Supporting Information

A new series of 3D lanthanide phenoxy-carboxylate: Synthesis, crystal structure, magnetism and photoluminescence study

Rupam Sen, ${ }^{*, a}$ Sanchayeeta Paul, ${ }^{\text {a }}$ Alolika Sarkar, ${ }^{\text {a }}$ Alexandre M. P. Botas, ${ }^{\text {b }}$ Albano N. Carneiro Neto, ${ }^{\text {b }}$ Paula Brandão, ${ }^{\text {c }}$ Armandina M. L. Lopes, ${ }^{\text {d }}$ Rute A. S. Ferreira, ${ }^{\text {,b b João P. }}$ Araújo, ${ }^{\text {d }}$ Zhi Lin, ${ }^{*, c}$
${ }^{\text {a Department of Chemistry, Adamas University, Barasat, Kolkata 700126, India. }}$ e-mail: rupamsen1@yahoo.com
${ }^{\mathrm{b}}$ Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
e-mail: rferreira@ua.pt
${ }^{\text {c Department of Chemistry and CICECO, University of Aveiro, 3810-193, Aveiro, Portugal }}$ e-mail: zlin@ua.pt
${ }^{\text {d }}$ Department of Physics and Astronomy, FCUC, IFIMUP, Institute of Physics for Advanced Materials, Nanotechnology and Photonics, University of Porto, 4169-007 Porto, Portugal

Table of Contents

1. FT-IR analysis 2
2. Figures 2
Figure S1 2
Figure S2 3
Figure S3 3
Figure S4 4
Figure S 5 5
Figure S6 5
Figure S7 6
Figure S8 7
Figure S9 7
Figure S10 8
Figure S11 9
3. Table 10
Table S1 10
Table S2 11
Table S3 12
Table S4 12
Table S5 12
4. Theoretical analysis 13
4.1 In silico experiments 13
Figure S12 13
Figure S13 14
4.2 Intensity parameters 14
4.3 Intramolecular energy transfer rates 15
Table S6 19
Table S7 20
4.4 Rate equations 20
Table S8 21
Figure S14 22
References23

1. FT-IR analysis

FT-IR spectra of the samples suspended in KBr pellets were recorded on a Perkin-Elmer RX I FT-IR spectrometer under the flow of N_{2} at the rate of $20 \mathrm{ml} / \mathrm{min}$ and show in Figure S1. The bands observed at $1608 \mathrm{~cm}^{-1}$ and $1548 \mathrm{~cm}^{-1}$ for $\mathbf{1}\left(1570 \mathrm{~cm}^{-1}\right.$ and $1532 \mathrm{~cm}^{-1}$ for $\mathbf{2}$ and $1608 \mathrm{~cm}^{-1}$ and $1548 \mathrm{~cm}^{-1}$ for 3) are attributed to the asymmetric stretching vibrations for carboxylate groups. The characteristic bands observed at 1435 and $1405 \mathrm{~cm}^{-1}$ for 1 (1442 and $1381 \mathrm{~cm}^{-1}$ for 2 and 1442 and $1405 \mathrm{~cm}^{-1}$ for 3) can be regarded as the symmetric stretching vibrations of the carboxylate groups. The band at $3596 \mathrm{~cm}^{-1}$ for $\mathbf{1}\left(3558 \mathrm{~cm}^{-1}\right.$ for 2 and 3596 cm^{-1} for 3) appeared due to the presence of the OH group, while broad bands around 3430 cm^{-1} for all three compounds reveal the presence of water molecules in the compound.

2. Figures

Figure S1. FT-IR spectra of compounds 1, 2, and 3.

Figure S2. PXRD pattern of 1 (black) and simulated one from single crystal X-ray data (blue).

Figure S3. PXRD pattern of 2 (black) and simulated one from single crystal X-ray data (blue).

Figure S4. PXRD pattern of 3 (black) and simulated one from single crystal X-ray data (blue).

Figure S5. Room-temperature a) emission spectra excited at 270 nm and 360 nm and b) excitation spectra monitored at $440 \mathrm{~nm}, 545 \mathrm{~nm}$, and 575 nm for 2, 3, and free ligand $\mathrm{H}_{3} \mathbf{L}$.

Figure S6. Low-temperature (15 K) a) emission spectra excited at 270 nm and b) excitation spectra monitored at 440 nm and 545 nm for $\mathbf{2 , 3}$, and free ligand $\mathrm{H}_{3} \mathbf{L}$. The inset in (a) shows a magnification (x25) of the $400-500 \mathrm{~nm}$ range for free ligand $\mathrm{H}_{3} \mathbf{L}$.

Figure S7. Emission decay curves of 2 excited at 310 nm and monitored at 545 nm as function of the temperature.

