Supporting Information

Enantioselective Reaction of *N*-Cyano Imines: Decarboxylative Mannich-type Reaction with Malonic Acid Half Thioesters

Yusuke Oyamada,^[a] Kazuto Inaba,^[a] Takahiro Sasamori,^[c] Shuichi Nakamura*^[a,b]

[a] Department of Life Science and Applied Chemistry, Graduate School of Engineering,
Nagoya Institute of Technology
Gokiso, Showa-ku, Nagoya 466-8555, Japan
b] Department of Frontier Materials, Graduate School of Engineering
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
E-mail: snakamur@nitech.ac.jp; Tel & Fax: 81-52-735-5245
c] Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science
(TREMS)

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

CONTENTS:

General method	S2
Optimization of catalysts	S3
Reaction with Various Nucleophiles	S4
Control experiments	S5
Typical procedure for synthesis of aldimines derived from benzaldehyde	S6-S10
Typical procedure for the decarboxylative addition of malonic half thioesters to aldimines	S11-S17
General procedure for synthetic application of products	S18-S19
Large scale experiment procedure	S20
ESI-Mass spectroscopic analysis	S21-S22
MO calculation	S23-S30
References	S31
¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S32-S65
HPLC Charts	S66-S83

Experimental Section

General method: All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 μm. The ¹H NMR (300 MHz) and ¹⁹F NMR (282 MHz) spectra for solution in CDCl₃ or (CD₃)₂SO were recorded on Varian Mercury 300, and ¹³C NMR (125 MHz) spectra for solution in CDCl₃ or (CD₃)₂SO were recorded on Bruker Avance 500. Chemical shifts (δ) are expressed in ppm downfield from internal TMS. HPLC analyses were performed on a SHIMADZU LC-2010A HT using 4.6 x 250 mm CHIRALPAK[®] IE-3, ID, AD-3 and CHIRALCEL[®] OD-H column. HRMS were recorded on a Waters SYNAPT G2 (ESI). ESI Mass spectra were recorded on a SHIMADZU LCMS-2020 using positive mode. Optical rotations were measured on a JASCO P-2200.Infrared spectra were recorded on a JASCO FT/IR-4600 spectrometer with ZnSe ATR unit. The imines were prepared by published procedures.¹

Optimization of Catalysts

		ĆN N	. U	O II	Cata	lyst 3 (*	10 mol%)	, HN		
	Ph		+ HO (1.5 e	SR equiv.)	Т	HF, r.t.,	24 h	Ph *	SR	
Entry	Catalyst	R	Yield (%)	Ee (%)	_	Entry	Catalyst	R	Yield (%)	Ee (%)
1	3e	Duryl	91	91 (<i>R</i>)		13	3q	Ph	80	45 (<i>R</i>)
2	3f	Ph	81	80 (S)		14	3r	Ph	77	7 (S)
3	3g	Ph	75	85 (S)		15	3s	Ph	99	5 (S)
4	3h	Ph	6	16 (S)		16	3t	Ph	91	8 (S)
5	3i	Ph	99	71 (S)		17	3u	Ph	91	2 (S)
6	Зј	Ph	81	71 (S)		18	3v	Ph	63	2 (S)
7	3k	Ph	92	80 (S)		19	3w	Ph	57	2 (S)
8	31	Ph	90	86 (S)		20	3x	Ph	47	5 (S)
9	3m	Ph	85	57 (S)		21	3у	Ph	19	1 (<i>S</i>)
10	3n	Ph	82	40 (S)		22	3z	Ph	50	44 (S)
11	30	Ph	83	48 (S)		23	3aa	Ph	96	77 (S)
12	3р	Ph	80	60 (S)		24	3ab	Ph	91	81 (S)

Reaction with Various Nucleophiles

Control Experiments

General Procedure for Synthesis of N-Cyano imines¹⁾

To a stirred solution of bis(trimethylsilyl)carbodiimide (2.9 mL, 12.8 mmol, 1.2 equiv.) in CH₂Cl₂ (5.8 mL) was added benzaldehyde (1.1 mL, 11.6 mmol, 1.0 equiv.) at room temperature. After cooling to – 20 °C, trimethylsilyl trifluoromethanesulfonate (21.0 μ L, 0.12 mmol, 0.01 equiv.) was added dropwise. The reaction mixture was stirred for 30 min, and warmed to room temperature, then the reaction mixture was stirred for 8 h. The reaction mixture was recrystallized by CH₂Cl₂/hexane to give **1a** (1.45 g, 96%). The other *N*-Cyano imines **1b-1q** were synthesized by similar procedure using the corresponding aldehydes.

N-Benzylidenecyanamide (1a)

CN According to the general procedure, the reaction using benzaldehyde (1.1 mL, 11.6 mmol), bis(trimethylsilyl)carbodiimide (2.9 mL, 12.8 mmol), and trimethylsilyl trifluoromethanesulfonate (21.0 μ L, 0.12 mmol) gave **1a** (1.45 g, 96%) as a white solid. mp = 66.0-66.5 °C; ¹H NMR (CDCl₃, 300 MHz) δ 9.02 (s, 1H), 7.93-7.90 (m, 2H), 7.73-7.68 (m, 1H), δ 7.57-7.52 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 182.5, 135.9, 133.4, 130.6, 129.4, 115.8; IR (ATR)

2188, 1607, 1594, 1568, 1450, 1231, 1023, 994, 754, 680 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₈H₆N₂Na 153.0423; Found: 153.0414.

N-(4-Fluorobenzylidene)cyanamide (1g)

According to the general procedure, the reaction using 4-fluorobenzaldehyde (105.2 μ L, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1g** (118.4 mg, 80%) as a white solid.

mp = 84.1-84.9 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.98 (s, 1H), 7.97-7.93 (m, 2H), δ 7.24-7.20 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz): δ –99.1; ¹³C NMR (CDCl₃, 125 MHz) δ 180.6, 167.5 (d, J_{C-F} = 259.0 Hz), 133.1 (d, J_{C-F} = 9.8 Hz), 129.8 (d, J_{C-F} = 2.8 Hz), 117.0 (d, J_{C-F} = 22.5 Hz), δ 115.7; IR (ATR) 2194, 1598, 1576, 1419, 1299, 1234, 1154, 1009, 997, 871, 834 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₈H₅N₂FNa 171.0329; Found: 171.0335.

N-(4-Chlorobenzylidene)cyanamide (1h)

According to the general procedure, the reaction using 4-chlorobenzaldehyde (140.6 mg, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1h** (113.6 mg, 69%) as a white solid.

mp = 147.0-147.4 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.98 (s, 1H), 7.86 (d, *J* = 8.6 Hz, 2H), 7.52 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 180.9, 142.6, 131.8, 131.6, 129.9, 115.5; IR (ATR) 2195, 1592, 1561, 1488, 1382, 1230, 1174, 1278, 1089, 1005, 824 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₈H₅N₂NaCl 187.0033; Found: 187.0038.

N-(3-Chlorobenzylidene)cyanamide (1i)

^{CN} According to the general procedure, the reaction using 3-chlorobenzaldehyde (113.0 μ L, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1i** (116.2 mg, 71%) as a white solid. mp = 117.5-118.2 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.98 (s, 1H), 7.92 (s, 1H), 7.79-7.77 (m, 1H), 7.68-7.65 (m, 1H), 7.52-7.47 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 181.0, 135.8, 135.6, 134.9, 130.6, 129.6, 128.9, 115.2; IR (ATR) 2193, 1604, 1560, 1380, 1232, 1093, 1077, 995, 893, 705, 633 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₈H₆N₂Cl 165.0214; Found: 165.0216.

