Supporting Information

Predicting molecular isomerism of symmetrical and unsymmetrical *N*,*N*'-diphenyl

formamidines in the solid-state: crystal structure, Hirshfeld surface analysis, pairwise

interaction energy, ΔH_{fusion} and ΔS_{fusion} correlations

Sizwe J. Zamisa[†], Unathi Bongoza[†], Bernard Omondi^{*,‡}

[†]School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

[‡]School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa

Figure S 1: Molecular structures of symmetrical and unsymmetrical formamidines investigated in this work

1. Experimental section

1.1. Materials and instrumentation

All solvents (ACS reagent grades, $\geq 99.5\%$) were obtained from Sigma-Aldrich and used as obtained without further purification. From the same source we obtained 2,6-diisopropylaniline (97%), 2,6-dimethylaniline (99%), 2,4,6-trimethylaniline (98%), 2,6-dichloroaniline (98%), 2,6-difluoroaniline (98%) and triethylorthoformate (99%). The NMR spectra for ¹H and ¹³C were measured at room temperature using a Bruker 400MHz spectrometer in DMSO– d_6 and CDCl₃. Chemical shift values, reported in parts per million (ppm) relative to the solvent residual peaks in DMSO- d_6 and CDCl₃, are 2.5 and 7.26 ppm, respectively, for ¹H NMR and

39.5 and 77.00 ppm, respectively, for ¹³C NMR. Infra-red spectra were obtained on a PerkinElmer Universal ATR spectrum 100 FTIR spectrometer. Mass spectra of compounds were obtained from a Water synaptic GR electrospray positive spectrometer, and the DSC curves were obtained using TGA/DCS Q600 TA Instruments. UV–visible absorption spectra were recorded with a Shimadzu UV–Vis–NIR spectrophotometer.

1.2. Synthetic analytical details of symmetrical N,N'-diphenylformamidine derivatives *N*,*N*'-bis(2,6-dimethylphenyl)formamidine, 1
White solid, Yield = 89%, m.p. = 183-184 °C, ¹H NMR (DMSO-d₆): δ (ppm) = *E* + *Z* isomers: 2.07-2.31 (m, 12H, 4 x — CH₃), 6.76-7.24 [m, 6H, aromatic H], 7.45 (s, 1H, —N=C(H)—), 8.22 [s, 1H, —N(H)—]. ¹³C NMR (DMSO-d₆): δ (ppm) = 18.30, 18.89, 122.21, 126.46, 128.11, 128.65, 135.30, 146.63, 149.96; IR *v* (cm⁻¹) = 3160, 3018, 2919, 2852, 2159, 1643, 1632, 1588, 1465, 1368, 1200, 1147, 1091, 759, 714, 620, 482, 449, 390; ESI-TOF MS: m/z (%); [M + H]⁺ 253.17 (100%), [M + K⁺ + acetonitrile]⁺ 331.18 (15%)

N,*N*'-bis(2,6-diisopropylphenyl)formamidine, 2

White solid, Yield = 75%, m.p. = 192-195 °C, ¹H NMR (DMSO-d₆): δ (ppm) = E + Z isomers: 0.94-1.29 (m, 24H, 8 x — CH₃), 3.07-3.17 (s, 2H, methine H's) 6.90-7.36 [m, 6H, aromatic H's], 7.49 (s, 1H, —N=C(H)—) 8.16 [s, 1H, —N(H)—]. ¹³C NMR (DMSO-d₆): δ (ppm) = 24.23, 25.41, 27.32, 27.94, 28.42, 122.74, 123.29, 127.77, 134.13, 140.00, 146.82, 149.80; IR v (cm⁻¹): 2960, 2927, 2866, 2164, 1662, 1441, 1286, 1180, 1098, 1059, 821, 799, 753, 672, 598, 536, 504, 434; ESI-TOF MS: m/z (%); [M + H⁺]⁺ 365.30 (100%).

