## Electronic Supplementary Information

# ZnO@ZIF-8 core-shell heterostructures with improved photocatalytic

### activity

Mei-Hua Chen, Qian-Ying Lu, Yi-Ming Li\*, Ming-Ming Chu\* and Xue-Bo Cao\*

1 College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China

\*Corresponding authors

E-mail: liyiming@zjxu.edu.cn (Y. Li)

E-mail: chumingming@zjxu.edu.cn (M. Chu)

E-mail: xbcao@zjxu.edu.cn (X. Cao)



**Fig. S1** (a) SEM image of ZnO@ZIF-8 with a concentration of 2 mg/mL. (b) SEM image of ZnO@ZIF-8 with a concentration of 5 mg/mL. (c) SEM image of ZnO@ZIF-8 with a concentration of 10 mg/mL.



**Fig. S2** Dark adsorption experiments of ZnO, ZIF-8, and ZnO@ZIF-8 for MB. The as-prepared nanoparticles (50 mg) were mixed with 50 mL  $1.0 \times 10^{-5}$  mol/L MB solution (3.19 mg/L) under magnetic stirring for 30 min in darkness to uniformly disperse the photocatalyst powder. 1 mL of the liquid part was collected from the mixed solution every 10 min with a syringe and filtered using a microporous membrane (0.22 µm).



**Fig. S3** Time-dependent UV–Vis absorption spectra for the MB degradation using (a) ZnO photocatalyst and (b) ZIF-8 photocatalyst. (Inset a and b: photographs of color change of photodegradation reaction solution). (c) Photocatalytic degradation of MB in aqueous solution using ZIF-8 photocatalyst. (d) Plots of  $\ln(C_0/C)$  vs reaction time for the MB photocatalytic degradation using ZIF-8 photocatalyst. 50 mg of photocatalyst was added to 50 mL of  $1.0 \times 10^{-5}$  M dye aqueous solution.



Fig. S4 XRD patterns of the ZnO@ZIF-8 after the cyclic experiment



**Fig. S5** Time-dependent UV–Vis absorption spectra for the Rhodamine B (RhB) degradation using ZnO@ZIF-8 (a) and (b) ZnO photocatalyst. (c) Photocatalytic degradation of RhB in aqueous solution using different photocatalyst nanoparticles. (d) Plots of  $\ln(C_0/C)$  vs reaction time for the RhB photocatalytic degradation using various photocatalyst nanoparticles. 50 mg of photocatalyst was added to 50 mL of  $1.0 \times 10^{-5}$  M dye aqueous solution.

The position of the valence band (VB) and the conduction band (CB) can be calculated according to the following formulas:

$$E_{VB} = X - E^{e} + 0.5E_{g} \tag{1}$$

$$E_{CB} = E_{VB} - E_g \tag{2}$$

where  $E_{VB}$  is the band edge of the VB,  $E_{CB}$  is the band edge of the CB, X is the electronegativity average of the atoms, and  $E^e$  is the energy of the free electrons at the hydrogen level (about 4.5 eV).<sup>1</sup> The bandgap values derived from these spectra were 3.12 and 3.17 eV for the ZnO and ZnO@ZIF-8 nanorods, respectively (Fig. S6b). Since the X value of ZnO is 5.79,<sup>2</sup> the VB and CB of ZnO are calculated to be 2.85 eV and -0.27 eV combined with the above formula. The measured VB of ZIF-8 is reported as 1.60 eV, <sup>3</sup> thus, the CB edge position of ZIF-8 can be calculated as -3.40 eV. In addition, the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) of MB were -0.94 eV and 0.92 eV, respectively.<sup>4</sup>



**Fig. S6** (a) UV–Vis absorption spectra and (b) band gap measurement of ZnO nanorods, ZIF-8 and ZnO@ZIF-8 heterostructures. (c) Schematic illustration of sensitized MB molecule may transfer electrons to the CB of ZnO. (d) Schematic illustration for the path of photogenerated charge transfer in ZnO@ZIF-8.