Figure S8. Low-temperature (15 K) time-resolved emission spectra excited at 270 nm for a) 2 and b) free ligand $H_{3} \mathbf{L}$ acquired at distinct starting delay (SD) values: $\mathrm{SD}=10^{-5} \mathrm{~s}$ and $\mathrm{SD}=5 \times 10^{-5} \mathrm{~s}$.

Figure S9. Emission spectra (300 K) excited at 365 nm for free ligand $\mathrm{H}_{3} \mathbf{L}$ and 2. The vertical lines assign the energy of the vibrational progression characterized by $\Delta E \sim 1300 \mathrm{~cm}^{-1}$.

Figure S10. Emission decay curves of 2 excited at 270 nm and monitored at 440 nm as a function of the temperature. The solid lines represent the data best fit using a single exponential function. The insets show the fit residual plots.

Figure S11. Emission decay curves of free ligand $H_{3} \mathbf{L}$ excited at 270 nm and monitored at 440 nm as a function of the temperature. The solid lines represent the data best fit using a single exponential function. The insets show the fit residual plots.

3. Table

Table S1. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compounds $\mathbf{1}$ to $\mathbf{3}$

Bond distances		Bond angles	
Compound 1			
La1-O1	2.333(4)	O1-La1-O3	82.9(1)
La1-O3	2.222(4)	O1-La1-O7	69.8(1)
La1-O7	2.321(4)	O2-La1-O3	85.2(1)
La1-O1	2.452(4)	O1-La1-O1	66.5(1)
La1-O2	2.408(4)	O1-La1-O2	115.0(1)
La1-O3	2.277(4)	O1-La1-O3	149.2(1)
La1-O4	2.329(5)	O1-La1-O4	75.8(1)
La1-O5	$2.300(4)$	O1-La1-O5	126.8(1)
		O3-La1-O7	107.0(1)
		O2-La1-O4	106.7(1)
Compound 2			
Tb1-O1	2.361(2)	O1-Tb1-O3	82.24(7)
Tb1-O3	2.258(2)	O1-Tb1-O7	69.81(8)
Tb1-O1	2.478(2)	O1-Tb1-O1	67.0(1)
Tb1-O3	2.307(2)	O1-Tb1-O2	115.03(7)
Tb1-O2	2.438 (2)	O1-Tb1-O3	149.09(7)
Tb1-O4	2.358(2)	O1-Tb1-O4	75.85(7)
Tb1-O5	2.332(2)	O1-Tb1-O5	126.14(7)
Tb1-O7	2.363(3)	O3-Tb1-O7	107.52(8)
Compound 3			
Dy1-O1	2.376(2)	O1-Dy1-O3	82.20(8)
Dy1-O3	2.267(2)	O1-Dy1-07	69.81(8)
Dy1-07	2.377(3)	O1-Dy1-O1	67.28(7)
Dy1-O1	2.482(2)	O1-Dy1-O2	114.97(8)
Dy1-O2	2.460(2)	O1-Dy1-O3	149.05(8)
Dy1-O3	2.314(2)	O1-Dy1-O4	125.98(8)
Dy1-O4	2.343(2)	O1-Dy1-O5	76.03(7)
Dy1-O5	$2.365(2)$	O3-Dy1-O7	107.70(8)

$$
\begin{array}{ll}
\mathrm{O} 3-\mathrm{Dy} 1-\mathrm{O} 2 & 162.65(8) \\
\text { O3-Dy1-O3 } & 79.41(8) \\
\text { O3-Dy1-O4 } & 81.24(8)
\end{array}
$$

Summary of SHAPE analysis for Ln (III) centers in complexes 1-3.
Various probable shapes / geometries for coordination number 8:

Vertices	Code	Label	Shape	Symmetry
8	1	OP-8	Octagon	$\mathrm{D}_{8 h}$
	2	HPY-8	Heptagonal pyramid	$\mathrm{C}_{8 v}$
	3	HBPY-8	Hexagonal bipyramid	D_{6}
	4	CU-8	Cube	O_{h}
	5	SAPR-8	Square antiprism	$\mathrm{D}_{4 d}$
	6	TDD-8	Triangular dodecahedron	$\mathrm{D}_{2 d}$
	7	JGBF-8	Johnson gyrobifastigium J26	$\mathrm{D}_{2 d}$
	8	JETBPY-8	Johnson elongated triangular bipyramid J14	$\mathrm{D}_{3 h}$
	9	JBTPR-8	Biaugmented trigonal prism	$\mathrm{C}_{2 v}$
	10	BTPR-8	Biaugmented trigonal prism	$\mathrm{C}_{2 v}$
	11	JSD-8	Snub diphenoid J84	$\mathrm{D}_{2 d}$
	12	TT-8	Triakis tetrahedron	T_{d}
	13	ETBPY-8	Elongated trigonal bipyramid	$\mathrm{D}_{3 h}$