N-(2-Chlorobenzylidene)cyanamide (1j)

According to the general procedure, the reaction using 2-chlorobenzaldehyde (113.0 mg, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1j** (78.8 mg, 48%) as a white solid. mp = 81.0-81.6 °C; ¹H NMR (CDCl₃, 300 MHz) δ 9.49 (s,1H), 8.16 (d, *J* = 9.0 Hz, 1H),

7.64-7.59 (m, 1H), 7.52-7.50 (m, 1H), 7.44-7.39 (m, 1H); 13 C NMR (CDCl₃, 125 MHz) δ 179.7, 139.0, 136.7, 130.7, 128.7, 127.7, 115.8; IR (ATR) 2193, 1597, 1441, 1373, 1275, 1160, 1056, 1013, 981, 857, 766 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₈H₆N₂Cl 165.0214; Found: 165.0217.

N-(4-Bromobenzylidene)cyanamide (1k)

CN According to the general procedure, the reaction using 4-bromobenzaldehyde (185.0 mg, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1k** (190.2 mg, 91%) as a white solid.

mp = 157.9-158.4 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.97 (s, 1H), δ 7.78 (d, 2H, *J* = 8.6 Hz), 7.70 (d, 2H, *J* = 8.6 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 181.1, 132.9, 132.1, 131.6, 131.5, 115.5; IR (ATR) 2195, 1598, 1484, 1407, 1379, 1282, 1066, 1008, 995, 858, 820 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₈H₅N₂NaBr 230.9528; Found: 230.9539.

N-(4-Trifluoromethylbenzylidene)cyanamide (11)

According to the general procedure, the reaction using 4-(trifluoromethyl)benzaldehyde (134.0)μL, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 µL, 0.01 mmol) gave 11 (118.9 mg, 60%) as a white

solid.

mp = 112.5-113.0 °C; ¹H NMR (CDCl₃, 300 MHz) δ 9.09 (s, 1H), 8.05 (d, 2H, *J* = 8.3 Hz), 7.81 (d, 2H, *J* = 8.3 Hz); ¹⁹F NMR (CDCl₃, 282MHz) δ –63.4; ¹³C NMR (CDCl₃, 125 MHz): δ 181.2, 136.7 (q, *J*_{C-F} = 32.8 Hz), 136.1, 130.7, 126.3 (q, *J*_{C-F} = 3.7 Hz), 123.2 (q, *J*_{C-F} = 257.7 Hz), 115.0; IR (ATR) 2197, 1606, 1571, 1321, 1231, 1164, 1109, 1016, 862, 839, 764 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₉H₅N₂F₃Na 221.0297; Found: 221.0302.

N-(4-Methylbenzylidene)cyanamide (1m)

According to the general procedure, the reaction using 4-methylbenzaldehyde (117.8 μ L, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1m** (93.7 mg, 65%) as a white solid.

mp = 93.5-94.2 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.96 (s, 1H), 7.80 (d, 2H, *J* = 8.0 Hz), 7.34 (d, 2H, *J* = 8.0 Hz), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 181.6, 147.3, 130.6, 130.3, 129.8, 115.8, 21.8; IR (ATR) 2189, 1590, 1557, 1509, 1379, 1235, 1166, 1044, 866, 775, 637 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₉H₈N₂Na 167.0580; Found: 167.0598.

N-(4-Methoxybenzylidene)cyanamide (1n)

According to the general procedure, the reaction using 4-methoxybenzaldehyde (121.6 μ L, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1n** (124.9 mg, 78%) as a white solid.

mp = 123.5-124.0 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.89 (s, 1H), 7.86 (d, 2H, *J* = 8.9 Hz), 7.01 (d, 2H, *J* = 8.9 Hz), 3.92 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 180.6, 166.0, 133.0, 126.4, 116.6, 114.9, 55.8; IR (ATR) 2180, 1592, 1509, 1427, 1301, 1112, 1002, 995, 836, 632, 604 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₉H₈N₂ONa 183.0529; Found: 183.0542.

N-(2-Naphthylidene)cyanamide (10)

According to the general procedure, the reaction using 2-naphthaldehyde (156.2 mg, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **10** (99.1 mg, 55%) as a white solid.

mp = 105.0-105.8 °C; ¹H NMR (CDCl₃, 300 MHz) δ 9.15 (s, 1H), 8.30 (s, 1H), 8.03-7.91 (m, 4H), 7.72-7.59 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 182.1, 137.0, 136.3, 132.6, 131.2, 130.1, 129.7, 129.6, 128.2, 127.6, 122.6, 116.1; IR (ATR) 2189, 1625, 1590, 1371, 1269, 1178, 1016, 891, 817, 777, 754 cm⁻¹; HRMS (ESI) m/z: Calcd. for C₁₂H₈N₂Na 203.0580; Found: 203.0586.

N-(2-Furylidene)cyanamide (1p)

According to the general procedure, the reaction using furfural (82.8 μ L, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1p** (52.8 mg, 44%) as a white solid. mp = 92.0-92.8 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.68 (s, 1H), 7.82-7.79 (m, 1H), 7.40-

7.38 (m, 1H), 6.74-6.70 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.2, 150.6, 149.2, 115.9, 114.3, 114.1; IR (ATR) 3112, 2191, 1536, 1465, 1397, 1304, 1021, 1007, 976, 881, 772 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₆H₄N₂ONa 143.0216; Found: 143.0216.

N-(2-Thienylidene)cyanamide (1q)

According to the general procedure, the reaction using 2-thiophenecarboxaldehyde (91.2 μ L, 1.0 mmol), bis(trimethylsilyl)carbodiimide (0.27 mL, 1.2 mmol), and trimethylsilyl trifluoromethanesulfonate (1.8 μ L, 0.01 mmol) gave **1q** (104.9 mg, 77%) as a white solid. mp = 73.1-73.9 °C; ¹H NMR (CDCl₃, 300 MHz) δ 9.03 (s, 1H), 7.85-7.78 (m, 2H), 7.28-

7.26 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.0, 139.4, 139.4, 137.4, 129.3, 115.7; IR (ATR) 2184, 1573, 1513, 1414, 1375, 1256, 1050, 1023, 1003, 982, 846 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₆H₄N₂NaS 158.9987; Found: 159.0002.

General procedure for the enantioselective decarboxylative Mannich reaction of malonic acid half thioesters with *N*-cyano imines catalyzed by chiral organocatalysts

N-Cyano imine **1a** (6.3 mg, 0.048 mmol, 1.2 equiv.), **2c** (9.6 mg, 0.040 mmol, 1.0 equiv.), and **3e** (2.5 mg, 0.004 mmol, 10 mol%) in THF was stirred for 48 h at 10 °C. After removal solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) to afford (*R*)-**4aa** (11.2mg, 99%) as a yellow oil.

(R)-S-Phenyl 3-phenyl-3-(cyanoamino)propanethioate (4aa)

Reaction of **1a** (6.3 mg, 0.048 mmol), **2a** (7.9 mg, 0.04 mmol) and **3e** (2.5 mg, 0.004 mmol) in THF (1.0 mL) at r.t. for 24 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave **4aa** (11.2 mg, 99%, 85% ee) as a pale yellow oil.

 $[\alpha]_D^{25}$ +54.3 (80% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.45-7.33 (m, 10H), 4.81 (br, 1H), 4.74-4.69 (m, 1H), 3.28-3.09 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 196.1, 137.6, 134.4, 130.0, 129.4, 129.1, 129.1, 126.8, 126.4, 114.3, 56.8, 48.3; IR (ATR) 2219, 1709, 1478, 1454, 1358, 1220, 1059, 1024, 975, 747, 689 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₄N₂ONaS 305.0719; Found: 305.0719; HPLC (CHIRALPAK IE-3, Hexane/ⁱPrOH = 90:10, 1.0 mL/min, 254 nm) 80% ee, *t_R* 20.4 (major), *t_R* 23.3 (minor) min.

(S)-S-Phenyl 3-phenyl-3-(tosylamino)propanethioate (4ba)

Reaction of **1b** (12.5 mg, 0.048 mmol), **2a** (7.9 mg, 0.04 mmol) and **3a** (2.a mg, 0.004 mmol) in THF (1.0 mL) at r.t. for 24 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 80:20)gave **4ba** (16.0 mg, 97%, 45% ee) as a white solid.

