Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supporting information

Yeast Cell Route: A Green and Facile Strategy for Biosynthesis of Carbonate Nanoparticles

Yi Chang, Shuting Chen, Tingting Liu, Peng Liu, Yuming Guo, Lin Yang and Xiaoming Ma*

- a. Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- b. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals,

^{*} To whom correspondence should be addressed. e-mail: mxm@htu.edu.cn

Fig. S1 SEM image of the native yeast cells.

Fig. S2 The particle size histograms recorded from representative isolated BaCO₃ nanoparticles.

Fig. S3 DLS size distribution of isolated BaCO₃ nanoparticles.

Fig. S4. Zeta potential of isolated BaCO₃ nanoparticles dispersion in PBS.

S3

Figure S5. TEM micrographs of isolated nBaCO₃ prepared in the absence of cells.

Fig. S6. XRD pattern of the whole yeast cells with intracellular nBaCO₃.

Fig. S7. Light micrograph of the control S. cerevisiae cells stained by trypan blue.