Electronic Supplementary Information

Planar pentacoordinate carbon in a sulphur-surrounded boron

wheel: The global minimum of $CB_5S_5^+$

Rui Sun,^{a,b} Bo Jin,^a Bin Huo,^a Caixia Yuan,^a Hua-Jin Zhai^{*, b} and Yan-Bo Wu^{*, a}

- a Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, People's Republic of China.
- b Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, People's Republic of China.

*To whom correspondence should be addressed.

E-mail: wyb@sxu.edu.cn and hj.zhai@sxu.edu.cn

Contents

mputational methods1

Computational methods

The CB₅S₅⁺ cluster and its concerned isomers were optimized at both B3LYP/aug-cc-pVTZ and B2PLYP-D3(BJ)/aug-cc-pVTZ levels, which gave almost identical structures and similar vibrational frequencies, so B2PLYP-D3(BJ) results geometries were reported in the text and used for energy improvement at the CCSD(T)/aug-cc-pVTZ level, while the B3LYP functional was used in various electronic structure analyses. The potential energy surface (PES) of $CB_5S_5^+$ was explored using the stochastic search algorithm.¹ Randomly generated initial structures were first optimized at the B3LYP/6-31G(d) level. Then ten lowest isomers were re-optimized and vibrational frequencies analyzed at B2PLYP-D3(BJ)/aug-cc-pVTZ. The energies of six lowest isomers were refined by single-point CCSD(T)/aug-cc-pVTZ calculations. The relative stabilities of isomers were determined by CCSD(T)/aug-cc-pVTZ energies with zero-point energy (ZPE) corrections at B2PLYP-D3(BJ)/aug-cc-pVTZ. Born-Oppenheimer molecular dynamic (BOMD) simulations were carried out to assess dynamic stability at the PBE/DZVP level, using the CP2K package.² Vertical detachment energies (VDEs) and vertical electron affinities (VEAs) were calculated using the outer valence Green's function (OVGF) procedure³ at the OVGF/aug-cc-pVTZ level. Adaptive nature density partitioning (AdNDP)⁴ analyses were performed at B3LYP/6-31G(d). Natural bond orbital (NBO)⁵ and Nucleus independent chemical shifts (NICS)⁶ analyses were performed at B3LYP/aug-cc-pVTZ level. The stochastic search algorithm was realized using the GXYZ 2.0 program,⁷ AdNDP analysis was done using the AdNDP program,⁸ and cross sections of NICS (CS-NICS) were generated with the Multiwfn 3.8 code.⁹ The CCSD(T) calculations were carried out using the MolPro 2012.1 package,¹⁰ NBO analyses were performed using NBO 3.1¹¹ and all other calculations were performed using the Gaussian 16 package.¹²

Reference

- (a) M. Saunders, J. Comput. Chem., 2004, 25, 621-626; (b) P. P. Bera, K. W. Sattelmeyer, M. Saunders, H.
 F. Schaefer and P. v. R. Schleyer, J. Phys. Chem. A., 2006, 110, 4287-4290.
- 2 (a) The BOMD simulations were performed at the PBE^{2b}/DZVP^{2c} level using CP2K package^{2d}; (b) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868; (c) J. VandeVondele and J. Hutter, *J. Chem. Phys.*, 2007, **127**, 114105; (d) T. D. Kühne and J. Hutter, *J. Chem. Phys.*, 2020, **152**, 194103.
- 3 J. V. Ortiz, V. G. Zakrzewski and O. Dolgounircheva, Conceptual Perspectives in Quantum Chemistry, Kluwer Academic, 1997.
- 4 D. Y. Zubarev and A. I. Boldyrev, *Phys. Chem. Chem. Phys.*, 2008, **10**, 5207–5217.
- 5 A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899-926.
- 6 (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. J. Jiao and N. Hommes, *J. Am. Chem. Soc.*, 1996, 118, 6317-6318; (b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Chem. Rev.*, 2005, 105, 3842-3888.
- 7 (a) Y.-B. Wu, H.-G. Lu, S.-D. Li and Z.-X. Wang, *J. Phys. Chem. A*, 2009, **113**, 3395–3402; (b) H.-G. Lu, Y.-B.
 Wu, in GXYZ 2.0, Shanxi University, Taiyuan, 2015.
- 8 The AdNDP program was downloaded freely at http://ion.chem.usu.edu/~boldyrev/adndp.php.
- 9 T. Lu, F. W. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 10 H.-J. Werner, et al. in MolPro 2012.1, University College Cardiff Consultants Limited, Cardiff U.K., 2012.
- 11 E. D. Glendening, A. E. Reed, J. E. Carpenter and F.Weinhold, NBO Version 3.1., 1990.
- 12 Frisch, M. J., et al. Gaussian 16 Rev. A.03, Wallingford, CT, 2016

Cartesian Coordinates for the structures shown in Fig. 1.

