Supplementary Information

Fine-Tuning Pore Structure of Metal–Organic Frameworks by Linker Substitution for Enhanced Hydrogen Storage and Gas Separation

Xiwei Han,^{ab} Xiaoxian Yang,^c Chuan Yu,^{ab} Shuyan Lu,^{ab} Ehsan Sadeghi Pouya,^c Peng Bai,^{ab} Jiafei

Lyu*ab and Xianghai Guo*abd

^aDept. of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin

University, Tianjin 300350, P. R. China

^bKey Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin,

300072, P. R. China

°Fluid Science & Resources Division, Department of Chemical Engineering, University of

Western Australia, Crawley, WA 6009, Australia

^dSchool of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China

* Corresponding authors: guoxh@tju.edu.cn

jflv@tju.edu.cn

Structure Simulation

All simulated structures are based on the given crystallographic topology of UiO-66 to be built. By modifying benzene rings of the organic linkers (terephthalic acid) in Materials Studio,¹ substituents (dihydroxy, dimethoxy and diethoxy groups) are introduced to the crystallographic topology. The geometry of the output MOFs is optimized using a molecular mechanics (MM) simulation in which the system energy is minimized as a function of the atomic coordinates. The system energy is derived by a force-field which describes the energetics of MOF intramolecular interactions. Here, we used the "Geometry Optimization" to describe the energetics of MOF intramolecular interactions with Materials Studio to perform the MM simulation. We optimized the atom positions and unit cell parameters together to obtain the structures. Finally, we refined the structures by conducting Pawley refinement of the experimental powder X-ray diffraction patterns with the Reflex Module of Materials Studio.

Fig. S1. Pawley refinement result of UiO-66-(OH)₂.

Fig. S2. Pawley refinement result of UiO-66-(OCH₃)₂.

Fig. S3. Pawley refinement result of UiO-66-(OCH₂CH₃)₂.

MOFs	Cell Volume (Å ³)	Pore Volume (cm ³ /g)	BET Surface Area (m ² /g)	Octahedral Channel (Å)	Tetrahedral Channel (Å)	Window (Å)	Rwp (%)
UiO-66-(OH) ₂	9057	0.35	795	12.5	10.0	7.3	4.48
UiO-66-(OCH ₃) ₂	9137	0.23	492	9.5	7.5	4.4	4.93
UiO-66-(OCH ₂ CH ₃) ₂	9091	0.06	202	7.5	7.0	3.8	3.78

 Table S1. Summary of Pawley refinement results of the MOFs.

Table S2. Textual properties of UiO-66, UiO-66-(OH)2, UiO-66-(OCH3)2 and UiO-
66-(OCH2CH3)2.

MOFs	$S_{BET}(m^2 \cdot g^{-1})$	$V_{Tot}(cm^{3} \cdot g^{-1})$	$V_{Micro}(cm^3 \cdot g^{-1})$	Dav(nm)
UiO-66	1564	1.00	0.62	1.63
UiO-66-(OH) ₂	945	0.69	0.46	0.78
UiO-66-(OCH ₃) ₂	901	1.10	0.37	0.74
UiO-66-(OCH ₂ CH ₃) ₂	982	0.96	0.31	1.43

Table S3. Parameters by fitting the isotherms with Langmuir model.

		CO ₂			CH ₄			N ₂			H ₂	
MOFs	K	Q_m (mol/kg)	R ²	K	Q_m (mol/kg)	R ²	K	Q_m (mol/kg)	R ²	K	Q_m (mol/kg)	R ²
UiO-66	13.1 1	1.06	0.999	7.69	0.52	0.999	4.43	0.36	0.999	2.49	0.08	0.994
UiO-66- (OH) ₂	5.74	3.66	0.980	3.84	0.86	0.996	3.32	0.26	0.999	1.19	0.22	0.998
UiO-66- (OCH ₃) ₂	6.49	2.21	0.992	3.90	0.61	0.998	3.01	0.22	0.999	1.73	0.32	0.974
UiO-66- (OCH ₂ CH ₃) ₂	5.58	1.62	0.992	4.27	0.32	0.999	4.43	0.09	0.999	1.85	0.38	0.974

Fig. S4. Proton NMR (400 MHz, DMSO-*d6*) spectrum of 2,5-dimethoxy terephthalic acid (L1).