 $[\alpha]_D^{25}$ +113.8 (45% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.60-7.57 (m, 2H), 7.39-7.34 (m, 3H), 7.24-7.08 (m, 9H), 5.61 (d, *J* = 6.0 Hz, 1H), 4.77 (ddd, 1H, *J* = 6.0, 6.0, 6.2 Hz), 3.18 (dd, 1H, *J* = 6.0, 15.6 Hz), 3.06 (dd, 1H, *J* = 6.2, 15.6 Hz), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.6, 143.3, 138.8, 137.2, 134.3, 129.7, 129.5, 129.3, 128.6, 127.9, 127.1, 126.8, 126.5, 55.0, 49.4, 21.5; IR (ATR) 3260, 1712, 1683, 1441, 1358, 1159, 1058, 942, 754, 665 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for

 $C_{22}H_{21}NO_3NaS$ 434.0855; Found: 434.0860; HPLC (CHIRALCEL OD-H, Hexane/^{*i*}PrOH = 90:10, 1.0 mL/min, 254 nm) 45% ee, t_R 21.8 (minor), t_R 24.3 (major) min.

(R)-S-(4-Bromophenyl) 3-phenyl-3-(cyanoamino)propanethioate (4ab)

Reaction of **1a** (6.3 mg, 0.048 mmol), **2b** (11.0 mg, 0.04 mmol) and **3e** (2.5 mg, 0.004 mmol) in THF (1.0 mL) at r.t. for 24 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave **4ab** (13.2 mg, 91%, 76% ee) as a pale yellow solid.

mp = 85.5-86.0 °C; $[\alpha]_D^{25}$ –56.0 (75% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.59-7.20 (m, 9H), 4.76-4.70 (m, 1H), 4.65 (br, 1H), 3.27 (dd, 1H, *J* = 4.7, 16.2 Hz), 3.14 (dd, 1H, *J* = 4.7, 16.2 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 195.4, 137.5, 135.9, 132.7, 129.2, 129.2, 126.8, 126.8, 125.4, 124.8, 114.0, 56.8, 48.4; IR (KBr) 2920, 2218, 1711, 1471, 1359, 1219, 1066, 1007, 813, 697 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₃N₂ONaSBr 382.9824; Found: 382.9827; HPLC (CHIRALPAK IE-3, Hexane/^{*i*}PrOH = 90:10, 1.0 mL/min, 254nm) 76% ee, *t_R* 34.3 (major), *t_R* 39.3 (minor) min.

Absolute configuration was determined by X-ray crystal analysis: Hexane was slowly added to the sample tube containing the sample dissolved in chloroform. Once the crystals precipitated, they were allowed to stand for a day in the refrigerator. After recrystallization, the enantioselectivity of the crystals was 92% ee.

Figure S1. X-ray crystallography analysis for (*R*)-4ab (CCDC No. 2054566).

(R)-S-(2,4,6-Trimethylphenyl) 3-phenyl-3-(cyanoamino)propanethioate (4ac)

Reaction of 1a (6.3 mg, 0.048 mmol), 2c (9.6 mg, 0.04 mmol) and 3e (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave 4ac (12.9 mg, 99%, 95% ee) as a yellow oil.

 $[\alpha]_D^{25}$ +49.9 (95% ee, c 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.40-7.34 (m, 5H), 6.97 (s, 2H), 4.79 (br, 1H), 4.74-4.68 (m, 1H), 3.30-3.13 (m, 2H), 2.29 (s, 3H), 2.19 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.7, 142.4, 140.6, 137.7, 129.4, 129.1, 129.0, 126.8, 122.5, 114.3, 57.1, 48.0, 21.4, 21.2; IR (ATR) 2214, 1713, 1666, 1417, 1220, 1092, 1008, 851, 698, 681 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₀N₂ONaS 347.1189; Found: 347.1204; HPLC (CHIRALPAK IE-3, Hexane/PrOH = 90:10, 1.0 mL/min, 254 nm) 95% ee, t_R 18.2 (major), t_R 21.0 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-fluorophenyl)-3-(cyanoamino)propanethioate (5)

Reaction of 1g (7.1 mg, 0.048 mmol), 2c (9.6 mg, 0.04 mmol) and 3e (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 72 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave 5 (12.2 mg, 89%, 95% ee) as a pale

yellow oil.

 $[\alpha]_D^{25}$ -2.8 (95% ee, c 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.38-7.33 (m, 2H), 7.12-7.07 (m, 2H), 6.97 (s, 2H), 4.78 (br, 1H), 4.73-4.67 (m, 1H), 3.27-3.11 (m, 2H), 2.29 (s, 3H), 2.20 (s, 6H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -112.4; ¹³C NMR (CDCl₃, 125 MHz) δ 195.7, 162.9 (d, J_{C-F} = 247.0 Hz), 142.3, 140.6, 133.4 (d, $J_{C-F} = 3.2$ Hz), 129.4, 128.7 (d, $J_{C-F} = 8.4$ Hz), 122.3, 116.1 (d, $J_{C-F} = 21.7$ Hz), 114.0, 56.4, 48.0, 21.4, 21.1; IR (ATR) 2212, 1713, 1667, 1511, 1445, 1414, 1284, 1161, 1006, 846 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₉N₂ONaSF 365.1100; Found: 365.1094; HPLC (CHIRALPAK IE-3, Hexane/PrOH = 90:10, 1.0 mL/min, 254 nm) 95% ee, t_R 14.7 (major), t_R 17.6 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-chlorophenyl)-3-(cyanoamino)propanethioate (6)

Reaction of 1h (7.9 mg, 0.048 mmol), 2c (9.6 mg, 0.04 mmol) and 3e (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave 6 (12.6 mg, 88%,

94% ee) as a pale yellow oil.

[α]_D²⁵ -11.4 (94% ee, c 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.40-7.29 (m, 4H), 6.98 (s, 2H), 4.80 (br, 1H), 4.72-4.66 (m, 1H), 3.23 (dd, 1H, J = 5.1, 16.0 Hz), 3.14 (dd, 1H, J = 5.1, 16.0 Hz), 2.29 (s,

3H), 2.20 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.7, 142.3, 140.7, 136.1, 135.0, 129.4, 129.4, 128.2, 122.2, 114.0, 56.5, 47.8, 21.4, 21.2; IR (ATR) 2220, 1711, 1435, 1359, 1219, 1091, 1013, 979, 851, 754 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₉N₂ONaSCl 381.0799; Found: 381.0800(100.0%), [M+Na+2]⁺ 383.0775, Found: 383.0770(35.7 %); HPLC (CHIRALPAK IE-3, Hexane/ⁱPrOH = 90:10, 1.0 mL/min, 254 nm) 94% ee, *t_R* 14.4 (major), *t_R* 17.4 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(3-chlorophenyl)-3-(cyanoamino)propanethioate (7)

Reaction of **1i** (7.9 mg, 0.048 mmol), **2c** (9.6 mg, 0.04 mmol) and **3e** (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave **7** (13.2 mg, 92%, 88% ee) as a pale yellow oil.