B3LYP/aug-cc-pVTZ-optimized structures for structures shown in Fig. 1.	
--	--

0			
С	0.00000000	0.00000000	0.58333900
В	0.00000000	1.54169200	0.09425400
В	1.46623700	0.47640900	0.09425400
В	-1.46623700	0.47640900	0.09425400
В	0.90618400	-1.24725500	0.09425400
В	-0.90618400	-1.24725500	0.09425400
0	-1.32841700	1.82841000	-0.14640900
0	-2.14942400	-0.69839000	-0.14640900
0	1.32841700	1.82841000	-0.14640900
0	2.14942400	-0.69839000	-0.14640900
0	0.00000000	-2.26003900	-0.14640900
1a			
С	0.00000000	0.00000000	0.00000000
В	0.00000000	1.64814400	0.00000000
В	1.56747800	0.50930500	0.00000000
В	-1.56747800	0.50930500	0.00000000
В	0.96875500	-1.33337700	0.00000000
В	-0.96875500	-1.33337700	0.00000000
S	-1.66959500	2.29800000	0.00000000
S	-2.70146100	-0.87775800	0.00000000
S	1.66959500	2.29800000	0.00000000
S	2.70146100	-0.87775800	0.00000000
S	0.00000000	-2.84048400	0.00000000
1b			
В	-0.05342000	0.39896400	1.83152200
В	0.13742800	-1.20120100	1.15211100
В	-0.05342000	0.39896400	-1.83152200
В	0.13742800	-1.20120100	-1.15211100
S	-0.05342000	-0.96250100	2.93621700
S	0.17733200	-2.60602500	0.00000000
S	-0.09582900	2.21003800	1.63254700
S	-0.09582900	2.21003800	-1.63254700
S	-0.05342000	-0.96250100	-2.93621700
С	0.04868000	1.54950100	0.00000000
В	0.16130100	0.10011800	0.00000000

1c			
С	0.00000000	0.00000000	0.16595100
В	0.00000000	1.36453900	-0.44543100
В	0.00000000	0.00000000	-2.50646700
В	0.00000000	0.93651600	1.49512900
В	0.00000000	-1.36453900	-0.44543100
В	0.00000000	-0.93651600	1.49512900
S	0.00000000	2.63814100	0.85659300
S	0.00000000	0.00000000	3.02564100
S	0.00000000	1.69224100	-2.33692500
S	0.00000000	-1.69224100	-2.33692500
S	0.00000000	-2.63814100	0.85659300
1d			
С	0.00000000	0.00000000	0.36714300
В	0.00000000	1.43427800	-0.42497500
В	0.00000000	0.00000000	1.89649000
В	0.00000000	-1.43427800	-0.42497500
В	-1.43427800	0.00000000	-0.42497500
В	1.43427800	0.00000000	-0.42497500
S	0.0000000	0.0000000	3.49286200

-1.72022100

1.72022100

-1.72022100

1.72022100

-0.92299400

-0.92299400

-0.92299400

-0.92299400

S

S

S

S

1.72022100

-1.72022100

-1.72022100

1.72022100

B2PLYP-D3(BJ)/aug-cc-pVTZ-optimized structures for structures shown in Fig. 1.

0			
С	0.00000000	0.00000000	0.59688400
В	0.00000000	1.53996400	0.09617100
В	1.46459300	0.47587500	0.09617100
В	-1.46459300	0.47587500	0.09617100
В	0.90516800	-1.24585700	0.09617100
В	-0.90516800	-1.24585700	0.09617100
0	-1.32873500	1.82884700	-0.14963900
0	-2.14993900	-0.69855800	-0.14963900
0	1.32873500	1.82884700	-0.14963900
0	2.14993900	-0.69855800	-0.14963900
0	0.00000000	-2.26058000	-0.14963900
1a			
С	0.00000000	0.00000000	0.00000000
В	0.00000000	1.64428700	0.00000000
В	1.56381000	0.50811300	0.00000000
В	-1.56381000	0.50811300	0.00000000
В	0.96648800	-1.33025600	0.00000000
В	-0.96648800	-1.33025600	0.00000000
S	-1.66734700	2.29490600	0.00000000
S	-2.69782400	-0.87657600	0.00000000
S	1.66734700	2.29490600	0.00000000
S	2.69782400	-0.87657600	0.00000000
S	0.00000000	-2.83666000	0.00000000
1b			
В	-0.08805800	0.40207600	1.80630000
В	0.25776700	-1.18950000	1.13716000
В	-0.08805800	0.40207600	-1.80630000
В	0.25776700	-1.18950000	-1.13716000
S	-0.08805800	-0.96896800	2.90060900
S	0.36309500	-2.5987470	0 0.0000000
S	-0.20326200	2.20274900	1.62771800
S	-0.20326200	2.20274900	-1.62771800
S	-0.08805800	-0.96896800	-2.90060900
С	0.06049100	1.56252400	0.00000000
В	0.29053200	0.11960600	0.00000000

1c			
С	0.00000000	0.00000000	0.15889400
В	0.00000000	1.36650400	-0.44879000
В	0.00000000	0.00000000	-2.47948800
В	0.00000000	0.93590400	1.48909400
В	0.00000000	-1.36650400	-0.44879000
В	0.00000000	-0.93590400	1.48909400
S	0.00000000	2.63613600	0.85347800
S	0.00000000	0.00000000	3.01785800
S	0.00000000	1.69531900	-2.32987400
S	0.00000000	-1.69531900	-2.32987400
S	0.00000000	-2.63613600	0.85347800
1d			
С	0.00000000	0.00000000	0.36930500
В	0.00000000	1.42938400	-0.42315300
В	0.00000000	0.00000000	1.89530100
В	0.00000000	-1.42938400	-0.42315300
В	-1.42938400	0.00000000	-0.42315300
В	1.42938400	0.00000000	-0.42315300
S	0.00000000	0.00000000	3.49471700
S	1.71670100	-1.71670100	-0.92413700
S	-1.71670100	1.71670100	-0.92413700
S	-1.71670100	-1.71670100	-0.92413700
S	1.71670100	1.71670100	-0.92413700