Table S2. (Complex-1)
Structure [ML8] OP-8 HPY-8 HBPY-8 CU-8 SAPR-8 TDD-8
JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 ETBPY-8
La1, 29.802, 21.949, 14.399, 9.446, 1.792, 2.964, 13.519, 26.604, $3.281, \quad 2.650, \quad 4.939, \quad 10.168, \quad 21.405$

Table S3. (Complex-2)

Table S4. (Complex-3)
Structure [ML8] OP-8 HPY-8 HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 ETBPY-8

Dy, 29.856, 21.864, 14.347, 9.397, 1.824, 2.987, 13.460, 26.668, 3.306, 2.697, 4.987, 10.091, 21.399

Table S5. Hydrogen bonds present in the compounds $\mathbf{1}$ to 3

D-H $\cdots \mathrm{A}$	H $\cdots \mathrm{A} / \AA$	D $\cdots \mathrm{A} / \AA$	D $\cdots \mathrm{H} \cdots \mathrm{A} /{ }^{\circ}$
Compound 1			
O6-H6 \cdots O2 [-x, -y+1, -z+3]	1.95(7)	2.84(6)	170(7)
Compound 2			
O6-H6...O2 [-x,-y+1,-z+3]	1.87(4)	2.847(3)	178(3)
O7-H7A...O5 [x-1,-y+3/2, z-1/2]	1.832(19)	2.650(4)	166(4)
O7-H7B...O100	2.01(3)	$2.835(4)$	173(3)
O100-H10A...O7 [x, -y+3/2, z-1/2]	2.41(2)	3.140(4)	147(4)
Compound 3			
O6-H6 \cdots O2 [-x+1, -y+1, -z-1]	2.02(5)	2.852(4)	172(4)
O7-H7A \cdots O5 [$\mathrm{x}+1,-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2]$	1.835(19)	2.655(3)	161(4)
O7-H7B...O100	2.01(3)	2.830(4)	160(4)
0100-H10A...O7 [x, -y+1/2, z+1/2]	2.46(3)	3.143(4)	140(5)

4. Theoretical analysis

4.1 In silico experiments

From the crystallographic data, it was extracted the dimeric structure of product 2 (Figure S12) and the canonical molecular orbitals (CMOs) of the excited states (singlet and triplet, Figure S13a) were calculated using the time-dependent DFT in Gaussian 09 revision D. 01 program ${ }^{1}$. The functional B3LYP ${ }^{2,3}$ was employed together with the $6-311++G(d, p)$ Pople's basis set ${ }^{4}$ to treat O, C, and H atoms for the isolated ligands. The CMO decomposition is useful to estimate where the donor state is localized and, in this way, the donor-acceptor distance $\left({ }^{R_{L}}\right.$) can be estimated (Figure S13b).

Figure S12. Extraction of the dimer structure for the TD-DFT calculations of singlet and triplet excited states (energy donors). The dimer structure is composed of 6 ligands.

b.

Figure S13. a) MO compositions for the excited T_{1} and S_{1} states (isosurfaces of $0.04{ }^{e / a_{0}{ }^{3} \text {). }}$ The centroid of the unoccupied molecular orbitals (on the right side), for both T_{1} and S_{1}, is more concentrated in the 6 -member rings. b) Illustration of the shortest donor-acceptor distances $\left({ }^{R_{L}}\right)$, the average value was used in the intramolecular energy transfer analysis (subsection 4.3 Intramolecular energy transfer rates).