**Fig. S7** (a) Electrochemical impedance spectra and (b) Transient photocurrent response curves of ZnO and ZnO@ ZIF-8. In the three-electrode system, the FTO glasses grown with the as-prepared samples with a light area of 1 cm<sup>2</sup> acted as working electrode when working, while a platinum wire and saturated calomel electrode acted as auxiliary electrode and reference electrode, respectively.

| Enhanced method           | Dyes  | Light source                             | m <sub>s</sub> | $C_{\theta}$ | t         | Degradation    | Ref.                             |
|---------------------------|-------|------------------------------------------|----------------|--------------|-----------|----------------|----------------------------------|
|                           |       |                                          | mg/mL          | mg/L         | min       | ejjiciency /70 |                                  |
| ZnO                       | MO    | A 15-W UV light-tube (365 nm)            | 1.25           | 10           | 120       | 100            | Tian et al. <sup>5</sup>         |
| Au-doped Au@ZnO           | MB    | A 300 W Xenon lamp                       | 0.5            | 16           | 20        | 100            | Jung et al. <sup>6</sup>         |
| Ag/ZnO paporods array     | MB    | A low-pressure fluorescent               | /              | 2            | 60        | 49.3           | Ren et al <sup>7</sup>           |
|                           |       | Hg lamp                                  |                |              |           |                |                                  |
| Fe-doped ZnO              | RhB   | A high-pressure UV                       | 1              | 10           | 180       | 94             | Yi et al. <sup>8</sup>           |
| nanoflowers               | Tuib  | mercury lamp                             | -              |              |           |                |                                  |
| Eu-doped ZnO              | MB,   | A 300 W Osram Vitalux                    | 1 10           | 10           | 150<br>10 | 90             | Trandafilović et                 |
|                           | MO    | lamp                                     | 1 10           |              | 60        | 100            | al. <sup>9</sup>                 |
| Dy-doped ZnO              | AR17  | A 100 W visible lamp                     | 1              | 5            | 180       | 67             | Khataee et al. <sup>10</sup>     |
| Ce-doped ZnO              | DR-23 | A 125 W low pressure                     | 0.5            | 40           | 70        | 99.5           | Kumar et al ll                   |
|                           |       | mercury lamp                             | 0.5            |              |           |                | Kumai et al.                     |
| P-containing ZnO          | RhB   | A 300 W halogen lamp with $(2) > 275$ pm | 0.5            | 5            | 180       | 99             | Saffari et al. <sup>12</sup>     |
|                           |       | a wavelength $(\lambda) > 3/5$ nm        |                |              |           |                |                                  |
| S-Doped ZnO               | RhB   | A halogen lamp ( $\lambda > 400$ nm)     | /              | 5            | 90        | 100            | Mirzaeifard et al. <sup>13</sup> |
| C, N co-doped ZnO         | МО    | A xenon lamp (380–800 nm,                | 0.5            | 10           | 150       | 99             | Zheng et al. <sup>14</sup>       |
|                           |       | XQ350W                                   |                |              |           |                |                                  |
|                           |       | Four UV lamps with a                     |                |              |           |                |                                  |
| ZnS-modified ZnO          | MO    | wavelength centered at 254               | 0.5            | 10           | 60        | 93.7           | Yu et al. <sup>15</sup>          |
|                           |       | nm                                       |                |              |           |                |                                  |
|                           |       | Asahi spectra (MAX 303,                  |                |              |           |                |                                  |
| CuO/ZnO                   | MB    | 500 W, Japan) as light                   | 1              | 10           | 25        | 96.6           | Bharathi et al. <sup>16</sup>    |
|                           |       | source                                   |                |              |           |                |                                  |
|                           | MB,   | A Vener 200 W lane and                   |                |              |           | 83.5,          |                                  |
| TiO <sub>2</sub> /ZnO/rGO | RhB,  | A Xenon 300-w lamp solar                 | 0.5            | 20           | 180       | 80.3,          | Nguyen et al. <sup>17</sup>      |