[α]_D²⁵ +17.7 (88% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.35 (s, 3H), 7.28 (s, 1H), 6.98 (s, 2H), 4.86 (br, 1H), 4.71-4.65 (m, 1H), 3.23 (dd, 1H, J = 5.2, 16.0 Hz), 3.15 (dd, 1H, J = 5.2, 16.0 Hz), 2.29 (s, 3H), 2.20 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.6, 142.3, 140.7, 139.7, 135.1, 130.4, 129.4, 129.2, 127.0, 125.0, 122.2, 113.9, 56.7, 47.7, 21.4, 21.2; IR (ATR) 3005, 2221, 1711, 1433, 1359, 1219, 1092, 852, 790, 756 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₉N₂ONaSCl 381.0799; Found: 381.0810, [M+Na+2]⁺ 383.0770, Found: 383.0778 (36.4 %); HPLC (CHIRALPAK IE-3, Hexane/ⁱPrOH = 90:10, 1.0 mL/min, 254 nm) 88% ee, *t_R* 18.2 (major), *t_R* 20.6 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(2-chlorophenyl)-3-(cyanoamino)propanethioate (8)

Reaction of 1j (7.9 mg, 0.048 mmol), 2c (9.6 mg, 0.04 mmol) and 3e (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave 8 (13.8 mg, 96%, 95% ee) as a pale

yellow oil.

 $[\alpha]_{D}^{25}$ +52.3 (95% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.48-7.31 (m, 4H), 6.97 (s, 2H), 5.18-5.12 (m, 1H), 5.08 (br, 1H), 3.27 (dd, 1H, *J* = 7.3, 16.0 Hz), 3.20 (dd, 1H, *J* = 5.2, 16.0 Hz), 2.29 (s, 3H), 2.17 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 196.0, 142.3, 140.6, 135.0, 132.7, 130.3, 130.0, 129.4, 127.8, 127.6, 122.4, 114.0, 54.2, 45.8, 21.4, 21.2; IR (ATR) 2921, 2225, 1711, 1679, 1457, 1358, 1220, 1029, 981, 843, 695 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₉N₂ONaSCl 381.0799; Found: 381.0813 [M+Na+2]⁺ 383.0770, Found: 383.0784 (36.2 %); HPLC (CHIRALPAK IE-3, Hexane/ⁱPrOH = 90:10, 1.0 mL/min, 254 nm) 95% ee, *t_R* 18.6 (major), *t_R* 20.5 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-bromophenyl)-3-(cyanoamino)propanethioate (9)

Reaction of **1k** (10.0 mg, 0.048 mmol), **2c** (9.6 mg, 0.04 mmol) and **3e** (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 $^{\circ}$ C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave **9** (13.9 mg, 86%,

93% ee) as a pale yellow amorphous solid.

[α]_D²⁵ –38.2 (93% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.54 (d, J = 8.6 Hz, 2H), 7.25 (d, 2H, J = 8.6 Hz), 6.98 (s, 2H), 4.81 (br, 1H), 4.70-4.65 (m, 1H), 3.26-3.10 (m, 2H), 2.29 (s, 3H), 2.20 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.7, 142.3, 140.7, 136.6, 132.3, 129.4, 128.5, 123.1, 122.2, 114.0, 56.6, 47.8, 21.4, 21.2; IR (ATR) 2921, 2220, 1711, 1488, 1435, 1219, 1073, 1009, 851, 751 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₉N₂ONaSBr 425.0294; Found: 425.0306 (95.1%), [M+Na+2]⁺ 427.0274, Found: 427.0282 (100.0%); HPLC (CHIRALPAK IE-3, Hexane/^{*i*}PrOH = 90:10, 1.0 mL/min, 254 nm) 93% ee, *t_R* 15.2 (major), *t_R* 18.5 (minor) min.

(*R*)-*S*-(2,4,6-Trimethylphenyl) 3-(4-trifluoromethylphenyl)-3-(cyanoamino)propanethioate (10)

Reaction of **11** (9.5 mg, 0.048 mmol), **2c** (9.6 mg, 0.04 mmol) and **3e** (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 $^{\circ}$ C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave **10** (15.6 mg,

99%, 93% ee) as a pale yellow oil.

[α]_{D²⁵} +15.4 (93% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.69-7.66 (m, 2H), 7.51-7.49 (m, 2H), 6.97 (s, 2H), 4.93 (br, 1H), 4.80-4.75 (m, 1H), 3.30-3.14 (m, 2H), 2.29 (s, 3H), 2.17 (s, 6H); ¹⁹F NMR (CDCl₃, 282MHz): δ –62.8; ¹³C NMR (CDCl₃, 125 MHz) δ 195.6, 142.6, 141.6, 140.8, 131.3 (q, J_{C-F} = 32.6 Hz), 129.5, 127.3, 127.0, 126.2 (q, J_{C-F} = 3.8 Hz), 123.8 (q, J_{C-F} = 270.6 Hz), 122.1, 113.9, 56.7, 47.7, 21.3, 21.2; IR (ATR) 2924, 2222, 1712, 1620, 1421, 1359, 1219, 1165, 1068, 978, 847 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₁₉N₂ONaSF₃ 415.1062; Found: 415.1062; HPLC (CHIRALPAK IE-3, Hexane/¹PrOH = 90:10, 0.5 mL/min, 254 nm) 93% ee, *t_R* 28.9 (major), *t_R* 36.3 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-methylphenyl)-3-(cyanoamino)propanethioate (11)

Reaction of 1m (6.9 mg, 0.048 mmol), 2c (9.6 mg, 0.04 mmol) and 3e (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave 11 (13.0 mg, 96%, 92% ee) as a

pale yellow oil.

 $[\alpha]_D^{25}$ +55.4 (92% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.23-7.19 (m, 4H), 6.97 (s, 2H), 4.70-4.64 (m, 2H), 3.28-3.11 (m, 2H), 2.35 (s, 3H), 2.29 (s, 3H), 2.21 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.8, 142.4, 140.5, 138.9, 134.6, 129.8, 129.4, 126.8, 122.5, 114.3, 56.9, 48.1, 21.4, 21.2; IR (ATR) 2918, 2218, 1711, 1601, 1515, 1436, 1220, 1151, 978, 851 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₂N₂ONaS 361.1345; Found: 361.1347; HPLC (CHIRALPAK IE-3, Hexane/^{*i*}PrOH = 90:10, 1.0 mL/min, 254 nm) 92% ee, *t_R* 22.3 (major), *t_R* 25.6 (minor) min.

(*R*)-*S*-(2,4,6-Trimethylphenyl) 3-(4-methoxyphenyl)-3-(cyanoamino)propanethioate (12)

Reaction of **1n** (7.7 mg, 0.048 mmol), **2c** (9.6 mg, 0.04 mmol) and **3e** (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 $^{\circ}$ C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave **12** (14.1 mg,

99%, 88% ee) as a pale yellow oil.

[α]_D²⁵ +44.6 (88% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.31-7.27 (m, 2H), 6.97-6.90 (m, 4H), 4.69-4.64 (m, 2H), 3.81 (s, 3H), 3.28-3.11 (m, 2H), 2.29 (s, 3H), 2.21 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 196.0, 160.1, 142.4, 140.6, 129.4, 128.2, 122.5, 114.5, 114.3, 56.6, 55.4, 48.2, 21.5, 21.2; IR (ATR) 2219, 1711, 1611, 1561, 1358, 1219, 1030, 828, 731, 620 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₂N₂O₂NaS 377.1294; Found: 377.1305; HPLC (CHIRALPAK IE-3, Hexane/^{*i*}PrOH = 90:10, 1.0 mL/min, 254 nm) 88% ee, t_R 31.1 (major), t_R 35.2 (minor) min.

(*R*)-*S*-(2,4,6-Trimethylphenyl) 3-(2-naphthyl)-3-(cyanoamino)propanethioate (13)

Reaction of **1o** (8.7 mg, 0.048 mmol), **2c** (9.6 mg, 0.04 mmol) and **3e** (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 $^{\circ}$ C for 72 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave **13** (12.0 mg,

80%, 90% ee) as a pale yellow amorphous solid.