4.2 Intensity parameters

The Forced Electric Dipole (FED - Judd-Ofelt theory) and the Dynamic Coupling (DC) mechanisms are the most effective mechanisms for the $4 f-4 f$ intensities when the lanthanide occupies a non-centrosymmetric site. ${ }^{5-7}$ The theoretical expressions for the intensity parameters, $\Omega_{\lambda}^{\text {theo }}(\lambda=2,4$, and 6$)$, have been described in detail in several references ${ }^{8-13}$. Here a brief recall is given:
$\Omega_{\lambda}^{\text {theo }}=(2 \lambda+1) \sum_{t, p} \frac{\left|B_{\lambda t p}\right|^{2}}{2 t+1} \quad, \quad B_{\lambda t p}=B_{\lambda t p}^{F E D}+B_{\lambda t p}^{D C}$
where,
$B_{\lambda t p}^{F E D}=\frac{2}{\Delta E}\left(r^{t+1}\right\rangle \Theta(t, \lambda)\left(\frac{4 \pi}{2 t+1}\right)^{\frac{1}{2}} \sum_{j}^{e^{2} \rho_{j} g_{j}\left(2 \beta_{j}\right)^{t+1}}{R_{j}^{t+1}}_{j}^{\left.\left(Y_{p}^{t *}\right)_{j}\right), ~}$
$B_{\lambda t p}^{D C}=-\left[\frac{(\lambda+1)(2 \lambda+3)}{(2 \lambda+1)}\right]^{\frac{1}{2}}\left\langle r^{\lambda}\right\rangle\left\langle f\left\|C^{(\lambda)}\right\| f\right\rangle\left(\frac{4 \pi}{2 t+1}\right)^{\frac{1}{2}} \times \times \sum_{j} \frac{\left[\left(2 \beta_{j}\right)^{t+1} \alpha_{O P, j}+\alpha_{j}^{\prime}\right]}{R_{j}^{t+1}}\left(Y_{p}^{t *}\right)_{j} \delta_{t, \lambda+1}$
with t and p being the ranks and components of the spherical harmonics $\left(Y_{p}^{t *}\right)$, $\left\langle f\left\|C^{(2)}\right\| f\right\rangle=-1.366,\left\langle f\left\|C^{(4)}\right\| f\right\rangle=1.128,\left\langle f\left\|C^{(6)}\right\| f\right\rangle=-1.27, \rho$ is the overlap integral between the valence subshells of the ligating atom and the $4 f$ subshell of the lanthanide ion ${ }^{14}, \beta=1 /(1 \pm \rho)$ is a parameter that defines the centroid of the electronic density of the chemical bond $\mathrm{Ln}-\mathrm{X}$ $\left(\mathrm{X}=\right.$ ligating atom), α^{\prime} is the effective polarizability from each ligand around the Ln^{3+} ion.

Eq. S2 is the expression of the Simple Overlap Model (SOM) for the odd part of the ligand field ${ }^{11,12}$ and the charge factor g represents, by means of the product -epg, the shared charged between the lanthanide $4 f$ and the ligating atom valence orbitals. In the present work, g was considered equal to 1 . The Bond Overlap Model (BOM, Eq. S3) for the Dynamic Coupling mechanism also takes into account the covalency effect by the overlap polarizabilities $\alpha_{O P}{ }^{15}$. These quantities are closely related to the covalent fraction of a chemical bond ${ }^{16-18}$ and can be estimated by:
$\alpha_{O P}=\frac{e^{2} \rho^{2} R^{2}}{2 \Delta \varepsilon}$
where e is the electron charge, R is the length of the bond, and $\Delta \varepsilon$ is the excitation energy associated with the chemical bond.

The JOYSpectra program ${ }^{19}$ was employed to calculate the $\Omega_{\lambda}^{\text {theo }}$ and their FED contributions $\binom{\Omega^{F E D}}{\lambda}$ that are essential for estimates of the intramolecular energy transfer rate by the dipole-dipole mechanism (Eq. S5). Thus, the set of $\Omega_{\lambda}^{F E D}$ obtained (in units of 10^{-20} cm^{2}) is: $\Omega_{2}^{F E D}=0.020 ; \Omega_{4}^{F E D}=0.250 ; \Omega_{6}^{F E D}=0.482$.

4.3 Intramolecular energy transfer rates

Intramolecular energy transfer (IET) rates were calculated taking into account individual mechanisms, namely: dipole-dipole (${ }^{W_{d-d}}$), dipole-multipole (${ }^{W_{d-m}}$), and exchange (${ }^{W_{e x}}$). These mechanisms are calculated according to Eqs. S5-S7..13,20 These calculations also take into consideration the selection rules on J quantum number, which are of paramount importance in interpreting experimental results. ${ }^{13}$

The dipole-dipole contribution can be calculated as,

$$
\begin{equation*}
W_{d-d}=\frac{S_{L}\left(1-\sigma_{1}\right)^{2} 4 \pi e^{2}}{(2 J+1) G \hbar R_{L}^{6}} \sum_{K} \Omega_{K}^{F E D}\left\langle\psi^{*} J^{*}\left\|U^{(K)}\right\| \psi J\right\rangle^{2} F \tag{S5}
\end{equation*}
$$

where the intensity parameters $\Omega^{F E D D}$ were estimated in subsection 4.2 Intensity parameters.
The dipole-multipole mechanism (2^{K}-pole, $K=2,4$, and ${ }^{6}$) is calculated as,

$$
\begin{equation*}
W_{d-m}=\frac{S_{L} \quad 2 \pi e^{2}}{(2 J+1) G \quad \hbar} \sum_{K}(K+1) \frac{\left\langle r^{K}\right\rangle^{2}}{\left(R_{L}^{K+2}\right)^{2}}\left\langle f\left\|C^{(K)}\right\| f\right\rangle^{2}\left(1-\sigma_{K}\right)^{2}\left\langle\psi^{*} J^{*}\left\|U^{(K)}\right\| \psi J\right\rangle^{2} F \tag{S6}
\end{equation*}
$$