N,*N*'-Bis(2,4,6-trimethylphenyl)formamidine, 3

White solid, Yield = 64%, m.p. = 207-210 °C, ¹H NMR (DMSO-d₆) δ (ppm) = E + Z isomers: 2.01-2.20 (m, 18H, 6 x — CH₃), 6.75-7.09 [m, 4H, aromatic H], 7.37 (s, 1H, — N=C(H)—) 8.05 (s, 1H, —N(H)—). ¹³C NMR (DMSO-d₆) δ (ppm) = 18.24, 18.79, 20.88, 127.72, 128.72, 128.91, 129.18, 135.11, 135.40; IR v (cm⁻¹): 3231, 2913, 2853, 2161, 2033, 1635, 1606, 1477, 1375, 1264, 1211, 1175, 1148, 1120, 1011, 849, 775, 676, 585, 483, 409; ESI-TOF MS: m/z (%): [M + H]⁺ 281.21 (100%)

N,N'-bis(2,6-dichlorophenyl)formamidine, 4

White solid, Yield = 82%, m.p. = 211-212 °C, ¹H NMR (DMSO-d₆) δ (ppm) = 6.99-7.61 (m, 6H, aromatic H's, E + Z isomers], 7.73 (s, 0.5H, —N=C(**H**)— (E_{syn} isomer)), 8.31 (s, 0.5H, —N=C(**H**)— (E_{anti} isomer)), 9.32 (s, 0.5H, —N(**H**)—, (E_{syn} isomer)), 10.08 (s, 0.5H, —N(**H**)—,

 $(E_{anti} \text{ isomer})$). ¹³C NMR (DMSO- d_6) δ (ppm) = 128.89, 129.02, 129.51, 129.67, 129.81, 132.31, 133.68, 160.101, 164.87; IR v (cm⁻¹): 2844, 1654, 1566, 1553, 1441, 1432, 1302, 1220, 1190, 771, 737, 721, 618, 532, 396; ESI-TOF MS: m/z (%); [M + Na]⁺ 356.93 (100%), [2,6-dichloroaniline + H₂O]⁺ 179.01 (35%).

1.3. Synthetic analytical details of unsymmetrical N,N'-diphenylformamidine derivatives

N-(2,6-dichlorophenyl)-N'-(2,6-dimethylphenyl)formamidine, 5

White solid, Yield = 65%, m.p. = 205-208 °C, ¹H NMR (DMSO-d₆) δ (ppm) = E_{syn} : 2.351 (s, 6H, 2 x —CH₃), 6.93 (t, 1H, J = 7.99 Hz, aromatic H), 7.11 (s, 3H, aromatic H's), 7.36 (d, 2H, J = 8.00 Hz, aromatic H's), 7.68 (d, 1H, J = 3.40 Hz, —N=C(H)—), 8.75 (s, 1H, —N(H)—), Selected peaks for E_{anti} : 7.93 (d, J = 12.77 Hz, —N=C(H)—), 9.25 (s, —N(H)—). ¹³C NMR (DMSO- d_6) δ (ppm) = 18.69, 123.56, 127.08, 127.96, 128.11, 128.68, 136.20, 136.32, 147.49, 152.29; IR v (cm⁻¹): 3162, 2922, 2837, 2164, 2034, 1633, 1553, 1444, 1431, 1368, 1218, 1198, 1149, 999, 766, 737, 697, 590, 548, 500, 483, 393; ESI-TOF MS: m/z (%); [M]⁺ 292.05 (100%).

