J* = 16.8, 6.1, 2.4 Hz, 1H), 2.13 - 2.02 (m, 1H), 1.88 - 1.78 (m, 1H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 171.5, 142.9, 139.5, 136.1, 134.9, 131.7, 131.3, 130.2, 128.0, 127.4, 126.7, 126.4, 126.2, 123.9, 122.2, 47.9, 35.5, 28.2, 23.6, 20.3, 12.5; IR (EtOH) v 2970, 2878, 1647, 1597, 1482, 1446, 1378, 1342, 1086, 1048, 879, 765, 664 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₂NO 304.1695; found 304.1699.

7-butyl-5-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (**2z**): A yellow oil, 37 mg, 55% yield. Eluent: PE/EA = 10/1. Containing trace amount of threemembered ring unopened by-product. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.50 - 7.33 (m, 3H), 7.23 - 7.05 (m, 4H), 6.95 (d, *J* = 7.6 Hz, 1H), 3.36 (d, *J* = 1.9 Hz, 3H), 2.99 - 2.73 (m, 3H), 2.57 (dd, *J* = 15.6, 5.2 Hz, 1H), 2.26 (tdd, *J* = 16.7, 6.2, 2.3 Hz, 1H), 2.13 - 1.99 (m, 1H), 1.85 - 1.72 (m, 1H), 1.34 (dd, *J* = 7.4, 3.3 Hz, 2H), 1.24 - 1.10 (m, 2H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 171.6, 142.9, 139.6, 136.1, 134.9, 131.6, 131.2, 130.2, 128.0, 127.4, 126.7, 126.4, 126.2, 123.9, 122.2, 46.3, 35.5, 30.3, 28.2, 27.0, 23.7, 23.0, 14.1; IR (neat) v 2957, 2920, 2870, 2850, 1663, 1597, 1482, 1445, 1364, 908, 765, 727, 664 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₃H₂₆NO 332.2008; found 332.2014.

7-benzyl-5-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6-one (2aa): A light green oil, 30 mg, 41% yield. Eluent: PE/EA = 10/1. ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.51 (d, *J* = 7.8 Hz, 1H), 7.42 - 7.31 (m, 2H), 7.24 - 7.07 (m, 9H), 6.96 (d, *J* = 7.4 Hz, 1H), 3.42 (dd, *J* = 12.4, 5.4 Hz, 1H), 3.35 (s, 3H), 3.31 - 3.19 (m, 2H), 2.87 - 2.69 (m, 2H), 2.58 (ddd, *J* = 16.4, 5.8, 2.4 Hz, 1H), 2.33 (tdd, *J* = 14.2, 7.4, 6.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 170.9, 142.8, 139.8, 139.0, 136.1, 134.8, 131.5, 130.2, 128.7, 128.3, 128.2, 127.5, 126.9, 126.4, 126.2, 126.0, 124.0, 122.4, 46.4, 35.7, 32.6, 28.1, 23.9; IR (neat) v 3015, 2954, 2934, 1659, 1596, 1492, 1452, 1369, 1344, 1088, 917, 768, 747, 722, 700, 665 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₆H₂₄NO 366.1852; found 366.1854.

7-((benzyloxy)methyl)-5-methyl-5,7,8,9-tetrahydro-6H-benzo[b]naphtho[1,2-d]azepin-6one (2ab): A light green oil, 24 mg, 30% yield. Eluent: PE/EA = 10/1. ¹H NMR (600 MHz, CDCl₃, TMS) δ 7.44 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.40 - 7.36 (m, 1H), 7.35 - 7.30 (m, 5H), 7.29 - 7.27 (m, 1H), 7.22 - 7.16 (m, 2H), 7.16 - 7.12 (m, 1H), 7.12 - 7.07 (m, 1H), 6.94 (dd, *J* = 7.7, 1.3 Hz, 1H), 4.60 (d, *J* = 11.9 Hz, 1H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.06 - 3.99 (m, 2H), 3.20 (ddd, *J* = 8.7, 6.4, 2.3 Hz, 1H), 2.98 (td, *J* = 16.2, 15.8, 6.3 Hz, 1H), 2.79 (ddd, *J* = 15.1, 5.9, 1.9 Hz, 1H), 2.52 (ddd, *J* = 16.2, 6.3, 1.9 Hz, 1H), 2.31 (tdd, *J* = 16.7, 5.9, 2.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ 170.3, 142.5, 138.0, 137.6, 136.1, 134.8, 131.8, 131.5, 130.4, 128.4, 128.1, 128.0, 127.8, 127.5, 126.9, 126.4, 126.2, 124.1, 122.3, 73.7, 67.2, 46.3, 35.4, 28.1, 23.8; IR (neat) v 2914, 2870, 1659, 1482, 1446, 1367, 1086, 908, 769, 729, 697, 663 cm⁻¹; HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{27}H_{26}NO_2$ 396.1964; found 396.1965.