The exchange mechanism is very sensitive to short-range distances, it can be calculated as

$$
\begin{equation*}
W_{e x}=\frac{\left(1-\sigma_{0}\right)^{2} 8 \pi e^{2}}{(2 J+1) G 3 \hbar_{R_{L}^{4}}^{4}}\left\langle\psi^{*} J^{*}\|S\| \psi J\right\rangle^{2} \sum_{m}| | \phi\left|\sum_{j} \mu_{z}(j) s_{m}(j)\right| \phi^{*} \|\left.\right|^{2} F \tag{S7}
\end{equation*}
$$

In the above equations, ${ }^{L}$ is the donor-acceptor states distance, estimated in subsection 4.1 In silico experiments. The values of the squared reduced matrix elements $\left\langle\psi^{\prime} J^{\prime}\left\|U^{(\lambda)}\right\| \psi J\right\rangle^{2}$ are from Carnall et al. ${ }^{21} . S_{L}$ is the dipole strength of the ligand transition involved in IET (10^{-36} and $10^{-40}(e s u)^{2} \mathrm{~cm}^{2}$ for S_{1} and T_{1}, respectively ${ }^{13}$), the $\left\langle r^{\lambda}\right\rangle$ are the $4 f$ radial integrals ${ }^{22,23}, G$ is the ligand state degeneracy ($G=1$ or 3 for S_{1} or T_{1}, respectively), $\left\langle f\left\|C^{(\lambda)}\right\| f\right\rangle$ is the reduced matrix element of Racah's tensor operators.

In Eq. S7, s_{m} is the spin operator in the ligand and μ_{z} is the dipole operator (its z_{-} component), the value of the element matrix of these coupled operators is in the order of $10^{-36}(e s u)^{2} \mathrm{~cm}^{2} .{ }^{13,24}$ The $\left\langle\psi^{\prime} J^{\prime}\|S\| \psi J\right\rangle$ is the reduced matrix elements of the spin operator, which were calculated using free-ion wavefunctions in the intermediate coupling scheme. ${ }^{25,26}$

The shielding factors $\left(1-\sigma_{K}\right)$ are important quantities which are related with the overlap integrals ρ between the valence orbitals of the pair $\mathrm{Ln}-\mathrm{X}$ (X is the ligating atom in the coordination sphere) and they are calculated using the following expressions, ${ }^{14,27}$

$$
\left(1-\sigma_{K}\right)= \begin{cases}\rho(2 \beta)^{K+1} & \text { for } K \neq 0 \tag{S8}\\ \rho\left(\frac{R_{\min }}{R_{L}}\right)^{7 / 2} & \text { for } K=0\end{cases}
$$

where $\beta=(1 \pm \rho)^{-1}$ is the parameter which defines the centroid of the Ln-X overlap ${ }^{11}$ and $R_{\text {min }}$ is the Ln-X minimal distance in the first coordination sphere.

The F term Eqs. S5-S7 is the spectral overlap factor that considers the energy mismatch condition between donor and acceptor states. ${ }^{13,20}$ For the case of ligand-to-metal energy transfer, F can be estimated by:
$F=\frac{1}{\hbar \gamma_{L}} \sqrt{\frac{\ln (2)}{\pi}} e^{\left.-\left(\frac{\Delta}{\hbar \gamma_{L}}\right)\right)^{2} \ln (2)}$
where Δ is the band maximum energy difference between donor state and lanthanide ion acceptor state, $\Delta=E_{D}-E_{L n}$. The γ_{L} is the bandwidth at half-height for the donor state, assumed here a typical value of $\gamma_{L}=3000 \mathrm{~cm}^{-1}$ for both S_{1} and T_{1} states.

The forward energy transfer rates $\left({ }^{W}\right)$ involving the Tb^{3+} ions as acceptors are calculated by the sum over Eqs. S5-S7 in the same pathway:
$W=W_{d-d}+W_{d-m}+W_{e x}$
If Δ is negative, for a given energy transfer pathway, W must be multiplied by the barrier factor $\exp \left(\Delta / k_{B} T\right)$, where k_{B} is the Boltzmann constant and T is the temperature.

