Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

Six Co^{II} Coordination polymers Manifesting UV-light-driven

Photocatalysis for the Degradation of Organic Dyes

Xue Lu,^{IIa} Ying Zhao,^{IIa} Xiu-Li Wang,^{*a} Guo-Cheng Liu,^a Na Xu,^a Hong-Yan Lin^a and Xiang Wang^a ^a College of Chemistry and Chemical Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou, 121000, P. R. China.

Materials and characterization

All purchased chemical reagents are analytically pure and not further purified when used. The 4-bmpnd ligand was synthesized according to the reported literature.^{S1} IR spectra (KBr pellets) were measured using a Varian 640 FT-IR spectrometer at wavenumbers between 400 and 4000 cm⁻¹. Powder X-ray diffraction (PXRD) data were taken on a D/teX Ultra diffractometer equipped with Cu-K α ($\lambda = 1.5406$ Å) radiation over the 2θ range of 5–50°; The solid-state diffuse-reflectance UV/vis spectra for powder samples were recorded with a Perkin-Elmer Lambda 750 UV/vis spectrometer equipped with an integrating sphere by using BaSO₄ as a white standard; UV-vis absorption spectra were obtained by using a SP-1901 UV-vis spectrophotometer.

X-Ray crystallography

The crystal data of CPs 1-6 were collected on a Bruker SMART APEX II diffractometer at 296K. In the collection process, a CCD area detector and graphite-monochromatic Cu-K α (λ = 0.71073 Å) with the φ - ω scan technique was adopted. The structure was resolved by direct methods. The crystal data were refined by full-matrix least squares on F^2 by using the SHELXS-2014 programs.^{S2} Crystallographic data and details of structural refinement for 1-6 are summarized in Table 1. Selected bond lengths and angles of the CPs 1-6 were listed in Table S1 in the Supporting Information and the crystallographic data in CIF format are available freely from the Cambridge Crystallography Data Centre (CCDC) via www.ccdc.cam.ac.uk/conts/retrieving.html. The CCDC numbers of CPs 1-6 are 1916792, 1916794, 1916797, 1916795, and 1943488-1943489, respectively.

Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

	Con	plex 1	
Co(1)–O(6)	2.0522(15)	Co(1)-O(6)#1	2.0522(15)
Co(1) –O(1W)	2.1266(15)	Co(1)–O(1W)#1	2.1266(15)
Co(1) –N(1)	2.1736(18)	Co(1)–N(1)#1	2.1736(19)
O(6)–Co(1)–O(6)#1	180.00(9)	O(6)-Co(1)-O(1W)	88.27(6)
O(6)#1–Co(1)–O(1W)	91.73(6)	O(6)-Co(1)-O(1W)#1	91.73(6)
O(6)#1–Co(1)–O(1W)#1	88.27(6)	O(1W)-Co(1)-O(1W)#1	180
O(6)–Co(1)–N(1)#1	89.83(6)	O(6)#1-Co(1)-N(1)#1	90.17(6)
O(1W)–Co(1)–N(1)#1	92.53(6)	O(1W)#1-Co(1)-N(1)#1	87.47(6)
O(6)–Co(1)–N(1)	90.17(6)	O(6)#1-Co(1)-N(1)	89.83(6)
O(1W)–Co(1)–N(1)	87.47 (6)	O(1W)#1-Co(1)-N(1)	92.53(6)
N(1)#1-Co(1)-N(1)	180		
Symmetry code for $1: #1: -x$	+1, -y+1, -z+1		
	Con	nplex 2	
Co(1)–O(6)#1	2.042(3)	Co(1)–O(3W)	2.124(4)
Co(1)–N(9)	2.128(4)	Co(1)–N(1)	2.145(4)
Co(1)–O(12)	2.214(4)	Co(1)–O(11)	2.277(4)
Co(2)–O(4)	1.950(4)	Co(2)–N(4)	2.061(4)
Co(2)–N(5)	2.066(4)	Co(2)-O(15)#2	2.097(4)
O(6)#1-Co(1)-O(1W)	90.24(15)	O(6)#1-Co(1)-N(9)	90.32(15)
O(1W)-Co(1)-N(9)	177.40(17)	O(6)#1-Co(1)-N(1)	102.23(16)
O(1W)-Co(1)-N(1)	87.14(16)	N(9)-Co(1)-N(1)	95.21(16)
O(6)#1-Co(1)-O(12)	112.09 (14)	O(1W)–Co(1)–O(12)	88.01(14)
N(9)–Co(1)–O(12)	89.42(15)	N(1)-Co(1)-O(12)	145.35(15)
O(6)#1-Co(1)-O(11)	170.44(14)	O(1W)–Co(1)–O(11)	88.85(15)
N(9)–Co(1)–O(11)	90.15(15)	N(1)-Co(1)-O(11)	87.23(14)
O(12)–Co(1)–O(11)	58.37(12)	O(4)-Co(2)-N(4)	111.40(17)
O(4)–Co(2)–N(5)	103.41(16)	N(4)-Co(2)-N(5)	102.48(17)
O(4)–Co(2)–O(15)#2	89.80(16)	N(4)-Co(2)-O(15)#2	150.96(18)
N(5)-Co(2)-O(15)#2	90.96(16)		
Symmetry of	code for 2 : $\#1: -x +$	1, -y + 1, -z - 1; #2: -x, -y, -z -	- 2
	Con	nplex 3	
Co(1)-O(10)	1.938(2)	Co(1)–O(5)#1	2.000(2)
Co(1)–N(4)#2	2.050(3)	Co(1)-N(6)	2.063(3)