N'-(2,6-chlorophenyl)-*N*-(2,6-diisopropylphenyl)formamidine, 6

White solid, Yield = 78%, m.p. = 212-216 °C, ¹H NMR (DMSO-d₆) δ (ppm) = E_{syn} : 1.18 (d, 12H, 4 x —CH₃), 3.36-3.45 (m, 2H, methine H's), 6.92 (t, 1H, J = 7.99 Hz, aromatic H), 7.19 (d, 2H, J = 7.60 Hz, aromatic H's), 7.27, (d, 1H, J = 7.46 Hz, aromatic H), 7.34 (d, 2H, J = 8.01 Hz, aromatic H's), 7.74 (d, 1H, J = 3.16 Hz, —N=C(H)—), 8.75 (s, 1H, —N(H)—), Selected peaks for E_{anti} : 7.98 (d, J = 14.6 Hz, —N=C(H)—), 9.24 (s, —N(H)—). ¹³C NMR (DMSO- d_6) δ (ppm) = 23.61, 23.98, 24.86, 27.96, 28.27, 123.36, 123.42, 123.62, 127.92, 127.97, 128.78, 133.40, 146.66, 147.65, 153.17; IR v (cm⁻¹):2964, 2868, 1588, 1576, 1491, 1448, 1432, 1307, 1215, 1195, 1151, 1055, 823, 801, 784, 770, 736, 598, 545, 459, 406; ESI-TOF MS: m/z (%); [M + Na]⁺ 371.13 (100%), [2,6-dichloroaniline + H₂O]⁺ 179.03 (15%).

N-(2,6 dichlorophenyl)-N'-(2,4,6- trimethylphenyl) formamidine, 7

 849, 769, 745, 693, 594, 501, 409, 401, 385; ESI-TOF MS: m/z (%); [M + Na]⁺ 329.50 (100%), [2,6-dichloroaniline + H₂O]⁺ 179.01 (10%)

N-(2,6 difluorophenyl)-N'-(2,4,6- trimethylphenyl) formamidine, 8

White solid, Yield = 65%, m.p. = 233-235 °C, ¹H NMR (DMSO-d₆) δ (ppm) = E_{syn} : 2.22 (s, 6H, 2 x — CH₃), 2.23 (3H, — CH₃), 6.90-6.96 (m, 5H, aromatic H's), 7.83 (s, 1H, — N=C(H)—), 8.69 (s, 1H, — N(H)—), Selected peaks for E_{anti} : 7.72 (s, — N=C(H)—), 9.13 (s, — N(H)—); ¹³C NMR (DMSO- d_6) δ (ppm) = 18.36, 18.63, 20.94, 111.81, 111.89, 111.98, 112.05, 121.85, 121.95, 128.79, 129.28, 130.07, 130.21, 133.55, 135.19, 135.74, 152.77, 154.96, 157.31; IR v (cm⁻¹):3176, 2980, 2920, 2857, 2161, 2008, 1635, 1605, 1484, 1467, 1367, 1271, 1214, 1007, 986, 855, 775, 745, 710, 638, 580, 504, 439, 406; ESI-TOF MS: m/z (%); [M + Na]⁺ 297.12 (100%), [1,3-difluoro-2-isocyanatobenzene + Na⁺]⁺ 179.01 (20%)

2.1. Description of the photophysical properties of compounds 1-8

The UV-vis electronic absorption studies for compounds 1 - 8 were done in acetonitrile. The absorption spectra of all compounds were recorded between 200 - 450 nm in ethanol solutions with concentrations of ~10⁻⁵ M and are shown in **Error! Reference source not found.** While the primary π - π transitions seem to be similar in all compounds, the n- π electronic transitions differ. For example, in the spectrum of compound **2** with the isopropyl substituents, the secondary band appears at about 236 nm, while in the spectrum of **3** with Cl substituents, it appears at about 256 nm. In comparing the secondary bands in the spectra, those for **1** and **3**, with methyl groups, lie between those of **2** (relatively hypsochromic shifted) and **4** (relatively bathochromic shifted), which is probably as a result of the differing electronic effects of the substituents. However, when both electron withdrawing and electron donating groups are present, as in **5**, **6** and **7**, the shifts seem to be minimal; all three compounds have their secondary bands at around 243 nm. The presence of electronegative substituents in both rings, as in **4** and **8**, results in a decrease in band intensity, which could be due to the inductive effect of the halogen atoms.

