Two viologen-based photoluminescence compounds: excitation-wavelengthdependent and photoirradiation-time-dependent photoluminescence switches

Qing Liu^{a, b}, Lu Liu^{a, b}, Cao-Ming Yu^b, Pei-Xin Li^{b, *} and Guo-Cong Guo^{b, *}

a College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R.

China.

b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

Content

1.	Figure	2	2
2.	Table	5	5

1. Figure

Fig. S1 The π - π interactions of **1** (a) and **2** (b).

Fig. S2 Crystal structures of **2**. (a) Coordination environments of the Zn^{2+} ion (b) Stack *Z*-shaped non-planar layers in the direction [001]. (c) A 2D layer with topology.

Fig. S3 The PXRD patterns of **1** (a) and **2** (b) simulated (**Simulated**), before irradiation (**1A** and **2A**), after irradiation (**1B** and **2B**) and discoloration in the dark (**Decolored**) at 25°C.

Fig. S4 CIE chromaticity diagram showing the excitation wavelengths dependence (λ_{ex} = 260nm, 330nm, 360nm, 460nm) of the (x, y) color coordinates of 1 (a) and 2 (b); and the CIE chromaticity diagram of 1 before and after photoirradiation when excitation wavelengths are 330 nm (c) and 265 nm (d).

Fig. S5 The fluorescence emission spectrum of 1, 2 and Hipbpy ligand at λ_{ex} =330nm (a) and λ_{ex} =360nm (b).

b)

Fig. S6 (a) The fluorescence emission spectrum of 1 at Ex=330nm and Ex=365nm and the UVvis spectrum after illumination. (b) The fluorescence emission spectrum of 2 at Ex=330nm and Ex=460nm and the UV-vis spectrum after illumination.

Fig. S7 Crystal structures of H₂ipbpCl.

a)

Fig. S8 The lifetime of **1** upon 330 nm(a) and 360nm (b) excitation with their maximum emission; the lifetime of **2** upon 335 nm (c) and 460nm (d) excitation with their maximum.

Fig. S9 The Band Structure and the total and partial DOS of **1** (a) and **2** (b). (the position of the Fermi level (Ef) is set at 0 eV).

2. Table

Formula	$[Cd(ipbp)Cl] \cdot H_2O(1)$	$[Zn(ipbp)Cl] \cdot H_2O(2)$	
Fw	485.15	438.12	
Crystal system	monoclinic	monoclinic	
Space group	$P2_1/c$	$P2_1/c$	
<i>a</i> /Å	15.4911(4)	15.5044(13)	
b/Å	7.5672(2)	7.5706(5)	
<i>c</i> /Å	17.2289(5)	17.2282(15)	
α /°	90	90	
eta /°	110.483(3)	110.423(2)	
$\gamma / ^{\circ}$	90	90	
$V/\text{\AA}^3$	1891.95(10)	1895.1(3)	
Ζ	4	4	
$D_{\rm c}$ /g.cm ⁻³	1.633	1.491	
μ /mm ⁻¹	1.318	1.466	
Goodness-of-fit on F^2	1.436	0.928	
$R_1, wR_2 [I > 2\sigma(I)]$	0.0497, 0.1791	0.1015, 0.3359	
R_1 , wR_2 (all data)	0.0578, 0.1873	0.1133, 0.3645	

 Table S1. Crystal data and structural refinements for 1 and 2.