The IET rates from the ligands to the Tb^{3+} ion were calculated using 22 acceptors transitions, from the ${ }^{7} \mathrm{~F}_{6}$ and ${ }^{7} \mathrm{~F}_{5}$ as initial states to ${ }^{5} \mathrm{D}_{4},{ }^{5} \mathrm{D}_{3},{ }^{5} \mathrm{G}_{6},{ }^{5} \mathrm{~F}_{5},{ }^{5} \mathrm{G}_{5},{ }^{5} \mathrm{G}_{4},{ }^{5} \mathrm{H}_{7},{ }^{5} \mathrm{H}_{6},{ }^{5} \mathrm{H}_{5}$, ${ }^{5} \mathrm{~L}_{10},{ }^{5} \mathrm{~L}_{6}$ as final states, localized in the Tb^{3+} ion. In this sense, a total of 44 IET pathways (22 for $\mathrm{S}_{1} \rightarrow \mathrm{~Tb}^{3+}$ and 22 for $\mathrm{T}_{1} \rightarrow \mathrm{~Tb}^{3+}$) were calculated, as Table S 6 shows. One can be noticed that in the specific case of the $\left\{\mathrm{Tb}(\mathbf{L})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\} \cdot \mathrm{H}_{2} \mathrm{O}$, there are few pathways with acceptor states in good energy resonance with donors (Δ close to zero, i.e. pathways 8,20 , and 21), all of them pathways belong to the $\mathrm{S}_{1} \rightarrow \mathrm{~Tb}^{3+}$ energy transfer channel and only pathway 21 is relevant, with a contribution of $\sim 31 \%$ to the W_{S}^{b} independent of the temperature. Therefore, this indicates that temperature changes do not affect the behavior of IET rates. The values of these rates from 12 to 300 K are shown in Table S7.

It is important to mention that the ${ }^{7} \mathrm{~F}_{5}$ level is separated approximately by $2000 \mathrm{~cm}^{-1}$ from the ground ${ }^{7} \mathrm{~F}_{6}$ level, ${ }^{21}$ consequently, these levels are not so thermally coupled. However, the nonradiative decay ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{7} \mathrm{~F}_{6}$ has an abnormally long lifetime, having a non-neglected population. This is the reason behind that the ${ }^{7} \mathrm{~F}_{5}$ level can be considered as an acceptor level. ${ }^{26,28-30}$

Table S6. IET rates for the $\left\{\mathrm{Tb}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\} . \mathrm{H}_{2} \mathrm{O} . \Delta$ is the energy difference between donor and acceptor states (in cm^{-1}). W_{d-d}, W_{d-m}, and $W_{e x}$ are rates for the dipole-dipole, dipole-multipole, and exchange energy transfer mechanisms (in s^{-1}), respectively. W is the sum over them in each pathway while W^{b} is the corresponding backward (from acceptor to donor) energy transfer rate, they are multiplied by the barrier factor expe($-|\Delta| / k_{B} T$) if Δ is negative (${ }_{B}$ is the Boltzmann's constant and $T=300 \mathrm{~K}$). $W_{S}\left(W_{S}^{b}\right)$ and $W_{T}\left(W_{T}^{b}\right)$ are the total forward (backward) energy transfer rates from the S_{1} and T_{1} states.

Table S7. Total forward and backward IET rates (in s^{-1}) and lifetimes* (in ms) with the change of temperature for the $\left\{\operatorname{Tb}(\mathbf{L})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\} . \mathrm{H}_{2} \mathrm{O}$ material. The ${ }^{\tau_{S}}$ was fixed at $10^{-6} \mathrm{~s}$ **.

Temperature (K)	W_{S}	W_{S}^{b}	W_{T}	W_{T}^{b}	τ_{4}	τ_{T}
$\mathbf{1 6}$	2.51×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.28	604.17
$\mathbf{2 0}$	2.51×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.28	704.47
$\mathbf{5 0}$	2.51×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.29	682.66
$\mathbf{1 0 0}$	2.51×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.31	698.71
$\mathbf{1 5 0}$	2.52×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.31	419.50
$\mathbf{2 0 0}$	2.54×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.33	123.14
$\mathbf{2 5 0}$	2.57×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.31	-
$\mathbf{2 7 5}$	2.59×10^{6}	2.64×10^{6}	3.19×10^{4}	6.22×10^{6}	0.32	-
$\mathbf{3 0 0}$	2.60×10^{6}	2.64×10^{6}	3.20×10^{4}	6.22×10^{6}	0.31	-

* Experimentally measured.
** Since the S_{1} can be observed within a delay of $10^{-5} \mathrm{~s}$, as shown by the time-resolved emission spectra excited at 270 nm in Figure S8, this value may be acceptable.

