# Supplementary Information 

## Cubic $\mathrm{ZnP}_{2}$ nanowire growth catalysed by bismuth

Seung Hwan Oh and Yong Kim*

Department of Physics, Dong-A University, Hadan-2-dong, Sahagu, Busan 49315, Korea

## Corresponding Author

*E-mail: yongkim@dau.ac.kr


Fig. $\mathbf{S 1}$ (a) Infinite phosphorus chains which run along $a$ and $b$ axis found in tetragonal $\alpha-\mathrm{ZnP}_{2}$. (b) Open pentagonal phosphorus chains which run along $c$-axis in monoclinic $\beta-\mathrm{ZnP}_{2}$. Atomic structures are simulated by VESTA $3 .{ }^{1}$


Fig. S2 X-ray diffraction spectrum of as-grown $\mathrm{ZnP}_{2}$ nanowire sample grown at 600 Torr with extra phosphorus vapour. Simulated $x$-ray diffraction spectra of $\alpha-Z n P_{2}$ tetragonal, $\beta-Z_{n P_{2}}$
monoclinic, and $\alpha-\mathrm{Zn}_{3} \mathrm{P}_{2}$ tetragonal structures for comparison. X-ray diffraction spectra are simulated by VESTA $3 .{ }^{1}$ Closed circles are exceptional reflections which do not match to the simulated spectra of $\alpha-Z n_{3} P_{2}$ tetragonal structure.


Fig. S3 (a) TEM image of a $\gamma-\mathrm{ZnP}_{2}$ nanowire (diameter $=160 \mathrm{~nm}$ ) grown at 100 Torr with extra phosphorus vapour. The nanowire was chosen in the same TEM grid as in Figure 4. Solid stars represent the positions subjected to EDX analysis. (b) High-resolution TEM image and power spectrum of a lattice image with Miller index assignments. Zone axis was [110]. (c) EDX profile of the catalyst with $[\mathrm{Bi}]=87.1$ atomic \%. (d) EDX profile of the nanowire with $[\mathrm{Zn}] /[P]=0.47$. (e) HAADF STEM image and EDX elemental mapping of the nanowire for bismuth, zinc, and phosphorus.


Fig. S4 (a) TEM image of a $\gamma-\mathrm{ZnP}_{2}$ nanowire (diameter $=95 \mathrm{~nm}$ ) grown at 100 Torr with extra phosphorus vapour. The nanowire was chosen in the same TEM grid as in Figure 4. Solid stars represent the positions subjected to EDS analysis. (b) High-resolution TEM image and power spectrum of a lattice image with Miller index assignments. Zone axis was [211]. (c) EDX profile of the catalyst at $[\mathrm{Bi}]=80.9$ atomic \%. (d) EDX profile of the nanowire with $\mathrm{Zn} / \mathrm{P}=0.51$. (e) HAADF STEM image and EDX elemental mapping of the nanowire for bismuth, zinc, and phosphorus.


Fig. S5 (a) TEM image of a $\gamma-\mathrm{ZnP}_{2}$ nanowire (diameter $=130 \mathrm{~nm}$ ) grown at 600 Torr with extra phosphorus vapour. Solid stars represent the positions subjected to EDX analysis. (b) HAADF STEM image and EDX elemental mapping of the nanowire for bismuth, zinc, and phosphorus. (c) EDX profile of the catalyst at the position with $[\mathrm{Bi}]=77.8$ atomic\%. (d) EDX profile of the nanowire
at $[\mathrm{Zn}] /[\mathrm{P}]=0.50$. (e) High-resolution TEM image. (f) SAED pattern with Miller index assignments. Zone axis was [110]. (g) High-resolution TEM image after rotating on an axis of the nanowire by $30^{\circ}$. (h) SAED pattern with Miller index assignments. Zone axis was [211].


Fig. S6 (a) TEM image of a $\gamma-\mathrm{ZnP}_{2}$ nanowire with exceptionally large diameter ( $=448 \mathrm{~nm}$ ) grown at 600 Torr with extra phosphorus vapour. (b) EDX profile of the nanowire. Note that $[\mathrm{Zn}] /[\mathrm{P}]=$ 0.54 . (e) Selective area electron diffraction pattern showing cubic $\gamma-\mathrm{ZnP}_{2}$ phase. Zone axis was [211].


Fig. $\mathbf{S 7}$ (a) FESEM image of a $\mathrm{Zn}_{3} \mathrm{P}_{2}$ nanowire catalysed by gold grown at 100 Torr with extra phosphorus vapour. (b) TEM image of the defective nanowire (c) High-resolution TEM image. (d) Power spectrum with Miller index assignments. Zone axis was [212]. Note that twining reflections are denoted by subscript $T$. (d) EDX profile of the nanowire. Note that $[\mathrm{Zn}] /[\mathrm{P}]=1.2$.


Fig. S8 Schematic nucleation models for $\mathrm{Zn}_{3} \mathrm{P}_{2} / \mathrm{ZnP}_{2}$ nanowires in molten bismuth catalyst. Two possible nucleation events at centre and triple phase boundary are depicted. $\beta$ is the contact angle and $\theta$ is the contact angle when catalyst forms at the side wall. $\gamma_{l s,} \gamma_{l v}, \gamma_{s v}, \gamma_{n l}$, and $\gamma_{n v}$ are the surface energies of solid-liquid, liquid-vapour, solid-vapour, nucleus-liquid, and nucleusvapour, respectively.


Fig. S9 Physical vapour transport system and temperature profile.

## REFERENCES

(1) K. Homma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272-1276.