 $\overline{R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|, wR_2} = \{\sum w[(F_0)^2 - (F_c)^2]^2 / \sum w[(\underline{F}_0)^2]^2 \}^{1/2}.$

Fable S2 . The bond lengths ((Å)	and bond	angles	(0)	in 1.	
--------------------------------------	-----	----------	--------	-----	-------	--

The bond lengths (Å) in 1					
Cd1Cl1	2.4533(14)	C2–C1	1.364(8)		
Cd1O1#1	2.404(3)	C12–C11	1.386(7)		
Cd1-O2#1	2.334(4)	C12–C13	1.377(7)		
Cd1–N1	2.306(4)	C11–C18	1.363(6)		
Cd1-O3#2	2.444(4)	C13–C15	1.381(6)		
Cd1O4#2	2.347(4)	C13–C14	1.515(7)		
Cd1-C14#1	2.673(5)	C6–C5	1.355(6)		
Cd1C17#2	2.722(5)	C16–C18	1.392(6)		
O1–C14	1.246(7)	C16–C15	1.387(6)		
O2C14	1.247(7)	C16–C17	1.500(6)		
O3–C17	1.242(6)	C5–C4	1.390(7)		

O4–C17	1.237(6)	C4–C8	1.400(7)
N2-C11	1.474(6)	C4–C3	1.476(7)
N2-C6	1.359(6)	С10-С9	1.376(8)
N2C7	1.341(7)	С9–С3	1.379(8)
N1-C10	1.339(7)	С7–С8	1.361(7)
N1C1	1.336(7)	С3-С2	1.414(7)
	The bond an	gles (°) in 1	
C13-C14-Cd1#3	169.9(3)	C1-N1-C10	116.8(5)
O1#1-Cd1-Cl1	98.52(9)	C1–C2–C3	118.7(5)
O1#1-Cd1-O3#2	133.61(13)	C2–C3–C4	119.8(5)
O1C14O2	124.0(5)	C5–C4–C8	118.1(5)
O1C14C13	118.6(5)	C5–C4–C3	121.1(5)
O2#1-Cd1-Cl1	141.92(11)	C5-C6-N2	120.4(4)
O2#1-Cd1-O1#1	55.37(13)	C6C5C4	120.1(4)
O2#1-Cd1-O3#2	120.87(13)	C6-N2-C11	118.7(4)
O2#1-Cd1-O4#2	95.30(15)	C7-N2-C11	120.3(4)
O2-C14-C13	117.4(5)	С7-С8-С4	120.1(5)
O3#2-Cd1-Cl1	97.19(10)	C7-N2-C6	121.0(4)
O3-C17-C16	120.0(5)	C8–C4–C3	120.8(4)
O4#2-Cd1-Cl1	107.53(12)	С9-С3-С4	122.7(5)
O4#2-Cd1-O1#1	79.75(14)	С9-С3-С2	117.5(5)
O4#2-Cd1-O3#2	53.90(13)	С10-С9-С3	119.1(5)
O4–C17–O3	122.4(5)	C11-C18-C16	119.0(4)
O4-C17-C16	117.5(5)	C12C11N2	118.9(4)
N1-C1-C2	124.0(5)	C12-C13-C15	119.5(4)
N1-Cd1-Cl1	97.78(11)	C12-C13-C14	118.9(4)
N1-Cd1-O1#1	133.92(14)	C13-C12-C11	119.1(4)
N1-Cd1-O2#1	86.66(15)	C13-C15-C16	121.1(4)
N1-Cd1-O3#2	86.12(14)	C15-C16-C18	119.2(4)
N1-Cd1-O4#2	134.21(15)	C15-C16-C17	120.4(4)
N1-C10-C9	123.7(5)	C15-C13-C14	121.6(4)
N2-C7-C8	120.3(5)	C18-C16-C17	120.1(4)
C18-C11-N2	119.0(4)	C18-C11-C12	122.2(5)

Symmetry transformations used to generate equivalent atoms: #1 -1+X, +Y, +Z; #2-1+X, 1/2-Y, -1/2+Z; #3 1+X, +Y, +Z; #4 1+X, 1/2-Y, 1/2+Z

	The bond lengths (Å) in 2				
Zn1–Cl1	2.439(3)	O4–C17	1.250(13)		
Zn101#1	2.399(7)	C12–C11	1.411(15)		
Zn1–N1	2.281(10)	C12–C13	1.367(16)		
Zn1O2#1	2.373(11)	C18–C11	1.392(14)		
Zn1O3#2	2.412(8)	C18–C16	1.387(13)		
Zn104#2	2.405(9)	С10-С9	1.388(15)		

 Table S3. The bond lengths (Å) and bond angles (o) in 2.