4.4 Rate equations

Based on the IET rates and the schematic energy level diagram (Figure 7), is possible to construct an appropriate set of ordinary differential equations (ODEs) with boundary conditions and solve it from the initial state ($\mathrm{t}=0 \mathrm{~s}$) until reaching the steady-state regime, where all states are in a dynamic equilibrium. To simplify the setup of the rate equations, groups of levels are represented in brackets $|\mathrm{n}\rangle$ (as depicted in Figure 7) and their respective population as ${ }^{P}$. Thus, a 5-level set of ODEs with initial conditions (when $\mathrm{t}=0 \mathrm{~s}$) is given by:

ODE	Initial condition	Level (or Levels)
$\frac{d}{d t} P_{1}(t)=-\left(\frac{1}{\tau_{T}}+W_{T}\right) P_{1}(t)+W_{I S C} P_{2}(t)+W_{T}^{b} P_{3}(t)$	$P_{1}(0)=0$	$\mathrm{~T}_{1}$
$\frac{d}{d t} P_{2}(t)=-\left(\frac{1}{\tau_{S}}+W_{I S C}+W_{S}\right) P_{2}(t)+\phi P_{0}(t)+W_{S}^{b} P_{3}(t)$	$P_{2}(0)=0$	$\mathrm{~S}_{1}$
$\frac{d}{d t} P_{3}(t)=-\left(W_{3 \rightarrow 4}+W_{T}^{b}+W_{S}^{b}\right) P_{3}(t)+W_{S} P_{2}(t)$	$P_{3}(0)=0$	${ }^{5} \mathrm{D}_{3}$ to ${ }^{5} \mathrm{~F}_{5}$

$$
\begin{array}{llc}
\frac{d}{d t} P_{4}(t)=-\left(\frac{1}{\tau_{4}}\right) P_{4}(t)+W_{3 \rightarrow 4} P_{3}(t)+W_{T} P_{1}(t) & P_{4}(0)=0 & { }^{5} \mathrm{D}_{4} \\
\frac{d}{d t} P_{0}(t)=-\phi P_{0}(t)+\frac{1}{\tau_{T}} P_{1}(t)+\frac{1}{\tau_{S}} P_{2}(t)+\frac{1}{\tau_{4}} P_{4}(t) & P_{0}(0)=1 & \mathrm{~S}_{0} \text { and }{ }^{7} \mathrm{~F}_{6} \tag{S15}
\end{array}
$$

where ${ }^{\tau_{T}},{ }^{\tau_{S}}$, and ${ }^{\tau_{4}}$ are the lifetimes of the $\mathrm{T}_{1}, \mathrm{~S}_{1}$, and ${ }^{5} \mathrm{D}_{4}$ levels, respectively. ${ }^{W_{I S C}}$ is the intersystem crossing rate $S_{1} \rightarrow T_{1}$, which is sensitive to the energy gap between the S_{1} and T_{1} state ${ }^{31}$ and, in the present case, such energy gap of $\sim 8500 \mathrm{~cm}^{-1}$ may lead to a reasonable value of $W_{I S C \sim 10^{6} \mathrm{~s}^{-1} .32,33} W_{3 \rightarrow 4}$ is the nonradiative decay from upper levels of Tb^{3+} to the emitting ${ }^{5} \mathrm{D}_{4}$ level that is in the order of $\sim 10^{6} \mathrm{~s}^{-1}$ for Ln^{3+}-chelates. ${ }^{13} W_{T}$ and W_{S} are the forward ligand-to- Tb energy transfer rates while the backward Tb -to-ligand rates are represented by a superscript b (${ }^{W_{T}^{b}}$ and ${ }^{W_{S}^{b}}$), see Table S7.

The pumping rate $\phi \sim 136 \mathrm{~s}^{-1}$ was estimated using,
$\phi=\frac{\sigma \rho \lambda_{\text {exc }}}{h c}$
where $\sigma\left(\sim 10^{-16} \mathrm{~cm}^{2}\right)$ is the absorption cross-section of the organic ligands, $\rho\left(\sim 1 \mathrm{~W} / \mathrm{cm}^{-2}\right)$ is the power density of the excitation source at $\lambda_{\text {exc }}=270 \mathrm{~nm}$. The ${ }^{h}$ and c are the constants of Planck and the speed of light. If the power density is increased (e.g. $\rho=10 \mathrm{~W} / \mathrm{cm}^{-2}$, leading to $\phi \sim 1360 \mathrm{~s}^{-1}$), it will reflect in a higher depopulation of the ground-level (P_{0}, Eq. S15) and, of course, increasing mainly the populations of T_{1} and ${ }^{5} D_{4}$ levels. However, at the equilibrium, the ratio between the populations $P_{n}(n \neq 0$, the ground-level) are the same as those with $\rho=1$ $\mathrm{W} / \mathrm{cm}^{-2}$. This makes the population analysis of the T_{1} and ${ }^{5} \mathrm{D}_{4}$ independent of the power density.

The ODEs (Eqs. S11-S15) were solved using the fourth-order Runge-Kutta method with adaptive stepsize. ${ }^{34}$

Table S8. Population fractions in the steady-state regime for the 5-levels system represented as represented in Figure 7.