[α]_D²⁵ –23.6 (90% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.91-7.81 (m, 4H), 7.54-7.45 (m, 3H), 6.95 (s, 2H), 4.90-4.85 (m, 2H), 3.35 (dd, 1H, J = 4.6, 15.9 Hz), 3.24 (dd, 1H, J = 4.6, 15.9 Hz), 2.28 (s, 3H), 2.15 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.8, 142.3, 140.5, 134.9, 133.4, 133.1, 129.3, 129.2, 128.1, 127.7, 126.7, 126.7, 126.3, 123.8, 122.4, 114.2, 57.3, 47.9, 21.3, 21.1; IR (ATR) 2922, 2219, 1710, 1601, 1435, 1360, 1219, 1089, 907 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₂N₂ONaS 397.1345; Found: 397.1348; HPLC (CHIRALPAK IE-3, Hexane/ⁱPrOH = 90:10, 1.0 mL/min, 254 nm) 90% ee, *t_R* 26.7 (major), *t_R* 30.9 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(2-furyl)-3-(cyanoamino)propanethioate (14)

Reaction of 1p (5.8 mg, 0.048 mmol), 2c (9.6 mg, 0.04 mmol) and 3e (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave 14 (11.6 mg, 92%, 87% ee) as a pale

yellow oil.

 $[\alpha]_D^{25}$ +18.6 (87% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.43-7.42 (m, 1H), 6.98 (s, 2H), 6.40-6.36 (m, 2H), 4.79-4.73 (m, 1H), 4.67 (br, 1H), 3.41-3.20 (m, 2H), 2.29 (s, 3H), 2.26 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 195.2, 150.2, 143.2, 142.4, 140.6, 129.4, 122.4, 113.7, 110.7, 108.6, 50.9, 45.1, 21.5, 21.1; IR (ATR) 2219, 1710, 1438, 1419, 1283, 1220, 1143, 1017, 855, 740 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₈N₂O₂NaS 337.0981; Found: 337.0985; HPLC (CHIRALPAK ID, Hexane/ⁱPrOH = 90:10, 0.75 mL/min, 254 nm) 87% ee, *t_R* 32.3 (major), *t_R* 38.4 (minor) min.

(R)-S-(2,4,6-Trimethylphenyl) 3-(2-thienyl)-3-(cyanoamino)propanethioate (15)

Reaction of 1q (6.5 mg, 0.048 mmol), 2c (9.6 mg, 0.04 mmol) and 3e (2.5 mg, 0.004 mmol) in THF (1.0 mL) at 10 °C for 48 h. After removal of solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) gave 15 (12.6 mg, 95%, 86% ee) as a pale

yellow oil.

 $[\alpha]_D^{25}$ –79.1 (86% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) & 7.35-7.32 (m, 1H), 7.22-7.10 (m, 1H), 7.02-6.98 (m, 3H), 5.00-4.94 (m, 1H), 4.79 (br, 1H), 3.37 (dd, *J* = 5.0, 16.1 Hz, 1H), 3.25 (dd, *J* = 5.0, 16.1 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) & 195.4, 142.4, 140.6, 140.5, 129.4, 127.1, 126.4, 126.3, 122.3, 113.6, 52.9, 48.1, 21.4, 21.1; IR (ATR) 3196, 2222, 1711, 1673, 1219, 1083, 1040, 1015, 853, 670 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₈N₂ONaS 353.0753; Found: 353.1754; HPLC (CHIRALPAK ID, Hexane/^{*i*}PrOH = 90:10, 0.75 mL/min, 254 nm) 86% ee, *t_R* 35.6 (minor), *t_R* 38.2 (major) min.

General procedure for synthetic application of products: (*R*)-2-(2,4,6-Trimethylphenyl)thio-4-oxo-6-phenyl-5,6-dihydropyrimidone (16)

A solution of **4ac** (16.2 mg, 0.05 mmol, 1.0 equiv.) and Et₃N (10.4 μ L, 0.075 mmol, 1.5 equiv.) in toluene was stirred for 24 h under reflux in an oil bath and removal of solvent under reduced pressure gave a residue, which was purified by column chromatography (Hexane/AcOEt= 70/30) to afford **16** (12.7 mg, 78%, 94% ee) as a off white solid.

 $[\alpha]_D^{25}$ +40.1 (94% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.35-7.24 (m, 5H), 7.12 (s, 1H), 7.01 (s, 2H), 4.86-4.80 (m, 1H), 2.76 (dd, 1H, *J* = 5.4, 16.7 Hz), 2.55-2.45 (m, 7H), 2.30 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.7, 144.1, 130.1, 129.4, 129.1, 128.7, 127.5, 126.8, 126.4, 59.3, 57.1, 37.6, 22.1, 21.2; IR (ATR) 2922, 2360, 2342, 1702, 1619, 1453, 1321, 1024, 945, 758 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₂H₁₄N₂ONa 347.1189; Found: 347.1187; HPLC (CHIRALPAK IE-3, Hexane/^{*i*}PrOH = 90:10, 0.75 mL/min, 254 nm) 94% ee, *t_R* 36.8 (major), *t_R* 45.8 (minor) min.

(R)-Methyl 3-phenyl-3-(cyanoamino)propanoate (17)

A solution of **4aa** (28.2 mg, 0.1 mmol, 1.0 equiv.) in MeOH was added to solution of Mg (12.0 mg, 0.5 mmol, 5.0 equiv.) in MeOH at -30 °C. The suspension was stirred for 6 h in argon atmosphere which was directly purified by column chromatography (Hexane/AcOEt= 60/40) to afford **17** (17.6 mg, 86%, 93% ee) as a colorless oil.

 $[\alpha]_D^{25}$ –9.5 (93% ee, *c* 0.58, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.43-7.31 (m, 5H), 4.83 (br, 1H), 4.70-4.65 (m, 1H), 3.72 (s, 3H), 2.94 (dd, 1H, *J* = 7.8, 16.6 Hz,), 2.83 (dd, 1H, *J* = 7.8, 16.6 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 171.5, 137.9, 129.2, 129.0, 126.8, 114.5, 58.5, 52.3, 39.9; IR (ATR) 2352, 2218, 1731, 1554, 1495, 1265, 1201, 988, 762 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₁H₁₂N₂O₂Na 227.0791; Found: 227.0798; HPLC (CHIRALPAK AD-3, Hexane/^{*i*}PrOH = 90:10, 1.0 mL/min, 254 nm) 93% ee, *t_s* 8.6 (minor), *t_R* 11.1 (major) min.

(R)-2-(2,4,6-Trimethylphenyl)thio-3-phenyl-3-(2H-tetrazole-5-amino)propanoate (18)

To solution of **4ac** (32.4 mg, 0.1 mmol, 1.0 equiv.) in benzene, TMSN₃ (26 μ L, 0.2 mmol, 2.0 equiv.) and (*n*-Bu)₂Sn(OAc)₂ (27 μ L, 0.1 mmol, 1.0 equiv.) were added at room temperature. The solution was stirred for 18 h in argon atmosphere. After white solid precipitated, which was filtered. Filter cake was dried under vacuum to afford **18** (32.2 mg, 96%, 95% ee) as a white solid.

mp = 192.2-193.0 °C; $[\alpha]_D^{25}$ +108.4 (95% ee, *c* 0.58, CHCl₃); ¹H NMR ((CD₃)₂SO, 300 MHz) δ 7.35 (s, 5H), 6.97 (s, 2H), 6.86 (br, 2H), 5.96-5.91 (m, 1H), 3.37 (dd, 1H, *J* = 7.7, 16.2 Hz), 3.25 (dd, 1H, *J* = 7.7, 16.2 Hz), 2.21 (s, 3H), 2.04 (s, 6H); ¹³C NMR ((CD₃)₂SO, 125 MHz) δ 193.6, 155.5, 142,5, 140.1, 138.0, 129.4, 129.2, 128.8, 127.4, 123.4, 55.2, 48.0, 21.4, 21.1; IR (ATR) 3319, 3158, 1738, 1688, 1580, 1495, 1428, 1354, 1215, 1051, 618 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calced. for C₁₉H₂₁N₅OSNa 390.1359; Found: 390.1356; HPLC (CHIRALPAK IE-3, Hexane/^{*i*}PrOH = 80:20, 1.0 mL/min, 254 nm) 95% ee, *t_s* 16.2 (minor), *t_R* 18.8 (major) min.