Fig. S5. Proton NMR (400 MHz, DMSO-*d6*) spectrum of 2,5-diethoxy terephthalic acid (L2).

Material	H ₂ uptake (wt. %)	Temperature (K)	Pressure (bar)	Ref.
CAU-1	4.0	77	30	2
BUT-22	12	77	100	3
HKUST-1	3.6	77	50	4
MOF-5	11.5	77	170	5
NU-1500-Al	8.6	77	100	6
NU-1501-Al	14.5	77	100	6
NU-1501-Fe	13.2	77	100	6
MOF-177	7.5	77	70	7
IRMOF-6	4.6	77	45	7
IRMOF-8	3.4	77	33.7	7
SNU-4	3.7	77	50	8
SNU-5	5.2	77	50	8
SNU-6	10.0	77	70	9
Mn-BTT	6.9	77	90	10
Cu-BTT	3.7	77	90	11
Fe-BTT	4.1	77	95	12
Ni-MOF-74	2.95	77	10	13
Co-MOF-74	3.15	77	10	13
PCN-6	1.9	77	1	14
PCN-6′	1.1	77	1	15
PCN-10	6.84	30	3.5	16
PCN-12	3.05	77	1	17
PCN-12'	2.4	77	1	17
PCN-20	6	77	35	18
PCN-46	7.2	77	60	18
PCN-66	6.65	77	45	19
NOTT-140	6	77	20	20
UiO-67	4.6	77	38	21
UiO-66	2.4	77	38	21

Table S4. The hydrogen adsorption capacities of previously reported MOF materials.

		Selec	Temperatur	Pressure			
Material	CO ₂ /N ₂ ^a	CO₂/CH₄ª	CH4/N2 ^a	CO ₂ /H ₂ ^a	e	(bar)	Ref.
	002/112	002,0114	0114/11/2		(K)	(****)	
UiO-66	28				298	3	22
UiO-66-NH ₂	68				298	3	22
UiO-66-1,4-Naphyl	32				298	3	22
UiO-66-2,5-(OMe) ₂	68				298	3	22
UiO-66-NO ₂	40				298	3	22
$[Mn(CIP^{-})_{2}]$	117	8			273	1	23
ATC-Cu			9.7		298	1	24
ZnZSM-5-pIM			8.44		298	1	25
InOF-18	37.83	10.44			273	1	26
UPC-99	150 ^b	12.6			273	1	27
NKU-521a	170	36			273	1	28
Mg–MOF-74		~175			300	<1	29
Zn-MOF-74	35°	10			300	<1	29
IITKGP-8	106	17.7			273	1	30
IITKGP-5	435.5	151.6			273	1	31
UTSA-16	314.7	29.8			296	1	32
SIFSIX-2-Cu-i	140	33			298	1	33
467-MOF	$<\!\!6$	$\leq 6^{d}$		45	273 or 293	1	34
$[Cu(tba)_2]_n$	45	45 ^d		51	293	1	35
Cu-MOF ^e				80	298	10	36
³ _∞ [Cu(Me-4py-trz-ia)]			4.0-4.4		298	5	37
UMCM-1 ^e	5.4 ^f	2.9	2.0	16.4 ^g	298	40	38
UMCM-2 ^e	7.8 ^f	4.7	2.0	26.9 ^g	298	40	38

Table S5. The adsorption selectivity for CO_2/N_2 , CO_2/CH_4 , CH_4/N_2 and CO_2/H_2 on previously reported MOF materials.

^a If not specially noted the selectivity is obtained from IAST calculations and the CO_2/N_2 , CO_2/CH_4 , CH_4/N_2 , CO_2/H_2 mixtures are 15/85, 50/50, 50/50 and 15/85 binary gas mixtures, respectively.

^b 10/90 CO₂/N₂ gas mixture.

 $^{\circ}$ 20/80 CO₂/N₂ gas mixture.

^d 15/85 CO₂/CH₄ gas mixture.

^e Obtained from GCMC simulations.

 $^{\rm f}$ 50/50 CO_2/N_2 gas mixture.

 $g 50/50 \text{ CO}_2/\text{H}_2$ gas mixture.

