Photophysical Studies of a Room Temperature Phosphorescent Cd(II) based MOF and its Application towards Ratiometric Detection of Hg²⁺ Ions in Water

Prakash Majee,^a Debal Kanti Singha,^{a,b} Pooja Daga,^a Sayani Hui,^b Partha Mahata^{b*} and Sudip Kumar Mondal^{a*}

^aDepartment of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. Email: <u>sudip.mondal@visva-bharati.ac.in</u>
^bDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India. Email: <u>parthachem@gmail.com</u>

ELECTRONIC SUPPLEMENTARY INFORMATION

^{*} Corresponding Authors, E-mail: sudip.mondal@visva-bharati.ac.in, parthachem@gmail.com

Bond	Distances, Å	Bond	Distances, Å
Cd(1)-O(1)	2.303(3)	Cd(1)-O(2)	2.623(4)
Cd(1)-O(3)#1	2.335(3)	Cd(1)-S(1)	2.5417(10)
Cd(1)-O(4)#1	2.411(3)	Cd(1)-S(1)#2	2.7194(10)

Table S1: Selected bond distances (Å) observed in $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd 1.

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y+1/2,z-1/2 #2 x+1,y,z

Table S2: Selected bond angles observed in $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd_1.

Angle	Amplitude (°)	Angle	Amplitude (°)
O(1)-Cd(1)-O(3)#1	122.35(11)	O(4)#1-Cd(1)-O(2)	102.79(11)
O(1)-Cd(1)-O(4)#1	152.32(12)	S(1)-Cd(1)-O(2)	147.10(7)
O(3)#1-Cd(1)-O(4)#1	55.54(10)	O(1)-Cd(1)-S(1)#2	77.98(8)
O(1)-Cd(1)-S(1)	94.68(8)	O(3)#1-Cd(1)-S(1)#2	134.21(8)
O(3)#1-Cd(1)-S(1)	121.62(9)	O(4)#1-Cd(1)-S(1)#2	87.05(8)
O(4)#1-Cd(1)-S(1)	109.47(8)	S(1)-Cd(1)-S(1)#2	93.34(3)
O(1)-Cd(1)-O(2)	52.45(10)	O(2)-Cd(1)-S(1)#2	81.86(8)
O(3)#1-Cd(1)-O(2)	82.12(10)		

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y+1/2,z-1/2 #2 x+1,y,z

Fig. S1: Powder XRD (CuK α) patterns of [Cd(C₅N₁S₁H₄)(C₆O₅H₃)], Cd_1: (a) simulated pattern from single crystal X-ray data (b) experimental data (c) after immerging in Hg²⁺ for 24 hours.

Fig. S2: Thermogravimetric analysis (TGA) of $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd_1, in nitrogen atmosphere.

Fig. S3: IR spectrum of $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd_1.

Fig. S4: SEM image of $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd_1.

Fig. S5: Representative EDX plot of $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd_1.

Fig. S6: (a) SEM image in which elemental mapping is performed in Cd_1 and elemental mapping images, (b) C K, (c) N K, (d) O K (e) S K and (f) Cd L.

Fig. S7: Figure shows asymmetric unit of $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd_1.

Fig. S8: Figure shows arrangement of the two-dimensional structures in ABAB....fashion in $[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$, Cd_1.

Fig. S9: Absorption spectra of compound Cd_1 and corresponding ligands (furan-2,5-dicarboxylic acid and aldrithiol-4). The absorption band at ~ 325 nm which get diminished with the gradual addition of Hg²⁺ ions, is actually originated from the mercaptopyridine (4MPyH) moiety. The band (~325 nm) is most probably due to the n- π * (HOMO to LUMO) transition (non-bonding electron of pyridine N get excited to the π * orbital of ring carbon). With the addition of Hg²⁺ the non-bonding electrons of pyridine N get involved in the interaction with Hg²⁺ ions. As a result, the n- π * transition (~325 nm) get diminished. This is also a clear indication that the Hg²⁺ ions interacts with the N atom of pyridine moiety.

Fig. S10: Absorption of compound Cd_1 and changes in spectra after the addition of Pb^{2+} (3 μ M).

Fig. S11: Absorption of compound Cd_1 and changes in spectra after the addition of Cu^{2+} (3 μ M).

Fig. S12: Absorption of compound Cd_1 and changes in spectra after the addition of Al^{3+} (3 μ M).

Fig. S13: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Fe²⁺ solution $(\lambda_{ex} = 330 \text{ nm})$. Final concentration of Fe²⁺ in the medium is indicated in the legend.

Fig. S14: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Zn^{2+} solution $(\lambda_{ex} = 330 \text{ nm})$. Final concentration of Zn^{2+} in the medium is indicated in the legend.

Fig. S15: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Mn^{2+} solution ($\lambda_{ex} = 330$ nm). Final concentration of Mn^{2+} in the medium is indicated in the legend.

Fig. S16: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Cd²⁺ solution $(\lambda_{ex} = 330 \text{ nm})$. Final concentration of Cd²⁺ in the medium is indicated in the legend.