Large scale experiment procedure:

N-Cyano imine **1a** (312.4 mg, 2.4 mmol), **2c** (476.6 mg, 2.0 mmol), and **3e** (126. mg, 0.2 mmol) in THF was stirred for 48 h at 10 °C. After removal solvent, the residue was purified by silica gel column chromatography (eluent: Hexane/AcOEt, 70:30) to afford (*R*)-**4ac** (590.4mg, 91%, 92% ee) as a yellow oil.

ESI-Mass spectroscopic analysis:

To clarify the assumed reaction mechanism, we also investigated some other spectroscopic analysis. The ESI-Mass spectroscopic analysis of intermediate A (3e and malonic acid half thioester 2c in a 1:1 ratio in MeOH, anion mode).

(a) Peaks for intermediate A

(b) Theoretical peaks for intermediate A

The ESI-Mass spectroscopic analysis of intermediate C (3e, *N*-cyano imine 1a and malonic acid half thioester 2c in 1:1:1 ratio in MeOH, anion mode);

(a) Peaks for intermediate C

(b) Theoretical peaks for intermediate C

MO Calculations:

The calculation was performed using Gaussian 16 revision C.01. Geometry optimizations were performed using B3LYP functional with 6-31G(d,p) basis set. After optimization of structures, frequency calculations were performed at the same level of the theory to confirm that the obtained structures were a transition state (one imaginary frequency). Single point energy calculations for the optimized geometry were performed using M06-2X functional with 6-311G+(d,p) basis set for all the atoms in SMD solvation model (THF).

The calculation results for TS-R and TS-S were shown in Figure S2. The relative energies of the optimized structures were depicted. As a result, the TS-R was most stable complex. Figure S3 showed the energy diagram for the complexes.

Figure S2. MO calculation for transition state of **1a** and **2c** using **3e** by Gaussian 16 B3LYP/6-31G(d,p) and M06-2X/6-311+G(d,p)/CPCM(THF)//B3LYP/6-31G(d,p). H atoms have been omitted for clarity.

Calculated Transition states

TS-*R* B3LYP/6-31G(d,p) free energy: -3787.56295047 (a.u.) Number of imaginary frequencies: 1 (-256.9878) M06-2X/6-311+G(d,p)/SMD(THF) single point energy: -3787.21792477 (a.u.)

C	C 2570C400	0.07(10000	1 1 425 (100
C	6.35706400	0.3/610300	-1.14356100
С	7.23799600	0.51484700	-2.27251900
Ν	6.93051600	0.07824000	-3.52703200
С	5.75575300	-0.48815900	-3.70347700
С	4.82002800	-0.69959300	-2.66320800
С	5.11051200	-0.29230900	-1.37716700
С	4.11120700	-0.56210300	-0.25072900
С	4.00179100	-2.09025700	-0.03154500
С	6.76404500	0.90526500	0.10571600
С	8.49337200	1.14528200	-2.08650200
Н	5.51489800	-0.81351000	-4.71409100
Н	3.86859100	-1.16647300	-2.90461100
Н	4.47880800	-0.11484300	0.67107500
С	5.31146900	-2.70065000	0.53802200
Ν	2.87052200	-2.46498900	0.90932900
Н	3.72813700	-2.56238300	-0.97913800
С	3.15610500	-2.04926100	2.33029400
С	4.34236200	-2.88632000	2.88962100
С	4.97965600	-3.65930100	1.69678100
С	2.64386300	-3.95912800	0.84743400
С	3.95675500	-4.69395200	1.19318800
Н	5.98034100	-1.90587800	0.88006700
Н	5.84329000	-3.23444500	-0.25417900
Н	3.37045000	-0.97832800	2.33453000
Н	2.23314900	-2.20464700	2.89226800
Н	3.95000700	-3.63943700	3.58349100
Н	5.89004800	-4.15842800	2.03908500
Н	2.26666000	-4.17623300	-0.15221600
Н	1.83460300	-4.16753500	1.54783300
Н	3.76915500	-5.45486800	1.95659800
С	7.99690900	1.52195800	0.24819500
С	8.87641900	1.63585500	-0.86003400
Н	6.11380000	0.89921200	0.97367500
Н	9.13937200	1.23184200	-2.95361700
Н	9.84128200	2.11603600	-0.75113200
Н	4.35048100	-5.21188200	0.31288800
Ν	2.80899600	0.04649800	-0.50083500
С	-2.05560900	-1.82961300	-2.11982700
С	0.07293500	-1.07492100	-2.59145100
Ν	0.93774800	-0.26304100	-2.63802800
С	-3.09574400	-2.76408800	-2.62925200
С	-4.38358900	-2.28689000	-2.90168100
С	-2.78978700	-4.10578000	-2.90247700
С	-5.35446100	-3.13887300	-3.43129500
Н	-4.61534200	-1.24053700	-2.72756300
С	-3.76279100	-4.95647500	-3.41812800
Н	-1.78069300	-4.46105800	-2.71986000
С	-5.04931300	-4.47579300	-3.68295600
Н	-6.34630700	-2.75472500	-3.65050600
Н	-3.51863700	-5.99487800	-3.62336600
Н	-5.80555900	-5.14025000	-4.09065400
Ν	-0.81063600	-2.01575900	-2.62878300
Н	-2.41304100	-0.80674400	-1.96932600

U	1 05154600	2 05152000	0 50484200
11 S	1.93134000	-2.03133900	0.39484200
S C	-4.02027100	-2.70989800	1 77153200
C	-6 48493800	-0.67017100	1.20283900
C	-5 83914500	-2 03481100	3 13894000
C C	-7 36231/00	0.03546100	2 03275600
C C	-6.73633500	-1 30063200	2.03273000
C C	-0.75055500	-1.30003200	3.32071800
н	-7.95445300	0.83823400	1 59990800
н Ц	-6 83/20200	-1 5/1902200	1.57790000
n C	-3 198/19600	-1.63292200	0 529//700
C C	-2 03377600	-2 25915600	-0.08865300
н	-2.03869700	-3 34128000	-0 14868600
0	-3 22532700	-0.44183500	0.87279600
C	-0 72878200	-1 72226200	0.31625000
0	0.31052300	-2 38842800	0.21072200
0	-0.66509000	-0.46071600	0.74293000
Н	-1 60556400	-0 13102100	0.83500700
Н	2 29374800	-0 15640300	-1 37230100
C C	5 31410900	-2 02334900	3 65412000
н	5 67994400	-1 13007400	3 14924400
C	5 72682000	-2.28344500	4 89408100
H	5.37058600	-3.14934100	5.44762200
Н	6 43223600	-1.63590100	5.40467500
C	2.41447400	1.11723600	0.21158300
Č	1.35878900	2.03233100	0.09064700
C	2.87693600	1.70041700	1.47806100
C	1.75393500	2.73752600	1.35072500
0	3.75764900	1.40468700	2.27929300
0	1.35388200	3.68678200	1.99347000
Ν	0.41656700	2.10872600	-0.87364100
Н	0.50460600	1.39171000	-1.60230700
С	-0.79647400	2.80700000	-0.86948000
С	-1.72715100	2.46578100	-1.86123100
С	-1.11699800	3.79932200	0.07009900
С	-2.97717000	3.07827700	-1.88802000
Н	-1.47199400	1.71623300	-2.60357900
С	-2.36674400	4.41370600	0.00732900
Н	-0.40237200	4.08471400	0.83695500
С	-3.31226600	4.05932800	-0.95718700
Н	-4.28000200	4.54218800	-0.98618100
С	-3.98262600	2.60007200	-2.89885000
С	-2.72898900	5.44092500	1.05111400
F	-4.47547000	1.37529000	-2.55397500
F	-3.43902200	2.45663400	-4.12584900
F	-5.03851300	3.42861200	-3.01063100
F	-3.24982100	4.86073400	2.15597800
F	-1.65836900	6.15799900	1.44585300
F	-3.65662900	6.31235300	0.59104400