10. Spectroscopic Data of Substrates (NMR Spectrum)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

-60 -80 -90 -100 f1 (ppm) -50 -70 -200 -210 -220 -230 -240 -40 -120 -130 -140 -150 -160 -170 -180 -190 40 30 20 10 -10 -20 -30 -110

S66

7,558 7,558 7,558 7,539

7.781 7.760 7.561 7.562 7.563 7.564 7.409 7.409 7.4017

7.348 7.346 7.346 7.323 7.323 7.324 7.323 7.325 7.2277 7.227 7.2277 7.227 7.227 7.2277 7.2277 7.2277 7.2277 7.227

-90 -100 f1 (ppm) -230 -240 40 30 20 10 -10 -30 -40 -50 -60 -70 -80 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

S78

7,445 7,445 7,445 7,445 7,445 7,445 7,442 7,228 7,228 7,222 7,222 7,222 7,222 7,222 2,7722

7,445 7,445 7,445 7,445 7,445 7,445 7,432 7,432 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,355 7,335 7,335 7,335 7,355 7,335 7,356 7,326 7,32

$\begin{array}{c} 7,527\\ 7,5458\\ 7,4452\\ 7,445\\ 7,445\\ 7,445\\ 7,445\\ 7,445\\ 7,446\\ 7,446\\ 7,2408\\ 7,2408\\ 7,2390\\ 7,2390\\ 7,2390\\ 7,2390\\ 7,2390\\ 7,2390\\ 7,2390\\ 7,2360\\ 7,2350\\ 7,250\\ 7,250\\ 7,250\\ 7,250\\ 7,250\\ 7,250\\ 7,250\\ 7,250\\ 7,250\\$

C 200 C

11. Spectroscopic Data of Products (NMR Spectrum)

$\begin{array}{c} 7.467\\ 7.451\\ 7.464\\ 7.464\\ 7.3392\\ 7.3392\\ 7.3392\\ 7.3377\\ 7.3392\\ 7.3377\\ 7.3377\\ 7.3373\\ 7.3373\\ 7.3373\\ 7.3373\\ 7.3373\\ 7.3373\\ 7.3392\\ 7.3367\\ 7.3367\\ 7.1169\\ 7.1169\\ 7.1176\\ 7.12390\\ 7.12390\\ 7.12390\\ 7.123200\\ 7.12320\\ 7.123200\\ 7.123200\\ 7.123200\\ 7.123200\\ 7.123200\\ 7.123200\\ 7.1232000\\ 7.123200\\ 7.12$

50 240 230 220 210 200 190 180 170 160 150 140 130 120 60 40 30 20 -40 110 100 f1 (ppm) 50 10 -10 -20 -30 80 70 0 90

(¹⁹F NMR, 564 MHz, CDCl₃)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

S98

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -11 -12 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

$\begin{array}{c} 7.273\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2552\\ 7.2166\\ 7.21168\\ 7.21168\\ 7.71146\\ 7.71146\\ 7.71146\\ 7.71129\\ 7.71129\\ 7.71129\\ 7.71129\\ 7.71129\\ 7.71129\\ 7.71129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.7129\\ 7.72562\\ 7.729\\ 7.729289$

S105

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 r1 (ppm)

(¹H NMR, 400 MHz, CDCl₃)

$\begin{array}{c} 7,452\\ 7,452\\ 7,3389\\ 7,3389\\ 7,3389\\ 7,3389\\ 7,3389\\ 7,3389\\ 7,3389\\ 7,3389\\ 7,3389\\ 7,115\\ 7,115\\ 7,115\\ 7,1125\\ 7,1125\\ 7,1258\\ 7,12$

(¹H NMR, 400 MHz, CDCl₃)

12. References

- T. Constantin, M. Zanini, A. Regni, N. S. Sheikh, F. Juliá and D. Leonori, *Science*, 2020, 367, 1021-1026.
- G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu and R. R. Knowles, *Nature*, 2016, 539, 268-271.
- 3. T. Koike and M. Akita, *Inorg. Chem. Front.*, 2014, 1, 562-576.
- 4. J. Luo and J. Zhang, ACS Catal., 2016, 6, 873-877.
- A. J. Musacchio, B. C. Lainhart, X. Zhang, S. G. Naguib, T. C. Sherwood and R. R. Knowles, *Science*, 2017, 355, 727-730.
- 6. N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075-10166.
- 7. C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.
- X.-Y. Zhang, C. Ning, Y.-J. Long, Y. Wei and M. Shi, Org. Lett., 2020, 22, 5212-5216.
- K. E. DeMeester, H. Liang, M. R. Jensen, Z. S. Jones, E. A. D'Ambrosio, S. L. Scinto, J. Zhou and C. L. Grimes, J. Am. Chem. Soc., 2018, 140, 9458-9465.
- R. Di Sanza, T. L. N. Nguyen, N. Iqbal, S. P. Argent, W. Lewis and H. W. Lam, *Chem. Sci.*, 2020, **11**, 2401-2406.
- 11. T. Constantin, F. Julia, N. S. Sheikh and D. Leonori, *Chem Sci*, 2020, **11**, 12822-12828.
- X.-Y. Zhang, X.-Y. Wu, B. Zhang, Y. Wei and M. Shi, ACS Catal., 2021, 11, 4372-4380.
- 13. L. Buzzetti, G. E. M. Crisenza and P. Melchiorre, *Angew. Chem. Int. Ed.*, 2019, **58**, 3730-3747.
- 14. M. A. Cismesia and T. P. Yoon, *Chem. Sci.*, 2015, 6, 5426-5434.