Fig. S17: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Ag⁺ solution $(\lambda_{ex} = 330 \text{ nm})$. Final concentration of Ag⁺ in the medium is indicated in the legend.

Fig. S18: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Co²⁺ solution $(\lambda_{ex} = 330 \text{ nm})$. Final concentration of Co²⁺ in the medium is indicated in the legend.

Fig. S19: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Fe³⁺ solution (λ_{ex} = 330 nm). Final concentration of Fe³⁺ in the medium is indicated in the legend.

Fig. S20: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Pb²⁺ solution (λ_{ex} = 330 nm). Final concentration of Pb²⁺ in the medium is indicated in the legend.

Fig. S21: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Cu²⁺ solution $(\lambda_{ex} = 330 \text{ nm})$. Final concentration of Cu²⁺ in the medium is indicated in the legend.

Fig. S22: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Al³⁺ solution (λ_{ex} = 330 nm). Final concentration of Al³⁺ in the medium is indicated in the legend.

Fig. S23: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of K⁺ solution (λ_{ex} = 330 nm). Final concentration of K⁺ in the medium is indicated in the legend.

Fig. S24: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Cr^{3+} solution (λ_{ex} = 330 nm). Final concentration of Cr^{3+} in the medium is indicated in the legend.

Fig. S25: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Ni²⁺ solution (λ_{ex} = 330 nm). Final concentration of Ni²⁺ in the medium is indicated in the legend.

Fig. S26: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Mg²⁺ solution $(\lambda_{ex} = 330 \text{ nm})$. Final concentration of Mg²⁺ in the medium is indicated in the legend.

Fig. S27: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Na⁺ solution (λ_{ex} = 330 nm). Final concentration of Na⁺ in the medium is indicated in the legend.

Fig. S28: Blue line shows the IR spectra of compound **1**. Red line shows the IR spectra of Cd_1 after the addition Hg^{2+} ions. The encircled areas are a visual guide to point out the changes in IR peaks after the addition of Hg^{2+} ions.

Fig. S29: Plot of ratio of luminescence intensity at 383 nm and 520 nm of compound Cd_1 upon addition of Hg^{2+} in low concentration region. Red line is the linear fitted line of experimental data points ($R^2 = 0.99514$) and the slope of the graph is 1.148.

Fig. S30: Plot of ratio of luminescence intensity at 383 nm and 520 nm of compound Cd_1 upon addition of Hg^{2+} in low concentration region. Red line is the linear fitted line of experimental data points ($R^2 = 0.99518$) and the slope of the graph is 1.198.

Calculation of Detection Limit

Standard deviation for compound Cd_1				
Blank Reading (only compound Cd_1)	Fluorescence Intensity Ratio			
Reading 1	0.10			
Reading 2	0.12			
Reading 3	0.13			
Reading 4	0.12			
Reading 5	0.14			
Standard deviation(σ)	0.015			

Standard Deviation (σ)	0.015
Slope from Graph (m)	1.20 μM ⁻¹

Thus, Limit of Detection (LOD) = $3\sigma/m = (3 \times 0.015)/1.20 = 37.5$ nM = 7.4 ppb

Sl.	Sensor	K _{SV} (M ⁻¹)	Detection	Luminescence	Ref.
No			Limit	response	
1	$[Cd(2-NH_2bdc) (tib) \cdot 4H_2O \cdot 0.5DMA]_n$	13×10^{5}	42 nM	Quenching	s1
2	Ad/Tb/DPA	NA	0.2 nM	Enhancemen	s2
				t	
3	${[Cd_{1.5}(C_{18}H_{10}O_{10})] \cdot (H_3O)(H_2O)_3}_n$	4.3×10^{3}	2 nM	Ratiometric	s3
4	Tb-CIP/AMP	NA	0.16 nM	Quenching	s4
5	$TbL_{1.5}(H_2O)_2] \cdot H_2O$	7.4×10^{3}	NA	Quenching	s5
6	Zr ₆ O ₄ (OH) ₄ (TCPP) _{1.5}	6.4 × 10 ⁵	6 nM	Quenching	s6
7	Eu/IPA-Im	NA	2 nM	Enhancemen	s7
				t	
8	$[Zn(\mu_2-1H-ade)(\mu_2-SO_4)]_n$	7.7×10^{3}	70 nM	Quenching	s8
9	Zn-based MOF	3737	1.8 µM	Enhancemen	s9
				t	
10	$Ln(TATAB) \cdot (DMF)_4(H_2O)(MeOH)_{0.5}$	4851	4.4 nM	Quenching	s10
11	${[Zn(4,4'-AP)(5-AIA)]. (DMF)_{0.5}}_{n}$	1.01× 10 ⁹	9.9 pM	Quenching	s11
12	$[Pb_2(2-NCP)_2(L_1)]_n$	4.28×10^{5}	1.3 ppm	Quenching	s12
13	$[Cd(C_5N_1S_1H_4)(C_6O_5H_3)]$	1.15×10 ⁶	37.5 nM	Ratiometric	This
					work

Table S3: Summary of some reported metal-organic compounds for the detection of Hg^{2+} in an aqueous medium.

