Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021 ## **Supporting information** ## Yeast Cell Route: A Green and Facile Strategy for Biosynthesis of Carbonate Nanoparticles Yi Chang, Shuting Chen, Tingting Liu, Peng Liu, Yuming Guo, Lin Yang and Xiaoming Ma* - a. Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China - b. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, ^{*} To whom correspondence should be addressed. e-mail: mxm@htu.edu.cn Fig. S1 SEM image of the native yeast cells. Fig. S2 The particle size histograms recorded from representative isolated BaCO₃ nanoparticles. Fig. S3 DLS size distribution of isolated BaCO₃ nanoparticles. Fig. S4. Zeta potential of isolated BaCO₃ nanoparticles dispersion in PBS. S3 Figure S5. TEM micrographs of isolated nBaCO₃ prepared in the absence of cells. Fig. S6. XRD pattern of the whole yeast cells with intracellular nBaCO₃. Fig. S7. Light micrograph of the control S. cerevisiae cells stained by trypan blue.