Co(2)–N(1)

Co(2)–N(5)

Co(2)–O(1W)

1.974(2)

2.103(2)

2.247(3)

Co(2)-O(7)#3

Co(2)–O(4)#4

Co(2)–O(3)#4

2.089(3)

2.214(3)

2.248(3)

This journal is C The R	oyal Society of	Chemistry		
O(10)-Co(1)-O(5)#1	101.42(11)	O(10)-Co(1)-N(4)#2	104.70(12)	
O(5)#1-Co(1)-N(4)#2	123.97(12)	O(10)–Co(1)–N(6) 107.13(11		
O(5)#1-Co(1)-N(6)	105.63(11)	N(4)#2-Co(1)-N(6)	-N(6) 112.41(12)	
O(7)#3–Co(2)–N(1)	103.31(12)	O(7)#3-Co(2)-O(4)#4)#4 100.92(11)	
N(1)-Co(2)-O(4)#4	153.17(11)	O(7)#3-Co(2)-N(5	94.56(11)	
N(1)-Co(2)-N(5)	96.93(11)	O(4)#4–Co(2)–N(5)	92.46(11)	
O(7)#3–Co(2)–O(3)#4	161.01(11)	N(1)-Co(2)-O(3)#4	95.36(11)	
O(4)#4–Co(2)–O(3)#4	60.09(9)	N(5)-Co(2)-O(3)#4	86.52(11)	
O(7)#3–Co(2)–O(1W)	82.12(12)	N(1)-Co(2)-O(1W)	90.66(13)	
O(4)#4–Co(2)–O(1W)	81.36(12)	N(5)-Co(2)-O(1W)	172.25(12)	
O(3)#4–Co(2)–O(1W)	94.35(11)			
Symmetry code for $3: #1: x, y$	y-1, z; #2: -x-2,	y + 1/2, -z + 1/2; #3: x + 1, y, z	x; #4: x, y+1, z	
	Cor	nplex 4		
Co(1)–O(4)#1	2.0224(13)	Co(1)–O(3)#2	2.0227(13)	
Co(1)–O(5)#3	2.0378(13)	Co(1)–N(1)	2.0617(15)	
Co(1)–O(2)	2.0799(14)	Co(1)–Co(1)#2	2.7346(5)	
O(4)#1-Co(1)-O(3)#2	91.73(6)	O(4)#1-Co(1)-O(5)#3	165.56(6)	
O(3)#2–Co(1)–O(5)#3	88.43(7)	O(4)#1-Co(1)-N(1)	100.03(6)	
O(3)#2-Co(1)-N(1)	105.83(6)	O(5)#3-Co(1)-N1	93.81(6)	
O(4)#1–Co(1)–O(2)	89.81(6)	O(3)#2-Co(1)-O(2)	165.31(6)	
O(5)#3–Co(1)–O(2)	86.48(7)	N(1)-Co(1)-O(2)	88.27(6)	
