Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Manipulating the organic-inorganic interface of atomically precise Au₃₆(SR)₂₄ catalysts for CO oxidation

Experimental section

Synthesis of Au₃₆₋₁(DMBT)₂₄ and Au₃₆₋₁₁(DMBT)₂₄:^{S1} 2 mL H₂O solution containing 196 mg HAuCl₄ was subsequently added to a solution of 310 mg tetraoctylammonium bromide (TOAB) in 30 mL CH₂Cl₂ under stirring. After the water phase and the organic phase separated, the water layer was removed. Then, 220 μ L 3,5-dimethylbenzenethiol (DMBT) was added to the above mixture and the stirring was continued for 2~3 h until the color of the solution changed from deep red to colorless. After that, an ice water solution of NaBH₄ (100 mg in 5 mL) was added at once, and the reaction was allowed for ~8 h. The crude products were evaporated and washed by CH₃OH. The obtained black solid was extracted with CH₂Cl₂ and evaporated. Then, the precursor was dissolved in the mixture of 1 mL toluene and 0.8 mL 3,5-dimethylbenzenethiol in a 10 mL vial, and the vial was stirred at room temperature for 36 h. The obtained products were further separated by thin-layer chromatography. Au₃₆₋₁(DMBT)₂₄ and Au₃₆₋₁(DMBT)₂₄ were both crystallized in toluene/acetonitrile solution for two weeks.

Synthesis of Au₃₆₋₁(TBBT)₂₄:^{S2} 15 mL CH₂Cl₂ was added to a 50 mL round-bottomed flask charged with 154 mg TOAB, and followed by addition of 1 mL water solution containing 98 mg of HAuCl₄·4H₂O. After 30 min, the water phase was removed, and 110 μ L 4-tert-butylthiophenol was added dropwise. After the color of the mixed solution changed to clear, a freshly cold water solution of NaBH₄ (54 mg in 3 mL) was added to the solution and the reaction was allowed for 6~8 h. The obtained solution was evaporated and washed several times with CH₃OH. Then, the precursor was dissolved

in 3 mL toluene and was divided into three vials, and 100 μ L 4-tert-butylthiophenol was added in the three vials respectively. The three vials were etched at 80 °C for 12 h, and then the crude product was washed with excess CH₃OH for three times and extracted with CH₂Cl₂. The extracted products were evaporated and then separated using thin-layer chromatography. The single crystal of the Au₃₆₋₁(TBBT)₂₄ cluster was obtained in dichloromethane/ethanol solution for one week.

Synthesis of Au_{36-I}(CPT)₂₄:^{S3} The synthesis for Au_{36-I}(CPT)₂₄ was almost same as that for Au_{36-I}(TBBT)₂₄, except that 110 μ L 4-tert-butylthiophenol was used instead of 100 μ L cyclopentanethiol. The single crystal of the Au_{36-I}(CPT)₂₄ cluster was obtained in dichloromethane/pentane solution for 10 days.

Synthesis of CeO₂: A prepared solution of Ce $(NO_3)_3$ $^{\circ}6H_2O$ (4.34 g in 20 mL H₂O) was added in a 250 mL flask under oil bath of 65 °C, followed by 30 mL H₂O solution containing 1.41 g Na₂CO₃ and 1.86 g NaOH was dropwise added. The reaction was kept for 24 h. The crude product was washed by excess water for several times. Finally, the obtained product was dried at 65 °C for 12 h.

Synthesis of Au₃₆(SR)₂₄/CeO₂: 2 mg Au₃₆(SR)₂₄ clusters were dissolved with 1 mL CH_2Cl_2 in a 10 mL vial, and 100 mg CeO₂ was added and stirred for 10 h. Finally, the solution was dried under N₂ atmosphere.

Characterizations

UV-1800 spectrophotometer (Shimadzu, Japan) was used to record the UV-vis absorption spectra of catalysts. Diffuse reflectance UV-vis spectra with a range of 200-800 nm were obtained using SHIMADZU UV-3600. Thermal gravimetric analyse (TGA) was carried out by a NETZSCH Instruments (TGA STA-449C) in nitrogen atmosphere. The data of TGA were collected from 25 to 800 °C and the heating rate was 10 °C/min. The transmission electron micrographs (JEM 2800 microscope) operated at 100 kV were carried out to analyze the dispersion of catalysts before and after reactions. X-ray diffractometer characterization was carried out with Rigarku Mini Flex 600 using Cu K α target as the radiation source. The tube voltage was of 50 kV and the Bragg angle 2 θ scanning range was 5°~90° with a scanning speed of 10°/min. Thermo Scientific K-Alpha with an excitation source of Al K α was used to perform X-