	CSD		Dihedral angle/°		
Compound Name	Refcode	Substituent(s)	P _(Ring1) - P _(N-C=N)	$\frac{P_{(N-C=N)}}{P_{(Ring2)}}$	P _(Ring1) - P _(Ring2)
ethyl 4-[(anilinomethylidene)amino]-3-bromobenzoate	BUDBUA	4-[(anilinomethylidene)amino]-3- bromobenzoate	50.768	24.796	42.924
N,N'-bis(3,5-bis(trifluoromethyl)phenyl)imidoformamide	GOVRAM	3,5-CF ₃	63.17	10.682	67.65
methyl4-[({[4-(methoxycarbonyl)phenyl] imino}methyl)amino]benzoate	KEYNEK	*	39.76	9.484	34.505
N,N'-bis(m-bromophenyl)formamidine	NEDBED	3-Br	48.77	11.904	58.858
N,N'-bis(p-fluorophenyl)formamidine	NEDBIH	4-F	60.97	13.416	74.362
N,N'-bis(p-fluorophenyl)formamidine	NEDBIH	4-F	46.54	13.35	57.05
N,N'-bis(p-methoxyphenyl)formamidine	NEDBON	4-OMe	42.46	36.39	62.30
N,N'-bis(p-methoxyphenyl)formamidine	NEDBON	4-OMe	27.35	28.43	52.76
(E)-N,N'-bis(4-methoxyphenyl)formimidamide	NEDBON01	4-OMe	27.40	28.25	52.67
(E)-N,N'-bis(4-methoxyphenyl)formimidamide	NEDBON01	4-OMe	42.24	36.23	62.21
N,N'-bis(p-nitrophenyl)formamidine	NEDCAA	4-NO ₂	47.99	13.69	60.35
2,3-dimethyl-2,3-bis(3-isopropyl-2-(<i>N'</i> - (2,6-diisopropylphenyl)formamidinato)phenyl)butane	NIVSER	2,3-dimethyl-2,3-bis(3-isopropyl-2- (N'- (2,6-diisopropyl	53.77	85.68	63.15
<i>N,N'</i> -bis(pentafluorophenyl)methanimidamide benzene solvate	NUBZAO	2,3,4,5,6-F	45.362	44.670	31.515
N,N'-bis(2,3,5-trifluorophenyl)formamidine	OWAPUY	2,3,5-F	33.86	28.63	15.46
N,N'-bis(2,3,5-trifluorophenyl)formamidine	OWAPUY	2,3,5-F	47.57	31.72	35.89
<i>N</i> , <i>N</i> '-bis(3,4,5-trifluorophenyl)formamidine	OWAQAF	3,4,5-F	55.65	8.383	64.02

 Table S1: Selected geometric parameters of related formamidines from the CSD.