Temperature (K)	P_{1}	P_{2}	P_{3}	P_{4}	P_{0}
$\mathbf{1 6}$	2.79×10^{-3}	3.45×10^{-5}	8.78×10^{-6}	2.77×10^{-2}	9.69×10^{-1}
$\mathbf{2 0}$	2.79×10^{-3}	3.45×10^{-5}	8.78×10^{-6}	2.70×10^{-2}	9.70×10^{-1}
$\mathbf{5 0}$	2.79×10^{-3}	$3.44 \times 10-5$	8.77×10^{-6}	2.85×10^{-2}	9.69×10^{-1}

$\mathbf{1 0 0}$	2.79×10^{-3}	3.44×10^{-5}	8.76×10^{-6}	3.00×10^{-2}	9.67×10^{-1}
$\mathbf{1 5 0}$	2.79×10^{-3}	3.43×10^{-5}	8.77×10^{-6}	2.98×10^{-2}	9.67×10^{-1}
$\mathbf{2 0 0}$	2.78×10^{-3}	3.41×10^{-5}	8.79×10^{-6}	3.22×10^{-2}	9.65×10^{-1}

Figure S14. Population fraction as a function of time for the ${ }^{5} \mathrm{D}_{4}, \mathrm{~T}_{1}$, (both left-side scale) and the ground state $|0\rangle$ (right-side scale) when the temperature is changed from 16 to 200 K . The hypothetical case, where the ${ }^{\tau_{T}}$ and ${ }^{\tau_{S}}$ are shorter, is illustrated in the last graph at the bottom.

References

1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision D.01, 2013.
C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
A. N. Carneiro Neto, E. E. S. Teotonio, G. F. de Sá, H. F. Brito, J. Legendziewicz, L. D. Carlos, M. C. F. C. Felinto, P. Gawryszewska, R. T. Moura Jr., R. L. Longo, W. M. Faustino and O. L. Malta, in Handbook on the Physics and Chemistry of Rare Earths, volume 56, Elsevier, 2019, pp. 55-162.
14 A. N. Carneiro Neto and R. T. Moura Jr., Chem. Phys. Lett., 2020, 757, 137884.
15 R. T. Moura Jr, A. N. Carneiro Neto, R. L. Longo and O. L. Malta, J. Lumin., 2016, 170, 420-430.
16 O. L. Malta, H. J. Batista and L. D. Carlos, Chem. Phys., 2002, 282, 21-30.
17 R. T. Moura, O. L. Malta and R. L. Longo, Int. J. Quantum Chem., 2011, 111, 16261638.

18 R. T. Moura Jr., G. C. S. Duarte, T. E. da Silva, O. L. Malta and R. L. Longo, Phys. Chem. Chem. Phys., 2015, 17, 7731-7742.
19 A. N. Carneiro Neto, E. C. Aguiar, C. V. Santos-Jr., E. M. de Lima, A. Shyichuk, E. E. S. Teotonio, W. M. Faustino, H. F. Brito, M. C. F. C. Felinto, R. A. S. Ferreira, R. L. Longo, L. D. Carlos, O. L. Malta and R. T. Moura Jr., To be Submitt. O. L. Malta, J. Lumin., 1997, 71, 229-236.

21 W. T. Carnall, H. Crosswhite and H. M. Crosswhite, Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF ${ }_{3}$, Argonne, IL (United States), IL (United States), 1978.
22 S. Edvardsson and M. Klintenberg, J. Alloys Compd., 1998, 275-277, 230-233.
23 L. Smentek, Phys. Rep., 1998, 297, 155-237.

24 F. R. G. e Silva and O. L. Malta, J. Alloys Compd., 1997, 250, 427-430.
25 G. S. Ofelt, J. Chem. Phys., 1963, 38, 2171-2180.
26 E. Kasprzycka, A. N. Carneiro Neto, V. A. Trush, L. Jerzykiewicz, V. M. Amirkhanov, O. L. Malta, J. Legendziewicz and P. Gawryszewska, J. Rare Earths, 2020, 38, 552-563.
27 O. L. Malta, J. Non. Cryst. Solids, 2008, 354, 4770-4776.
28 K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal and K. Nitsch, J. Opt. Soc. Am. B, 2004, 21, 2117.
29 U. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker and S. A. Payne, Appl. Phys. Lett., 2005, 86, 151911.

30 A. S. Souza, L. A. Nunes, M. C. F. C. Felinto, H. F. Brito and O. L. Malta, J. Lumin., 2015, 167, 167-171.
31 M. J. Beltrán-Leiva, E. Solis-Céspedes and D. Páez-Hernández, Dalt. Trans., 2020, 49, 7444-7450.
32 M. A. El-Sayed, J. Chem. Phys., 1963, 38, 2834-2838.
33 M. Kasha, Discuss. Faraday Soc., 1950, 9, 14.
34 W. Press, S. Teukolsky, W. Vetterling, B. Flannery, E. Ziegel, W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipes: The Art of Scientific Computing, 1987, vol. 29.