Fig. S31: Change of percentage in luminescence intensity at 520 nm upon the addition of 2 μ L 1 mM quenchable metal ions followed by the addition of Hg²⁺ solution (two steps, 1 μ L + 1 μ L) and so on. The shaded portion represents the addition of Hg²⁺ in two steps. The added solution of metal ions are as below: (a) blank + 2 μ L Fe³⁺ + 2 μ L Cr³⁺ + 2 μ L Al³⁺ + 2 μ L Pb²⁺, (b) a + 2 μ L Hg²⁺, (c) b + 2 μ L Zn²⁺ + 2 μ L Cd²⁺ + 2 μ L Ag⁺ + 2 μ L Cu²⁺, (d) c + 2 μ L Hg²⁺ (e) d + 2 μ L Mn²⁺ + 2 μ L Fe²⁺ + 2 μ L Co²⁺ + 2 μ L Ni²⁺, (f) e + 2 μ L Hg²⁺ (g) f + 2 μ L Mg²⁺ + 2 μ L K⁺ + 2 μ L Na⁺, (h) a + 2 μ L Hg²⁺.

Fig. S32: (1) Luminescence spectrum of compound Cd_1 (2) luminescence spectrum of compound Cd_1 after passing Argon gas for 10 minutes upon excitation at 330 nm.

Fig. S33: Possible interactions between Hg^{2+} ions and Cd_1 with two S atoms of the 4MPy moiety of two adjacent 1D chain.

REFERENCES

S1. Wen, L.; Zheng, X.; Lv, K.; Wang, C.; Xu, X., Two amino-decorated metal-organic frameworks for highly selective and quantitatively sensing of HgII and CrVI in aqueous solution. *Inorg. Chem.* **2015**, *54* (15), 7133-7135.

S2. Tan, H.; Liu, B.; Chen, Y., Lanthanide coordination polymer nanoparticles for sensing of mercury (II) by photoinduced electron transfer. *ACS nano* **2012**, *6* (12), 10505-10511.

S3. Wu, P.; Liu, Y.; Liu, Y.; Wang, J.; Li, Y.; Liu, W.; Wang, J., Cadmium-Based Metal–Organic Framework as a Highly Selective and Sensitive Ratiometric Luminescent Sensor for Mercury(II). *Inorg. Chem.* **2015**, *54* (23), 11046-11048.

S4. Liu, B.; Huang, Y.; Zhu, X.; Hao, Y.; Ding, Y.; Wei, W.; Wang, Q.; Qu, P.; Xu, M., Smart lanthanide coordination polymer fluorescence probe for mercury (II) determination. *Anal. Chim. Acta* **2016**, *912*, 139-145.

S5. Zhu, Y.-M.; Zeng, C.-H.; Chu, T.-S.; Wang, H.-M.; Yang, Y.-Y.; Tong, Y.-X.; Su, C.-Y.; Wong, W.-T., A novel highly luminescent LnMOF film: a convenient sensor for Hg2+ detecting. *J. Mater. Chem. A* **2013**, *1* (37), 11312-11319.

S6. Yang, J.; Wang, Z.; Li, Y.; Zhuang, Q.; Zhao, W.; Gu, J., Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury (II) ions in aqueous phase. *RSC Adv.* **2016**, *6* (74), 69807-69814.

S7. Li, Q.; Wang, C.; Tan, H.; Tang, G.; Gao, J.; Chen, C.-H., A turn on fluorescent sensor based on lanthanide coordination polymer nanoparticles for the detection of mercury (II) in biological fluids. *RSC Adv.* **2016**, *6* (22), 17811-17817.

S8. Rachuri, Y.; Parmar, B.; Bisht, K. K.; Suresh, E., Multiresponsive adenine-based luminescent Zn (II) coordination polymer for detection of Hg2+ and trinitrophenol in aqueous media. *Cryst. Growth Des.* **2017**, *17* (3), 1363-1372.

S9. Razavi, S. A. A.; Masoomi, M. Y.; Morsali, A., Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal–Organic Framework. *Inorg. Chem.* **2017**, *56* (16), 9646-9652.

S10. Xia, T.; Song, T.; Zhang, G.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G., A Terbium Metal–Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg2+ Ions in Aqueous Solution. *Chem. Eur. J.* **2016**, *22* (51), 18429-18434.

S11. Pankajakshan, A.; Kuznetsov, D.; Mandal, S., Ultrasensitive Detection of Hg(II) Ions in Aqueous Medium Using Zinc-Based Metal–Organic Framework. *Inorg. Chem.* **2019**, *58* (2), 1377-1381.

S12. Qiao, Y.; Guo, J.; Li, D.; Li, H.; Xue, X.; Jiang, W.; Che, G.; Guan, W., Fluorescent sensing response of metal-organic frameworks for the highly sensitive detection of Hg2+ and nitrobenzene in aqueous media. *J. Solid State Chem.* **2020**, *290*, 121610.