#### Table S1 Photocatalytic degradation performance of the ZnO-based materials

|                                                           | МО     |                              |      |      |           |                              |                             |
|-----------------------------------------------------------|--------|------------------------------|------|------|-----------|------------------------------|-----------------------------|
| ZnO/Ag/Ag <sub>2</sub> O                                  | Phenol | A 300 W Xe arc lamp          | 1    | 20   | 75        | 95                           | Feng et al. <sup>18</sup>   |
| Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub> @ZnO/CdS | RhB    | A 250 W Xe lamp equipped     | 1    | 7    | 180       | 07                           | Yang et al. <sup>19</sup>   |
|                                                           |        | with a 420 nm cut-off filter |      |      |           | 9/                           |                             |
| ZnO/polypyrrole                                           | 0022   | A lamp (Avant, mercury       | 2    | 50   | (0)       | 02 (                         | Counting of al 20           |
| composite                                                 | DB22   | vapor 125W, 280-380nm)       | 2 50 | 60   | 83.6      | Ceretta et al. <sup>20</sup> |                             |
|                                                           |        | An 18 W UV lamp with a       |      |      |           |                              |                             |
| ZnO@Zeolite A                                             | RhB    | maximum emission of about    | 1    | 10   | 45        | 90                           | Du et al. <sup>21</sup>     |
|                                                           |        | 365 nm                       |      |      |           |                              |                             |
| ZIF-8                                                     | MB     | A 500 W Hg lamp              | 0.5  | 10   | 120       | 82.3                         | Jing et al. <sup>22</sup>   |
| ZnO@ZIF-8                                                 | MB     | Solar light                  | 1    | 3.19 | 4.5       | ~100                         | This work                   |
|                                                           | MO,    | Eight black fluorescent      |      | 3.27 | 70        | ~100                         |                             |
| ZnO-ZIF-8                                                 | MB     | lamps (Philips TL 15 W/5     | 1    | 2 10 | <u>00</u> | 100                          | Tuncel et al. <sup>23</sup> |
|                                                           |        | BLB)                         | 5.19 | 80   | ~100      |                              |                             |
| ZnO@ZIF-8                                                 | MB     | A 300 W high pressure Hg     | 1    | 10   | 240       | 04.1                         | Yu et al. <sup>24</sup>     |
|                                                           |        | lamp                         |      | ppm  |           | 94.1                         |                             |
|                                                           |        | UVP Pen-Ray mercury lamp     |      |      |           |                              |                             |
| ZnO@ZIF-8                                                 | Cr(VI) | (USA) with wavelength of     | 1    | 20   | 240       | 88                           | Wang et al. <sup>25</sup>   |
|                                                           |        | 254 nm                       |      |      |           |                              |                             |

| Ref.                      | Mornholom     | Pristing 7nO                 | cora diamatar( <b>7n</b> () | shell thickness         |  |
|---------------------------|---------------|------------------------------|-----------------------------|-------------------------|--|
|                           | Morphology    | Tristine ZnO                 | core atameter(ZhO)          | (ZIF-8)                 |  |
| This work                 | Nananala      | $18 \pm 3$ nm in diameter    | 16                          | 2                       |  |
|                           | Nanorous      | $120 \pm 30$ nm in length    | ~10 nm                      | ~3 nm                   |  |
| Yu et al. <sup>24</sup>   | Nanoparticles | 300 nm                       | 200~250 nm                  | 50~100 nm               |  |
| Wang et al. <sup>25</sup> | Nanoparticles | /                            | 300~400 nm                  | ~30 nm                  |  |
| Zhan et al. <sup>26</sup> | Nanorods      | $600 \pm 100$ nm in diameter | 400 + 25                    | $300 \pm 25 \text{ nm}$ |  |
|                           |               | $15 \pm 5 \ \mu m$ in length | $400 \pm 25 \text{ nm}$     |                         |  |

#### Table S2 Core diameters (ZnO) and shell thicknesses (ZIF-8)) of ZnO@ZIF-8

## Table S3 Band gaps of the ZnO and ZnO@ZIF-8

| Ref.                        | Morphology —  | Band gap /eV |           |  |
|-----------------------------|---------------|--------------|-----------|--|
|                             |               | ZnO          | ZnO@ZIF-8 |  |
| This work                   | Nanorods      | 3.12         | 3.17      |  |
| Tuncel et al. <sup>23</sup> | Nanoparticles | 3.10         | 3.00      |  |
| Wang et al. <sup>25</sup>   | Nanoparticles | 3.27         | 3.24      |  |