0	8.28551100	1.99444000	1.49212500
С	9.49507500	2.71301000	1.69291600
Н	9.54766400	3.60410600	1.05568400
Н	9.48612300	3.02163300	2.73880400
Н	10.37661500	2.08535700	1.51142200
С	-5.03393700	-3.13905600	3.78410300
Н	-5.23108100	-4.11225000	3.32306100
Н	-3.95852700	-2.95733900	3.68898100
Н	-5.27299100	-3.21388500	4.84807300
С	-6.37990300	-0.29143300	-0.25230700
Н	-5.41430300	0.17746400	-0.46337800
Н	-6.46675600	-1.16742100	-0.90189300
Н	-7.16495400	0.41872800	-0.52434700
С	-8.43456200	0.54242600	4.26622400
Н	-7.92510000	1.42079800	4.68158000
Н	-9.29912900	0.90588000	3.70287000
Н	-8.80153600	-0.04997800	5.10950000

TS-*S*

B3LYP/6-31G(d,p) free energy: -3787.56012352 (a.u.)

Number of imaginary frequencies: 1 (-267.9050)

M06-2X/6-311+G(d,p)/SMD(THF) single point energy: -3787.21522261 (a.u.)

С	-5.15142000	-2.27623500	1.64322100
С	-5.84502600	-2.32262500	2.90319900
Ν	-5.21764900	-2.26782900	4.11232400
С	-3.90642400	-2.15570400	4.11332400
С	-3.11957500	-2.12412400	2.93794100
С	-3.72079500	-2.19887400	1.69792700
С	-2.85520900	-2.18705200	0.43622200
С	-1.99740900	-3.47921500	0.41142100
С	-5.91120400	-2.30361300	0.44838200
С	-7.25851600	-2.42271400	2.90236400
Η	-3.41976100	-2.09342100	5.08509200
Η	-2.04207200	-2.01973300	3.03504700
Н	-3.49773600	-2.21295200	-0.44103400
С	-2.85866000	-4.72594600	0.06255200
Ν	-0.85479700	-3.41505200	-0.58441200
Η	-1.49759100	-3.59804800	1.37549900
С	-1.33980800	-3.36740100	-2.00888300
С	-2.03674000	-4.71424400	-2.36210700
С	-2.17182300	-5.54260200	-1.04857400
С	0.05180500	-4.61037500	-0.38982600
С	-0.75620800	-5.91264200	-0.57286000
Н	-3.85779900	-4.41712100	-0.25684900
Н	-2.99382800	-5.34560900	0.95340000
Н	-2.02504500	-2.52473500	-2.10749700
Н	-0.46522400	-3.16924300	-2.63177200
Н	-1.38072600	-5.28988600	-3.02612600
Н	-2.75242000	-6.44515700	-1.25674400
Н	0.49157300	-4.50273800	0.60126000
Н	0.85412700	-4.49615200	-1.12132900
Н	-0.26215600	-6.56275800	-1.30101500
С	-7.29345500	-2.39558600	0.48662600
С	-7.97552200	-2.46333000	1.72947300
Н	-5.45216300	-2.20668100	-0.52910400
Н	-7.75441000	-2.45981100	3.86641000
Н	-9.05579700	-2.53614600	1.76251700
Н	-0.80823000	-6.46558200	0.37026300
N	-2.07599800	-0.94783800	0.31182900
C	3.00622700	0.40270300	1.65878000
C	0.71431900	0.52545100	2.21861500
N	-0.45894500	0.68098300	2.10823100
N	1.95310400	0.34306700	2.51191300
H	-0.24707000	-2.59303600	-0.33191200
S	6.00038100	-1.81785700	1.56705600
C	7.46754300	-1.79573600	0.52838100
C	8.36809000	-0.71718800	0.65162400

С	7.74876400	-2.88339900	-0.32449000
С	9.54379600	-0.74483600	-0.10471300
С	8.93578100	-2.85499200	-1.06334700
С	9.84353300	-1.79744300	-0.97286500
Н	10.24254600	0.08307200	-0.01207700
Н	9.15718500	-3.68967300	-1.72423500
С	4.65055000	-1.55190100	0.39704800
С	3.33660900	-1.48240000	1.02473500
H	3.25694800	-1.90705600	2.01936300
0	4.84921800	-1.41585000	-0.816/3300
C	2.17/4/100	-1.79278100	0.18163900
0	1.06/51500	-2.05882000	0.66499400
0	2.31433100	-1.73855700	-1.14628300
Н	3.27341900	-1.53201100	-1.33936300
Н	-1.53673800	-0.59787300	1.11731800
С	-3.34061300	-4.49010900	-3.08844900
Η	-4.00316600	-3.72553400	-2.68657700
С	-3.69821900	-5.15232300	-4.18831300
Η	-4.64930700	-4.96672700	-4.67685800
Η	-3.05278000	-5.89932100	-4.64557600
С	-2.52646200	-0.00713100	-0.55224400
С	-2.37874100	1.38803500	-0.68262900
Ν	-1.73186000	2.25949900	0.11239900
Н	-1.27602300	1.82747700	0.93644100
С	-3.34007600	-0.11214500	-1.76845500
С	-3.20078200	1.39872200	-1.94122000
0	-3.87119500	-1.04486300	-2.36593100
0	-3.57644800	2.22749600	-2.74462800
C	-1 58059000	3 64822900	-0.01390400
C	-2 11893000	4 39611700	-1.06995200
C C	-0.84970600	4 29570600	0.99626600
C C	-1.91568100	5 77678900	-1 09735800
с н	-2 70002100	3.91447800	-1.85080/00
n C	-0.66250300	5.67267600	0.04502800
с ц	-0.00230300	3 71020200	1 81035100
II C	-0.44145500 1 10240100	5.71929200 6.42018000	0.10075000
	-1.19240100	7 50280000	-0.10075000
п	-1.03847700	7.30289000	-0.12913900
C C	0.10734900	0.55509900	2.00298700
C F	-2.44929000	6.56576200	-2.26638600
F F	-0.28388400	/.60044/00	2.26395000
F	1.45838400	6.47780900	1.61621700
F	0.16801400	5.66827000	3.16634300
F	-2.61903500	7.87109100	-1.95590200
F	-1.60065100	6.51967400	-3.32033400
F	-3.63634300	6.09213400	-2.69523300
С	8.10825300	0.45633900	1.56643200
Н	7.18443600	0.97556100	1.29265900
Η	7.99942600	0.14667400	2.61069100
Η	8.92964700	1.17497400	1.51100000
С	6.81801900	-4.06175500	-0.46852500

Н	7.28694700	-4.85275700	-1.05920200
Н	6.54082300	-4.47746600	0.50525100
Н	5.89364500	-3.76306200	-0.97285900
С	11.10298800	-1.78207800	-1.80508400
Н	10.93108100	-1.28624500	-2.76855700
Н	11.90978600	-1.24167200	-1.30139900
Н	11.45374000	-2.79578100	-2.01970500
0	-7.92202700	-2.41372200	-0.72098000
С	-9.34256400	-2.42798700	-0.75832400
Н	-9.77010500	-1.55137300	-0.25664300
Н	-9.61135300	-2.40147200	-1.81485500
Н	-9.75263500	-3.33988000	-0.30634800
С	3.04797600	1.26593800	0.43567900
С	4.23389500	1.96300500	0.16019200
С	1.95496900	1.43223900	-0.43029700
С	4.32792700	2.81183100	-0.94125200
Н	5.08245500	1.85273200	0.82962000
С	2.04975000	2.27970600	-1.53244900
Н	1.02976500	0.90064500	-0.24497400
С	3.23397600	2.97288300	-1.79143900
Η	5.25239800	3.34861100	-1.13175100
Η	1.19436800	2.40153800	-2.19007000
Η	3.30105200	3.63539000	-2.64912800
Η	3.95348400	0.42144800	2.19699600

Figure S3. Energy diagram for intermediates and transition states by Gaussian 16 B3LYP/6-31G(d,p)

References

- 1. A. Aumuller, S. Hunig, Angew. Chem. Int. Ed. Engl. 1984, 23, 447-448.
- 2. T. Imamoto, M. Kodera, M. Yokoyama, Bull. Chem. Soc. Jpn. 1982, 55, 2303-2304.