<i>N</i> , <i>N</i> '-bis(pentafluorophenyl)formamidine toluene solvate	OWAQEJ	2,3,4,5,6-F	43.36	39.17	32.21
N,N'-bis(2,6-difluorophenyl)formamidine	OWAQIN	2,6-F	46.36	36.56	18.67
N,N'-di(p-tolyl)formamidine	ROLGEE	4-Me	47.71	27.06	67.14
N,N'-bis(p-tolyl)formamidine	ROLGEE01	4-Me	47.88	26.93	67.15
N,N'-di(p-tolyl)formamidine	ROLGEE02	4-Me	47.30	29.67	36.79
N,N'-di(p-tolyl)formamidine	ROLGEE02	4-Me	37.34	11.13	30.72
N,N'-bis(2,6-diisopropylphenyl)formamidine	TEVJOU	2,6-diisopropyl	85.16	71.91	44.89
N,N'-bis(2,6-diisopropylphenyl)formamidine	TEVJOU01	2,6-diisopropyl	72.91	71.86	67.22
N,N'-bis(2,6-diisopropylphenyl)imidoformamide	TEVJOU02	2,6-diisopropyl	69.53	71.80	67.64
N,N'-bis(2,6-diisopropylphenyl)formamidine	TEVJOU03	2,6-diisopropyl	87.51	69.273	43.732
N,N'-bis(2,6-diisopropylphenyl)formamidine	TEVJOU03	2,6-diisopropyl	80.24	71.815	44.863
N,N'-bis(2-methoxyphenyl)formamidine	XUGZUU	2-OMe	47.30	37.08	38.09
N,N'-bis(2-methoxyphenyl)imidoformamide	XUGZUU01	2-OMe	46.50	35.86	37.27
N,N'-bis(2-ethoxyphenyl)formamidine	XUHBAD	2-OEt	41.97	38.68	30.62
N,N'-bis(2-ethoxyphenyl)formamidine	XUHBAD	2-OEt	34.66	42.06	28.82
N,N'-bis(3-methoxyphenyl)formamidine	XUHBEH	3-OEt	46.40	11.92	40.27
N,N'-bis(3-n-butoxyphenyl)formamidine	XUHBIL	3-Obu	47.49	3.324	50.63
N,N'-bis(3,5-dichlorophenyl)imidoformamide	ZIPKUG	3,5-Cl	45.98	26.49	69.94

*[4-(methoxycarbonyl)

D—H/X···A	D—H/X	Ц/ У /	D 1	<i>D</i> —
		$\Pi/\Lambda^{**}A$	D^{**A}	$H/X \cdots A$
Compound 4				
$N1A$ — $H1A$ ···· $N2A^{i}$	0.88	2.04	2.917(1)	174
N1 <i>B</i> —H1 B ····N2 B^{ii}	0.88	2.01	2.878(1)	169
C7B—H7B… $\pi_{2,6\text{-dichloro}}^{ii}$	0.95	2.49	3.389(1)	158
C2B—Cl1B $\pi_{2,6}$ -dichloro	1.728(1)	3.7038(8)	3.788(1)	82
Compound 5				
$N2A$ — $H2A$ ··· $N1A^{i}$	0.88	1.98	2.850(4)	168
$N2B$ — $H2B$ ··· $N1B^{ii}$	0.88	1.97	2.840(4)	171
C7A—H7A $\pi_{2,6-dimethyl}$	0.95	2.49	3.306(4)	143
C7B—H7B… $\pi_{2,6\text{-dimethyl}}$	0.95	2.43	3.219(4)	141
C6B—Cl2B $\pi_{2,6-dimethyl}$	1.709(2)	3.774(2)	3.958(2)	83
Compound 6				
$N2$ — $H2$ ··· $N1^{i}$	0.88	2.06	2.914(1)	163
Compound 6				
$N2$ — $H2$ ··· $N1^{i}$	0.88	2.17	2.953(3)	149
C7—H7 $\pi_{mesityl}^{i}$	0.95	2.58	3.451(3)	152
C16—H16A $\pi_{2,6}$ -dichloro	ⁱ 0.95	2.80	3.498(4)	128
Compound 8				
$N2A$ — $H2A$ ···· $N1A^{i}$	0.88	2.22	2.971(1)	143
N2 <i>B</i> —H2 <i>B</i> ⋯N1 <i>B</i>	0.88	2.20	2.950(2)	143
C7A—H7A $\pi_{mesityl}^{i}$	0.95	2.75	3.519(1)	138
C7B—H7B… $\pi_{mesityl}$	0.95	2.74	3.519(1)	140
$\pi_{\text{mesityl}} \dots \pi_{2,6\text{-difluoro}}$	-	-	3.7494(8)	-
$\pi_{\text{mesityl}} \dots \pi_{2,6\text{-difluoro}}^{\text{ii}}$	-	-	3.8303(7)	-

Table S2: Selected intermolecular interaction parameters in compounds 4 - 8.