ray photoelectron spectroscopy (XPS) which can detect the binding energies of the surface species of catalysts. The detection of catalysts of Fourier-transformed infrared spectroscopy was depended on an FT-IR 660 Plus spectrometer (Jasco Co.) equipped with a MCT detector cooling by liquid nitrogen and a cell (Praying Mantis, Harrick). The KBr blank sample was purged with Ar at 150 °C for 2 h to remove impurities and water. Catalyst dissolved in DCM was dropped on KBr disk, and then disk was treated under O₂ atmosphere at different temperatures for 1 h. FT-IR spectra were collected continuously. For CO infrared adsorption, CeO₂-supported catalyst was dropped into a handled disk and CO was continuously purged for 30 min. Subsequently, CO desorption was performed by argon purging and the FT-IR spectra were obtained.

Catalytic tests

The CO oxidation activity was evaluated in a fixed bed quartz tubular reactor in at atmospheric pressure. The catalysts were processed to 30-60 mesh. The quartz wool was placed in the bottom of one side of the U-shaped tube with a diameter of 4 mm followed which 100 mg catalyst was loaded on the quartz wool. Before the reaction of CO oxidation, the catalysts were pretreated in O₂ atmosphere with 30 cm³/min flow rate at different temperatures for 1 h. When the feed temperature dropped to room temperature, the reactant gas of 1.0 % CO, 7.8 % O₂ and 91.2 % Ar was introduced into fixed bed reactor with a space velocity of 12000 cm³/h/g_{cat}. Gas chromatograph (GC 9860) equipped with TCD detector, Plot Q and TDX-1 columns was used to analyze the CO conversion.

Fig. S1 The core structures of (a) $Au_{36-I}(DMBT)_{24}$ and (b) $Au_{36-II}(DMBT)_{24}$ shown in tetrahedral Au_4 networks.

Fig. S2 UV-vis spectra of the Au_{36-I}(CPT)₂₄, Au_{36-I}(TBBT)₂₄, Au_{36-I}(DMBT)₂₄ and Au_{36-II}(DMBT)₂₄ nanoclusters.

Fig. S3 Catalytic performances of CO oxidation on CeO₂.

Fig. S4 TGA data of the fresh $Au_{36}(SR)_{24}$ nanoclusters.

Fig. S5 (a) Diffuse reflectance UV-vis spectra of the $Au_{36}(SR)_{24}/CeO_2$ catalysts before reactions. (b) Diffuse reflectance UV-vis spectra of the $Au_{36}(SR)_{24}/CeO_2$ catalysts after reactions (note that the cluster catalysts were related to the pretreated cases at 150 °C).

Fig. S6 (a) XRD patterns of the $Au_{36}(SR)_{24}/CeO_2$ catalysts before reactions. (b) XRD patterns of the $Au_{36}(SR)_{24}/CeO_2$ catalysts after reactions (note that the cluster catalysts were related to the pretreated cases at 150 °C).

Fig. S7 TEM images of the Au₃₆(SR)₂₄/CeO₂ catalysts before reactions: (a) Au₃₆₋₁(CPT)₂₄/CeO₂, (b) Au₃₆₋₁(TBBT)₂₄/CeO₂, (c) Au₃₆₋₁(DMBT)₂₄/CeO₂ and (d) Au₃₆₋₁(DMBT)₂₄/CeO₂. TEM images of the Au₃₆(SR)₂₄/CeO₂ catalysts after reactions (note that the catalysts were related to the pretreated cases at 150 °C): (e) Au₃₆₋₁(CPT)₂₄/CeO₂, (f) Au₃₆₋₁(TBBT)₂₄/CeO₂, (g) Au₃₆₋₁(DMBT)₂₄/CeO₂ and (h) Au₃₆₋₁₁(DMBT)₂₄/CeO₂.

Supporting references

S1. X. Liu, W. Xu, X. Huang, E. Wang, X. Cai, Y. Zhao, J. Li, M. Xiao, C. Zhang, Y. Gao, W. Ding and Y. Zhu, *Nat. Commun.*, 2020, **11**, 3349.

S2. C. Zeng, H. Qian, T. Li, G. Li, N. L. Rosi, B. Yoon, R. N. Barnett, R. L. Whetten,

U. Landman and R. Jin, Angew. Chem. Int. Ed., 2012, 51, 13114-13118.

S3. A. Das, C. Liu, C. Zeng, G. Li, T. Li, N. L. Rosi and R. Jin, *J. Phys. Chem. A*, 2014, **118**, 8264-8269.