¹H, ¹³C and ¹⁹F NMR

-80 -90 f1 (ppm) 10 ó -10 -20 -70 -100 -110 -180 -30 -40 -50 -60 -120 -130 -140 -150 -160 -170

S43

 T		· · · ·		· · · ·		· · · ·								· · · ·	· · · ·	· · · · ·		· · · ·	· · · ·	· · ·	
 20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
		-								f1 (r	nm)										

HPLC analysis

(R)-S-Phenyl 3-phenyl-3-(cyanoamino)propanethioate (4aa)

racemic-4aa

(*R*)-4aa

racemic-4aa

Peak	tR (min)	Area (%)
1	19.9	49.8
2	22.6	50.2

Peak	tR (min)	Area (%)
1	20.4	90.1
2	23.3	9.9

(S)-S-Phenyl 3-phenyl-3-(tosylamino)propanethioate (4ba)

racemic-4ba

(S)-**4ba**

(R)-**4ba**

Peak	tR (min)	Area (%)
1	21.0	50.0
2	23.5	50.0

Peak	tR (min)	Area (%)
1	21.7	27.5
2	24.3	72.5

(R)-S-(4-Bromophenyl) 3-phenyl-3-(cyanoamino)propanethioate (4ab)

racemic-4ab

racemic-4ab

(*R*)-4ab

Peak	tR (min)	Area (%)
1	32.4	50.1
2	37.0	49.9

Peak	tR (min)	Area (%)
1	34.3	88.2
2	39.3	11.8

(R)-S-(2,4,6-Trimethylphenyl) 3-phenyl-3-(cyanoamino)propanethioate (4ac)

racemic-4ac

(*R*)-4ac

racemic-4ac

(*R*)-4ac

Peak	tR (min)	Area (%)
1	18.6	50.0
2	21.3	50.0

Peak	tR (min)	Area (%)
1	18.2	97.5
2	20.0	2.5

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-fluorophenyl)-3-(cyanoamino)propanethioate (5)

racemic-5

(*R*)-**5**

racemic-5

(*R*)-5

Peak	tR (min)	Area (%)
1	13.8	49.9
2	16.4	50.1

Peak	tR (min)	Area (%)
1	14.7	97.4
2	17.6	2.6

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-chlorophenyl)-3-(cyanoamino)propanethioate (6)

racemic-6

(*R*)-6

racemic-6

(*R*)-6

Peak	tR (min)	Area (%)
1	14.7	50.0
2	17.6	50.0

1	Deals	$\Delta \mathbf{D}$ (main)	Λ map $(0/)$
	Реак	tR (min)	Area (%)
	1	14 4	97.0
	-	1	71.0
	-	17.4	2.0
	2	17.4	3.0

(R)-S-(2,4,6-Trimethylphenyl) 3-(3-chlorophenyl)-3-(cyanoamino)propanethioate (7)

racemic-7

(*R*)-7

racemic-7

(*R*)-7

Peak	tR (min)	Area (%)
1	18.9	50.1
2	21.2	49.9

Peak	tR (min)	Area (%)
1	18.2	94.2
2	20.6	5.8
(R)-S-(2,4,6-Trimethylphenyl) 3-(2-chlorophenyl)-3-(cyanoamino)propanethioate (8)

racemic-8

racemic-8

Peak	Peak tR (min) Area	
1	18.9	49.9
2	20.9	50.1
2	20.7	50.1

Peak	tR (min)	Area (%)
1	18.6	2.4
2	20.5	97.6

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-bromophenyl)-3-(cyanoamino)propanethioate (9)

racemic-9

(*R*)-9

racemic-9

Peak	tR (min)	Area (%)
1	15.4	50.0
2	18.6	50.0

Peak	tR (min)	Area (%)
1	15.2	96.6
2	18.5	3.4

(*R*)-*S*-(2,4,6-Trimethylphenyl) 3-(4-trifluoromethylphenyl)-3-(cyanoamino)propanethioate (10)

racemic-10

racemic-10

ſ	Peak tR (min) Are		Area (%)
	1	26.1	49.9
	2	36.7	50.1

Peak	tR (min)	Area (%)
1	28.8	96.3
2	36.2	3.7

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-methylphenyl)-3-(cyanoamino)propanethioate (11)

racemic-11

racemic-11

(*R*)-11

Peak	Peak tR (min) Area (%	
1	21.5	49.9
2	24.4	50.1

Peak	tR (min)	Area (%)
1	22.3	96.1
2	25.6	3.9

(R)-S-(2,4,6-Trimethylphenyl) 3-(4-methoxyphenyl)-3-(cyanoamino)propanethioate (12)

racemic-12

racemic-12

(*R*)-12

Peak	tR (min)	Area (%)	Peak	tR (min)	Area (%)
1	28.4	49.9	1	31.1	94.0
2	31.7	50.1	2	35.1	6.0

(R)-S-(2,4,6-Trimethylphenyl) 3-(2-naphthyl)-3-(cyanoamino)propanethioate (13)

racemic-13

(*R*)-13

racemic-13

Peak	tR (min)	Area (%)	Peak	tR (min)	Area (%)
1	26.2	50.0	1	26.7	94.9
-		2010	-	2011	,,
2	29.9	50.0	2	30.9	5.1

(R)-S-(2,4,6-Trimethylphenyl) 3-(2-furyl)-3-(cyanoamino)propanethioate (14)

racemic-14

racemic-14

(*R*)-14

Peak	tR (min)	Area (%)
1	27.3	49.9
2	32.9	50.1

Peak	tR (min)	Area (%)
1	32.2	6.5
2	38.4	93.5

(*R*)-*S*-(2,4,6-Trimethylphenyl) 3-(2-thienyl)-3-(cyanoamino)propanethioate (15)

racemic-15

(*R*)-15

racemic-15

Peak	tR (min)	Area (%)
1	34.6	50.1
2	37.5	49.9

Peak	tR (min)	Area (%)
1	35.6	7.0
2	38.2	93.0

(*R*)-2-(2,4,6-Trimethylphenyl)thio-4-oxo-6-phenyl-5,6-dihydropyrimidone (16)

racemic-16

39.0 39.5 40.0 40.5 41.0 41.5 42.0 44.0 44.5 45.0 45.5 48.0 32.0 32.5 33.0 33.5 340 37.0 37.5 38.0 42.5 43.0 43.5 48.5 47.0 47.5 49.0 49.5 ais 34.5 35.5 38.0 38.5 38.5 min

(*R*)-16

racemic-16

Peak	tR (min)	Area (%)
1	33.8	49.9
2	41.9	50.1

Peak	tR (min)	Area (%)
1	36.8	97.6
2	45.8	92.4

(R)-Methyl 3-phenyl-3-(cyanoamino)propanoate (17)

racemic-17

racemic-17

Peak tR (min) Area		Area (%)
1	8.6	50.1
2	11.1	49.9

Peak	tR (min)	Area (%)
1	8.6	3.4
2	11.1	96.6

(*R*)-2-(2,4,6-Trimethylphenyl)thio-3-phenyl-3-(2*H*-tetrazole-5-amino)propanoate (18)

racemic-18

Peak	tR (min)	Area (%)	Peak	tR (min)	Area (%)
1	16.5	49.9	1	16.2	2.3
2	19.4	50.1	2	18.8	97.7