Bnn-1-Ca				$10^{4} g$			39
Bnn-1-Ca-H ₂ O	106	10 ⁵			298	1	39
MCM-41	15°	7		65 ^h	298	45	40
N-WAPC		3.19	7.62		298	1	41
Lignite Coal	25 f	11	20		272	1	42
Liquefaction	3.5-	11	30		275	1	
CAU-21-BPDC			11.9		298	1	43
$[Co_3(C_4O_4)_2(OH)_2]$			12.5		298	1	44
UiO-66(Hf)-(OH) ₂	93	30	3.6	>1700 ⁱ	298	1	45

 $^{\rm h}$ 20/80 CO_2/H_2 gas mixture. $^{\rm i}$ 30/70 CO_2/H_2 gas mixture.

Reference

- 1. Materials Studio, Accelrys Software Inc., San Diego, CA 92121, USA.
- 2. X. Si, C. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. Li, L. Sun, F. Xu and Z. Gabelica, *Energy Environ. Sci.*, 2011, **4**, 4522-4527.
- 3. B. Wang, X. Zhang, H. Huang, Z. Zhang, T. Yildirim, W. Zhou, S. Xiang and B. Chen, *Nano Res.*, 2021, **14**, 507-511.
- 4. B. Panella, M. Hirscher, H. Pütter and U. Müller, *Adv. Funct. Mater.*, 2006, **16**, 520-524.
- 5. S. S. Kaye, A. Dailly, O. M. Yaghi and J. R. Long, J. Am. Chem. Soc., 2007, 129, 14176.
- Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L. R. Redfern, S. Moribe, T. Islamoglu,
 D. A. Gomez-Gualdron, T. Yildirim, J. F. Stoddart and O. K. Farha, *Science*, 2020, **368**, 297-303.
- 7. A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi, *J. Am. Chem. Soc.*, 2006, **128**, 3494-3495.
- 8. Y.-G. Lee, H. R. Moon, Y. E. Cheon and M. P. Suh, *Angew. Chem. Int. Ed.*, 2008, **47**, 7741-7745.
- 9. H. J. Park and M. P. Suh, *Chem. Eur. J.*, 2008, **14**, 8812-8821.
- M. Dincă, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and J. R. Long, J. Am. Chem. Soc., 2006, 128, 16876-16883.
- 11. M. Dincă, W. S. Han, Y. Liu, A. Dailly, C. M. Brown and J. R. Long, *Angew. Chem. Int. Ed.*, 2007, **46**, 1419-1422.
- K. Sumida, S. Horike, S. S. Kaye, Z. R. Herm, W. L. Queen, C. M. Brown, F. Grandjean, G. J. Long,
 A. Dailly and J. R. Long, *Chem. Sci.*, 2010, 1, 184-191.
- 13. J. A. Villajos, G. Orcajo, C. Martos, J. Á. Botas, J. Villacañas and G. Calleja, *Int. J. Hydrogen Energy*, 2015, **40**, 5346-5352.
- 14. D. Sun, S. Ma, Y. Ke, D. J. Collins and H.-C. Zhou, J. Am. Chem. Soc., 2006, **128**, 3896-3897.
- 15. S. Ma, D. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin and H.-C. Zhou, *J. Am. Chem. Soc.*, 2007, **129**, 1858-1859.
- X.-S. Wang, S. Ma, K. Rauch, J. M. Simmons, D. Yuan, X. Wang, T. Yildirim, W. C. Cole, J. J. López,
 A. d. Meijere and H.-C. Zhou, *Chem. Mat.*, 2008, **20**, 3145-3152.
- 17. X.-S. Wang, S. Ma, P. M. Forster, D. Yuan, J. Eckert, J. J. López, B. J. Murphy, J. B. Parise and H.-C. Zhou, *Angew. Chem. Int. Ed.*, 2008, **47**, 7263-7266.
- X.-S. Wang, S. Ma, D. Yuan, J. W. Yoon, Y. K. Hwang, J.-S. Chang, X. Wang, M. R. Jørgensen, Y.-S. Chen and H.-C. Zhou, *Inorg. Chem.*, 2009, 48, 7519-7521.
- 19. M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, *Chem. Rev.*, 2012, **112**, 782-835.
- 20. C. Tan, S. Yang, N. R. Champness, X. Lin, A. J. Blake, W. Lewis and M. Schröder, *Chem. Commun.*, 2011, **47**, 4487-4489.
- S. Chavan, J. G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M. H. Nilsen, L. Valenzano, C. Lamberti, K. P. Lillerud and S. Bordiga, *Phys. Chem. Chem. Phys.*, 2012, 14, 1614-1626.
- 22. G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, *Langmuir*, 2012, 28, 15606-15613.
- 23. D.-D. Feng, Y.-D. Zhao, X.-Q. Wang, D.-D. Fang, J. Tang, L.-M. Fan and J. Yang, *Dalton Trans.*, 2019, **48**, 10892-10900.
- 24. Z. Niu, X. Cui, T. Pham, P. C. Lan, H. Xing, K. A. Forrest, L. Wojtas, B. Space and S. Ma, *Angew. Chem. Int. Ed.*, 2019, **58**, 10138-10141.
- 25. Y. Wu, D. Yuan, D. He, J. Xing, S. Zeng, S. Xu, Y. Xu and Z. Liu, Angew. Chem. Int. Ed., 2019, 58,