Symmetry codes for Compound 1: (i) -x, -y, -z+1, (ii) -x+1, y-1/2, -z+3/2; Compound 2: (i) x-1/2, -y+1/2, z-1/2, (ii) x, -y, z-1/2; Compound 3: (i) 1-x, y-1/2, 3/2-z, 1-x, y+1/2, 3/2-z; Compound 4: (i) -x+1, -y+1, -z+1. Compound 8: (i) 1/2+x, 1/2-y, 1/2+z, (ii) -1/2+x, 1/2-y, -1/2+z

Figure S2: Comparison of C—H... π and classical hydrogen bonding patterns found in closely related crystal structures in the CSD and this work.

Table S3 : CSD search hits and their respective C—H π and classical hydrogen	bonding
geometric parameters	

Compound Name	Refcode	Hπ/Å	HX/Å	C-HPI/°	N-HX/°
N-(2,6-Diisopropylphenyl)thioformamide	QECGOW	2.749	2.494	160	167
<i>N</i> -(11-(Methylamino)tricyclo[8.2.2.2\$4,7!]hexadeca- 1(12),4,6,10,13,15-hexaen-5-yl)formamide	QULWEB	2.683	2.019	174	168
(Z)-3-(4-formamidophenyl)-2,4-pentanedione	DUZYED	2.837	2.029	160	170
N-(2,6-Di-isopropylphenyl)formamide	TEVJIO01	2.803	2.038	159	171
<i>N</i> -(2,4,6-Trimethylphenyl)formamide	QAKDAJ	2.726	2.054	129	171
N-(2,6-Di-isopropylphenyl)formamide	TEVJIO	2.891	2.115	157	174
1,2-bis(Formylamino)benzene	ALOSAV	2.798	1.886	168	174

Figure S3: ¹H NMR spectrum of **1** in DMSO-d₆

Figure S4: ¹H NMR spectrum of **2** in DMSO-d₆

Figure S5: ¹H NMR spectrum of **3** in DMSO-d₆

Figure S6: ¹H NMR spectrum of **4** in DMSO-d₆

Figure S7: ¹H NMR spectrum of **5** in DMSO-d₆

Figure S8: ¹H NMR spectrum of **6** in DMSO-d₆

Figure S9: ¹H NMR spectrum of **7** in DMSO-d₆

Figure S10¹H NMR spectrum of **8** in DMSO-d₆

Figure S11: ¹²C NMR spectrum of 1 in DMSO- d_6

Figure S1: ¹³C NMR spectrum of **2** in DMSO-d₆

Figure S13: ¹³C NMR spectrum of **3** in DMSO-d₆

Figure S2:¹³C NMR spectrum of **4** in DMSO-d₆

Figure S3: 13 C NMR spectrum of **5** in DMSO-d₆

Figure S4: ¹³C NMR spectrum of **6** in DMSO-d₆

Figure S5: 13 C NMR spectrum of 7 in DMSO-d₆

Figure S68: ¹³C NMR spectrum of **8** in DMSO-d₆

IR spectra of compounds 1-8

Figure S79: IR spectrum of 1

Figure S20: IR spectrum of 2

Figure S21: IR spectrum of **3**

Figure S22: IR spectrum of 4

Figure S23: IR spectrum of 5

Figure S24: IR spectrum of 6

Figure S26: IR spectrum of 8

Mass spectra of compounds 1-8

Figure S27: ESI-MS(+) spectrum of 1

Figure S29: ESI-MS(+) spectrum of **3**

Figure S31: ESI-MS(+) spectrum of **5**

Figure S33: ESI-MS(+) spectrum of 7

Figure S34: ESI-MS(+) spectrum of 8

Figure S35: DSC curve of 1

Figure S36: DSC curve of 2

Figure S39: DSC curve of 5

Figure S41: DSC curve of 7

Figure S42: DSC curve of 8