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Table S1:  Selected bond distances (Å) observed in [Cd(C5N1S1H4)(C6O5H3)], Cd_1.
Bond Distances, Å Bond Distances, Å

Cd(1)-O(1) 2.303(3) Cd(1)-O(2) 2.623(4)

Cd(1)-O(3)#1 2.335(3) Cd(1)-S(1) 2.5417(10)

Cd(1)-O(4)#1 2.411(3) Cd(1)-S(1)#2 2.7194(10)

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y+1/2,z-1/2    #2 x+1,y,z

Table S2:  Selected bond angles observed in [Cd(C5N1S1H4)(C6O5H3)], Cd_1. 
Angle Amplitude (º) Angle Amplitude (º)

O(1)-Cd(1)-O(3)#1 122.35(11) O(4)#1-Cd(1)-O(2) 102.79(11)

O(1)-Cd(1)-O(4)#1 152.32(12) S(1)-Cd(1)-O(2) 147.10(7)

O(3)#1-Cd(1)-O(4)#1 55.54(10) O(1)-Cd(1)-S(1)#2 77.98(8)

O(1)-Cd(1)-S(1) 94.68(8) O(3)#1-Cd(1)-S(1)#2 134.21(8)

O(3)#1-Cd(1)-S(1) 121.62(9) O(4)#1-Cd(1)-S(1)#2 87.05(8)

O(4)#1-Cd(1)-S(1) 109.47(8) S(1)-Cd(1)-S(1)#2 93.34(3)

O(1)-Cd(1)-O(2) 52.45(10) O(2)-Cd(1)-S(1)#2 81.86(8)

O(3)#1-Cd(1)-O(2) 82.12(10)

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y+1/2,z-1/2    #2 x+1,y,z
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Fig. S1: Powder XRD (CuKα) patterns of [Cd(C5N1S1H4)(C6O5H3)], Cd_1: (a) simulated pattern from 

single crystal X-ray data (b) experimental data (c) after immerging in Hg2+ for 24 hours.
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Fig. S2: Thermogravimetric analysis (TGA) of [Cd(C5N1S1H4)(C6O5H3)], Cd_1, in nitrogen 

atmosphere.
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Fig. S3: IR spectrum of [Cd(C5N1S1H4)(C6O5H3)], Cd_1.
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Fig. S4: SEM image of [Cd(C5N1S1H4)(C6O5H3)], Cd_1.
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Element Weight %
C K 33.13
N K 3.64
O K 22.98
S K 7.82
Cd L 29.33

Fig. S5: Representative EDX plot of [Cd(C5N1S1H4)(C6O5H3)], Cd_1.
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Fig. S6: (a) SEM image in which elemental mapping is performed in Cd_1 and elemental mapping images, (b) 

C K, (c) N K, (d) O K (e) S K and (f) Cd L.
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Fig. S7: Figure shows asymmetric unit of [Cd(C5N1S1H4)(C6O5H3)], Cd_1.
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Fig. S8: Figure shows arrangement of the two-dimensional structures in ABAB….fashion in 

[Cd(C5N1S1H4)(C6O5H3)], Cd_1.
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Fig. S9: Absorption spectra of compound Cd_1 and corresponding ligands (furan-2,5-dicarboxylic acid and 

aldrithiol-4). The absorption band at ~ 325 nm which get diminished with the gradual addition of Hg2+ ions, is 

actually originated from the mercaptopyridine (4MPyH) moiety. The band (~325 nm) is most probably due to 

the n* (HOMO to LUMO) transition (non-bonding electron of pyridine N get excited to the * orbital of ring 

carbon). With the addition of Hg2+ the non-bonding electrons of pyridine N get involved in the interaction with 

Hg2+ ions. As a result, the n* transition (~325 nm) get diminished. This is also a clear indication that the Hg2+ 

ions interacts with the N atom of pyridine moiety. 
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Fig. S10: Absorption of compound Cd_1 and changes in spectra after the addition of Pb2+ (3 µM).
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Fig. S11: Absorption of compound Cd_1 and changes in spectra after the addition of Cu2+ (3 µM).
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Fig. S12: Absorption of compound Cd_1 and changes in spectra after the addition of Al3+ (3 µM).
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Fig. S13:  Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Fe2+ solution 

(ex = 330 nm). Final concentration of Fe2+ in the medium is indicated in the legend.
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Fig. S14: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Zn2+ solution 

(ex = 330 nm). Final concentration of Zn2+ in the medium is indicated in the legend.
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Fig. S15:  Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Mn2+ solution 

(ex = 330 nm). Final concentration of Mn2+ in the medium is indicated in the legend.
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Fig. S16: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Cd2+ solution 

(ex = 330 nm). Final concentration of Cd2+ in the medium is indicated in the legend.
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Fig. S17: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Ag+ solution 

(ex = 330 nm). Final concentration of Ag+ in the medium is indicated in the legend.
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Fig. S18: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Co2+ solution 

(ex = 330 nm). Final concentration of Co2+ in the medium is indicated in the legend.
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Fig. S19: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Fe3+ solution (ex 

= 330 nm). Final concentration of Fe3+ in the medium is indicated in the legend.
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Fig. S20: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Pb2+ solution (ex 

= 330 nm). Final concentration of Pb2+ in the medium is indicated in the legend.
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Fig. S21: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Cu2+ solution 