O1–Zn1#3	2.399(7)	C13–C14	1.534(15)
O1–C14	1.200(13)	C13–C15	1.394(14)
N1-C10	1.375(15)	С9–С3	1.426(15)
N1C1	1.376(15)	С7–С8	1.415(16)
N2-C11	1.423(13)	C6–C5	1.402(16)
N2C7	1.319(14)	С3-С2	1.365(16)
N2-C6	1.347(14)	С3-С4	1.475(15)
O2–Zn1#3	2.373(11)	C16-C15	1.436(13)
O2–C14	1.262(13)	C16–C17	1.491(13)
O3–Zn1#4	2.412(8)	C1–C2	1.300(18)
O3–C17	1.226(13)	С5-С4	1.387(15)
O4–Zn1#4	2.405(9)	C8–C4	1.379(16)
	The bond a	ngles (°) in 2	
O1#1–Zn1–Cl1	99.06(19)	C18-C11-N2	120.4(9)
O1#1-Zn1-O3#2	132.9(3)	C18-C11-C12	120.7(10)
O1#1–Zn1–O4#2	79.8(3)	C12C13C14	117.3(10)
N1–Zn1–Cl1	98.9(3)	C12C13C15	121.9(10)
N1-Zn1-O1#1	133.3(3)	C15-C13-C14	120.7(10)
N1-Zn1-O2#1	87.5(3)	С10-С9-С3	118.6(10)
N1-Zn1-O3#2	86.4(3)	N2-C7-C8-	121.4(11)
N1-Zn1-O4#2	135.8(4)	N2-C6-C5	122.8(10)
O2#1–Zn1–Cl1	143.7(2)	С9–С3–С4	118.9(10)
O2#1–Zn1–O11	54.4(3)	С2-С3-С9	115.4(10)
O2#1–Zn1–O3#2	118.6(3)	C2–C3–C4	125.7(10)
O2#1-Zn1-O4#2	95.9(3)	C18-C16-C15	118.9(9)
O3#2–Zn1–Cl1	97.5(3)	C18-C16-C17	121.9(9)
O4#2-Zn1-Cl1	103.6(3)	C15-C16-C17	119.2(9)
O4#2-Zn1-O3#2	53.5(3)	C2C1N1	124.9(11)
C14-O1-Zn1#3	90.3(6)	C4–C5–C6	116.7(11)
C10-N1-Zn1	124.0(8)	C1-C2-C3	123.4(11)
C10-N1-C1	113.6(10)	O1-C14-O2	124.7(11)
C1–N1–Zn1	122.4(8)	O1-C14-C13	118.8(9)
C7-N2-C11	119.8(10)	O2-C14-C13	116.2(11)
C7-N2-C6	119.7(9)	C4–C8–C7	118.1(10)
C6-N2-C11	120.2(9)	C13-C15-C16	119.1(9)
C14-O2-Zn1#3	90.0(8)	O3-C17-O4	122.2(10)
C17–O3–Zn1#4	91.9(7)	O3-C17-C16	121.3(10)
C17–O4–Zn1#4	91.5(7)	O4C17C16	116.2(10)
C13-C12-C11	118.9(11)	C5–C4–C3	118.0(10)
C16-C18-C11	120.4(9)	C8–C4–C3	121.1(10)
N1-C10-C9	123.8(11)	C8–C4–C5	120.9(10)
C12C11N2	118.9(10)		

Symmetry transformations used to generate equivalent atoms: #1 1+X, +Y, +Z; #2 1+X, 3/2-Y, 1/2+Z; #3 -

1+X, +Y, +Z; #4 -1+X, 3/2-Y, -1/2+Z