10241-10244.

- Z. Cao, L. Chen, F. Jiang, K. Zhou, M. Yu, T. Jing, S. Li, Z. Li and M. Hong, *Cryst. Growth Des.*, 2019, 19, 3860-3868.
- 27. X. Wang, X. Zhang, K. Zhang, X. Wang, Y. Wang, W. Fan and F. Dai, *Inorg. Chem. Front.*, 2019, **6**, 1152-1157.
- 28. N. Li, Z. Chang, H. Huang, R. Feng, W.-W. He, M. Zhong, D. G. Madden, M. J. Zaworotko and X.-H. Bu, *Small*, 2019, **15**, 1900426.
- 29. J. M. Simmons, H. Wu, W. Zhou and T. Yildirim, *Energy Environ. Sci.*, 2011, 4, 2177-2185.
- 30. S. Chand, A. Pal and M. C. Das, *Chem. Eur. J.*, 2018, **24**, 5982-5986.
- 31. A. Pal, S. Chand, S. M. Elahi and M. C. Das, *Dalton Trans.*, 2017, **46**, 15280-15286.
- 32. S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna and B. Chen, *Nat. Commun.*, 2012, **3**, 954.
- P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, *Nature*, 2013, 495, 80-84.
- 34. Z.-W. Wang, M. Chen, C.-S. Liu, X. Wang, H. Zhao and M. Du, *Chem. Eur. J.*, 2015, **21**, 17215-17219.
- 35. M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang, L. Wang and C.-S. Liu, *J. Am. Chem. Soc.*, 2014, **136**, 10906-10909.
- 36. K. Zhang, A. Nalaparaju, Y. Chen and J. Jiang, *RSC Adv.*, 2013, **3**, 16152-16158.
- J. Möllmer, M. Lange, A. Möller, C. Patzschke, K. Stein, D. Lässig, J. Lincke, R. Gläser, H. Krautscheid and R. Staudt, *J. Mater. Chem.*, 2012, 22, 10274-10286.
- 38. X. Peng, X. Cheng and D. Cao, J. Mater. Chem., 2011, 21, 11259-11270.
- S. Mukherjee, S. Chen, A. A. Bezrukov, M. Mostrom, V. V. Terskikh, D. Franz, S.-Q. Wang, A. Kumar, M. Chen, B. Space, Y. Huang and M. J. Zaworotko, *Angew. Chem. Int. Edit.*, 2020, 59, 16188-16194.
- 40. Y. Belmabkhout and A. Sayari, *Chem. Eng. Sci.*, 2009, **64**, 3729-3735.
- 41. Y. Li, R. Xu, B. B. Wang, J. P. Wei, L. Y. Wang, M. Q. Shen and J. Yang, *Nanomaterials*, 2019, **9**, 15.
- 42. A. Ariunaa, S. Y. H. Liou, G. Tsatsral, B. Purevsuren, Y. Davaajav, R. W. Chang and C. J. Lin, J. *Taiwan Inst. Chem. Eng.*, 2018, **85**, 170-175.
- 43. D. Lv, Y. Wu, J. Chen, Y. Tu, Y. Yuan, H. Wu, Y. Chen, B. Liu, H. Xi, Z. Li and Q. Xia, *AlChE J.*, 2020, DOI: 10.1002/aic.16287.
- 44. L. Li, L. Yang, J. Wang, Z. Zhang, Q. Yang, Y. Yang, Q. Ren and Z. Bao, *AlChE J.*, 2018, **64**, 3681-3689.
- 45. Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang and D. Zhao, *Inorg. Chem.*, 2016, **55**, 1134-1141.