O(4)#1-Co(1)-Co(1)#2	86.38(4)	O(3)#2-Co(1)-Co(1)#2	91.74(5)	
O(5)#3-Co(1)-Co(1)#2	79.18(4)	N(1)-Co(1)-Co(1)#2	160.98(5)	
O(2)–Co(1)–Co(1)#2	73.77(5)	1 1 1/2		
Symmetry code for 4: $\#1: x -$	-1, y, z; #2: -x + 1,	-y - 1, -z - 1; #3: -x + 2, -y -	1, -z - 1	
$C_{2}(1) O(1)$	2 1050(10)	$C_{2}(1) O(1)^{\#1}$	2 1050(10)	
$C_{0}(1) = O(1)$	2.1030(19)	$C_0(1) = O(1)\#1$	2.1030(19)	
$C_{0}(1) = O(1 W)$	2.0972(18)	$C_0(1) = O(1 \text{ W}) \# 1$	2.09/1(18)	
$C_{0}(1) - N(1)$	2.1/0(10)	$C_0(1) = N(1) \# 1$ $C_0(2) = O(4) \# 2$	2.1/0(10)	
$C_{0}(2) = O(4)$	2.0941(10)	$C_0(2) = O(4) \# 2$	2.0941(10)	
$C_0(2) = I_1(2)$ $C_0(2) = O(2W)$	2.1/1(2)	$C_0(2) = IN(2) # 2$ $C_0(2) = O(2) W + 2$	2.1/1(2)	
$O(1W) # 1_C O(1W)$	2.0930(19)	$O(2) = O(2 \le) = O(1)$	2.090(2)	
O(1W)#1 - O(1) - O(1W)	00.8(8)	O(1W) = O(1) = O(1)	07.72(0)	
O(1W)#1 = O(1) = O(1)	20.0(0) 80.02(8)	O(1W)=O(1)=O(1)=1	20.00(d) 86 7(2)	
O(1 W) = O(1) = O(1) = O(1) = 1	07.72(0) 03.0(2)	O(1 W) # 1 - O(1) - N(1) # 1 $O(1 \text{ W}) = O_0(1) - N(1)$	00.7(3) 86 7(2)	
O(1W) = O(1) = N(1) + 1 O(1W) + 1 = O(1) = N(1)	93.9(3)	O(1 w) = O(1) = N(1) $O(1) = H_1 = O(1) = O(1)$	00.7(3) 180.0	
O(1 W) # 1 = O(1) = N(1)	33.3(3)	O(1)#1 = O(1) = O(1) $O(1)#1 = O_2(1) = N(1)#1$	100.0 80 5(2)	
O(1)=O(1)=IN(1) O(1)#1 Co(1) N(1)	07.3(3) 90.5(3)	O(1) # 1 = O(1) = N(1) # 1 O(1) = O(1) = N(1) # 1	07.3(3) 00.5(2)	
O(1)#1-O(1)-IN(1)	90.5(3)	O(1) - O(1) - N(1) # 1	90.5(3)	

Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

O(4)#2-Co(2)-N(2)#2	90.79(8)	O(4)–Co(2)–N(2)	90.79(8)		
O(4)–Co(2)–N(2)#2	89.21(8)	O(4)#2–Co(2)–N(2)	89.21(8)		
O(4)#2–Co(2)–O(2W)	90.25(8)	O(4)#2–Co(2)–O(2W)#2	89.75(8)		
O(4)–Co(2)–O(2W)	89.75(8)	O(4)-Co(2)-O(2W)#2	90.25(8)		
N(2)-Co(2)-N(2)#2	180.0	N(2)-Co(2)-O(2W)	92.15(9)		
N(2)-Co(2)-O(2W)#2	87.85(9)	N(2)#2-Co(2)-O(2W)#2	92.15(9)		
O(2W)-Co(2)-N(2)#2	87.85(9)	O(2W)–Co(2)–O(2W)#2	180.00(9)		
Symmetry code for 5 : #1: $-x$, $-y$, $-z$; #2: $-1 - x$, $1 - y$, $1 - z$					
Complex 6					
Co(1)–O(1)	2.158(5)	Co(1)–O(1W)	2.058(6)		
Co(1)-O(3)#1	2.107(5)	Co(1)–O(4)	2.099(5)		
Co(1)-N(1)#2	2.166(7)	Co(1)–N(4)	2.185(7)		
O(1)-Co(1)-N(1)#1	90.3(2)	O(1)-Co(1)-N(4)	85.7(2)		
O(1W)–Co(1)–O(1)	89.1(2)	O(1W)-Co(1)-O(3)#2	91.9(2)		
O(1W)–Co(1)–O(4)	172.0(2)	O(1W)-Co(1)-N(1)#1	89.3(2)		
O(1W)–Co(1)–N(4)	89.9(3)	O(3)#2–Co(1)–O(1)	170.8(2)		
O(3)#2-Co(1)-N(1)#1	98.9(2)	O(3) #2–Co(1)–N(4)	85.1(2)		
O(4)–Co(1)–O(1)	83.0(2)	O(4)-Co(1)-O(3)#2	96.0(2)		
N(1)#1-Co(1)-N(4)	175.9(3)				
Symmetry code for 6 : $\#1: -x + 1, -y, -z + 2; \#2: x - 1, +y, 3/2 - z$					

Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

Fig. S1 The IR spectra of complexes 1–6.

Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

Fig. S2 The PXRD patterns of complexes 1–6.

Fig. S3 The TG curves of complexes 1–6.

Fig. S4 The photographs of solid-state sample of complexes 1–6 at room temperature. (NL= normal light, UV=ultraviolet)

Supplementary Material (ESI) for	Dalton Trans
This journal is © The Royal Society	y of Chemistry

		of of gaint	uyts .	
Dye name	Chemical structures	Ionicity	Size (nm ³)	Absorption
				l max (nm)
Congo Red (CR)	H N-H N-H N-H N-H N-H N-H N-H N-H N-H N-	Anionic	2.61*0.86*0.39	493
Methyl Orange (MO)		Anionic	1.54*0.48*0.28	467
Rhodamine B (RhB)	H ₃ C-N-CH ₃ CI	Cationic	1.56*1.35*0.42	552
Methylene Blue (MB)	H ₃ C N CH ₃ CI CH ₃ CH ₃	Cationic	1.38*0.64*0.21	672

Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

Supplementary Material (ESI) for *Dalton Trans* This journal is © The Royal Society of Chemistry

Fig. S5 UV-vis solid state diffuse-reflectance spectra and optical absorption spectra of complexes 1–6.

Fig. S6 The absorption spectra of the CR solution during the decomposition reaction with the presence of complexes **1–6** under dark (a) and complexes **2–6** under UV irradiation (b–f).

Fig. S7 The PXRD of complexes 1, 3 and 4 after photocatalytic degradation of CR.

Fig. S8 The absorption spectra of the MO solution during the decomposition reaction with the presence of complexes **1–6** (a–f) under UV irradiation.

Fig. S9 The absorption spectra of the MB solution during the decomposition reaction with the presence of complexes **1–6** (a–f) under UV irradiation.

Fig. S10 The absorption spectra of the RhB solution during the decomposition reaction with the presence of complexes **1–6** (a–f) under UV irradiation.

References

- S1. X. L. Wang, J. Luan, F. F. Sui, H. Y. Lin, G. C. Liu and C. Xu, *Cryst. Growth Des.*, 2013, 13, 3561–3576.
- S2. M. Sarka and K. Biradha, Cryst. Growth Des., 2006, 61, 202–208.