#### References

- 1. Z. Jin and Y. Zhang, Catal. Surv. Asia, 2020, 24, 59-69.
- 2. Z. Ye, J. Li, M. Zhou, H. Wang, Y. Ma, P. Huo, L. Yu and Y. Yan, Chem. Eng. J., 2016, 304, 917-933.
- 3. W. L. Zhong, C. Li, X. M. Liu, X. K. Bai, G. S. Zhang and C. X. Lei, *Micropor. Mesopor. Mater.*, 2020, 306, 110401.
- M. T. Dejpasand, E. Saievar-Iranizad, A. Bayat, A. Montaghemi and S. R. Ardekani, *Mater. Res. Bull.*, 2020, 128, 110886.
- 5. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang and H. Fu, Chem. Commun., 2012, 48, 2858-2860.
- 6. H. J. Jung, R. Koutavarapu, S. Lee, J. H. Kim, H. C. Choi and M. Y. Choi, J. Alloys Compd., 2018, 735, 2058-2066.
- 7. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Iv, T. Guo, Y. Zhao and C. Zhu, J. Hazard. Mater., 2010, 182, 123-129.
- 8. S. Yi, J. Cui, S. Li, L. Zhang, D. Wang and Y. Lin, Appl. Surf. Sci., 2014, 319, 230-236.
- L. V. Trandafilović, D. J. Jovanović, X. Zhang, S. Ptasińska and M. D. Dramićanin, *Appl. Catal. B Environ.*, 2017, 203, 740-752.
- A. Khataee, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, M. Safarpour, H. Gholipour Ranjbar and S. W. Joo, *Ind. Eng. Chem. Res.*, 2014, 53, 1924-1932.
- 11. R. Kumar, A. Umar, G. Kumar, M. S. Akhtar, Y. Wang and S. H. Kim, Ceram. Int., 2015, 41, 7773-7782.
- 12. R. Saffari, Z. Shariatinia and M. Jourshabani, Environ. Pollut., 2020, 259, 113902.
- Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani and S. M. Rezaei Darvishi, *Ind. Eng. Chem. Res.*, 2020, 59, 15894-15911.
- H.-b. Zheng, D. Wu, Y.-l. Wang, X.-p. Liu, P.-z. Gao, W. Liu, J. Wen and E. V. Rebrov, *J. Alloys Compd.*, 2020, 838, 155219.
- L. H. Yu, W. Chen, D. Z. Li, J. B. Wang, Y. Shao, M. He, P. Wang and X. Z. Zheng, *Appl. Catal. B Environ.*, 2015, 164, 453-461.
- P. Bharathi, S. Harish, J. Archana, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, M. Shimomura and Y. Hayakawa, *Appl. Surf. Sci.*, 2019, **484**, 884-891.
- 17. C. H. Nguyen, M. L. Tran, T. T. V. Tran and R.-S. Juang, Sep. Purif. Technol., 2020, 232, 115962.
- 18. C. Feng, Z. Chen, J. Jing and J. Hou, J. Mater. Chem. C, 2020, 8, 3000-3009.
- 19. J. Yang, J. Wang, X. Li, D. Wang and H. Song, Catal. Sci. Technol., 2016, 6, 4525-4534.
- 20. M. B. Ceretta, Y. Vieira, E. A. Wolski, E. L. Foletto and S. Silvestri, J. Water Process. Eng., 2020, 35, 101230.
- 21. G. Du, P. Feng, X. Cheng, J. Li and X. Luo, J. Solid State Chem., 2017, 255, 215-218.
- 22. H. P. Jing, C. C. Wang, Y. W. Zhang, P. Wang and R. Li, RSC Adv., 2014, 4, 54454-54462.
- 23. D. Tuncel and A. N. Ökte, Catal. Today, 2020, 361, 191-197.

- 24. B. Yu, F. Wang, W. Dong, J. Hou, P. Lu and J. Gong, Mater. Lett., 2015, 156, 50-53.
- X. B. Wang, J. Liu, S. Leong, X. C. Lin, J. Wei, B. Kong, Y. Xu, Z. X. Low, J. F. Yao and H. T. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 9080-9087.
- W. W. Zhan, Q. Kuang, J. Z. Zhou, X. J. Kong, Z. X. Xie and L. S. Zheng, J. Am. Chem. Soc., 2013, 135, 1926-1933.