(ex = 330 nm). Final concentration of Cu2+ in the medium is indicated in the legend.
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Fig. S22: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Al3+ solution (ex 

= 330 nm). Final concentration of Al3+ in the medium is indicated in the legend.
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Fig. S23: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of K+ solution (ex 

= 330 nm). Final concentration of K+ in the medium is indicated in the legend.
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Fig. S24: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Cr3+ solution (ex 

= 330 nm). Final concentration of Cr3+ in the medium is indicated in the legend.
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Fig. S25: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Ni2+ solution (ex 

= 330 nm). Final concentration of Ni2+ in the medium is indicated in the legend.
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Fig. S26: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Mg2+ solution 

(ex = 330 nm). Final concentration of Mg2+ in the medium is indicated in the legend.
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Fig. S27: Emission spectra of compound Cd_1 dispersed in water upon incremental addition of Na+ solution (ex 

= 330 nm). Final concentration of Na+ in the medium is indicated in the legend.
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Fig. S28: Blue line shows the IR spectra of compound 1. Red line shows the IR spectra of Cd_1 after the 

addition Hg2+ ions. The encircled areas are a visual guide to point out the changes in IR peaks after the addition 

of Hg2+ ions.
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Fig. S29: Plot of ratio of luminescence intensity at 383 nm and 520 nm of compound Cd_1 upon addition of 

Hg2+ in low concentration region. Red line is the linear fitted line of experimental data points (R2 = 0.99514) 

and the slope of the graph is 1.148.
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Fig. S30: Plot of ratio of luminescence intensity at 383 nm and 520 nm of compound Cd_1 upon addition of 

Hg2+ in low concentration region. Red line is the linear fitted line of experimental data points (R2 = 0.99518) 

and the slope of the graph is 1.198.

Calculation of Detection Limit

Standard deviation for compound Cd_1
Blank Reading (only compound Cd_1) Fluorescence Intensity Ratio

Reading 1 0.10
Reading 2 0.12
Reading 3 0.13
Reading 4 0.12
Reading 5 0.14

Standard deviation(σ) 0.015

Standard Deviation (σ) 0.015
Slope from Graph (m) 1.20 µM-1

Thus, Limit of Detection (LOD) = 3σ/m = (3×0.015)/1.20 = 37.5 nM = 7.4 ppb
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Table S3: Summary of some reported metal-organic compounds for the detection of Hg2+ in an aqueous 
medium.

Sl. 

No

Sensor KSV (M-1) Detection 

Limit

Luminescence

response

Ref.

1 [Cd(2-NH2bdc) (tib)·4H2O·0.5DMA]n 13 × 105 42 nM Quenching s1

2 Ad/Tb/DPA NA 0.2 nM Enhancemen

t

s2

3 {[Cd1.5(C18H10O10)]·(H3O)(H2O)3}n 4.3 × 103 2 nM Ratiometric s3

4 Tb-CIP/AMP NA 0.16 nM Quenching s4

5 TbL1.5(H2O)2]·H2O 7.4 × 103 NA Quenching s5

6 Zr6O4(OH)4(TCPP)1.5 6.4 × 105 6 nM Quenching s6

7 Eu/IPA-Im NA 2 nM Enhancemen

t

s7

8 [Zn(μ2-1H-ade)(μ2-SO4)]n 7.7 × 103 70 nM Quenching s8

9 Zn-based MOF 3737 1.8 µM Enhancemen

t

s9

10 Ln(TATAB)·(DMF)4(H2O)(MeOH)0.5 4851 4.4 nM Quenching s10

11 {[Zn(4,4′-AP)(5-AIA)]. (DMF)0.5}n 1.01× 109 9.9 pM Quenching s11

12 [Pb2(2-NCP)2(L1)]n 4.28 × 105 1.3 ppm Quenching s12

13 [Cd(C5N1S1H4)(C6O5H3)] 1.15×106 37.5 nM Ratiometric This 

work
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Fig. S31: Change of percentage in luminescence intensity at 520 nm upon the addition of 2 𝝁L 1 mM 

quenchable metal ions followed by the addition of Hg2+ solution (two steps, 1 µL + 1 µL) and so on. The shaded 

portion represents the addition of Hg2+ in two steps. The added solution of metal ions are as below: (a) blank + 

2 µL Fe3+ + 2 µL Cr3+ + 2 µL Al3+ + 2 µL Pb2+, (b) a + 2 µL Hg2+, (c) b + 2 µL Zn2+ + 2 µL Cd2+ + 2 µL Ag+ + 

2 µL Cu2+, (d) c + 2 µL Hg2+ (e) d + 2 µL Mn2+ + 2 µL Fe2+ + 2 µL Co2+ + 2 µL Ni2+, (f) e + 2 µL Hg2+ (g) f + 2 

µL Mg2+ + 2 µL K+ + 2 µL Na+, (h) a + 2 µL Hg2+.
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Fig. S32: (1) Luminescence spectrum of compound Cd_1 (2) luminescence spectrum of compound Cd_1 after 

passing Argon gas for 10 minutes upon excitation at 330 nm.
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Fig. S33: Possible interactions between Hg2+ ions and Cd_1 with two S atoms of the 4MPy moiety of two 

adjacent 1D chain.
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