Supporting Information

Polycyclic Motifs Engineering in Cynaostilbene Based Donors Towards Highly Efficient Modulable Emission Properties in Two-Component System

Arshad Khan ${ }^{\text {a }}$, Rabia Usman ${ }^{a^{*}}$, Rongrong Li ${ }^{\text {b }}$, Melek Hajji ${ }^{\text {c }}$, Haiming Tang ${ }^{\text {a }}$, Di Ma ${ }^{\text {a }}$
${ }^{a}$ School of Chemistry and Environmental Engineering, Sichuan University of Science \& Engineering, Zigong 643000, Sichuan, P. R. China
${ }^{b}$ School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
${ }^{c}$ Research Unit: Electrochemistry, Materials and Environment, University of Kairouan, 3100 Kairouan, Tunisia

*Corresponding authors. E-mail address: arshadkhan@seu.edu.cn (A.K.), arshaibar@gmail.com (R.U.)

Figure S1. ${ }^{1} \mathrm{HNMR}$ of NPN
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.87(\mathrm{~m}, 5 \mathrm{H}), 7.77$ (dd, $J=$ $8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (s, 1H), $7.59-7.44$ (m, 5H).

Figure S2. ${ }^{1} \mathrm{HNMR}$ of ATN
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $3.85 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$.

Figure S3. ${ }^{1} \mathrm{HNMR}$ of PTN
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.20(\mathrm{~m}, 4 \mathrm{H})$, $8.20-8.04(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.

Figure S4. Twisted angle between two planes of anthracene and phenyl planes are 81.84 for $\mathbf{1 b}$ co-crystal.

Figure S5. Twisted angle between two planes of anthracene and phenyl planes are 18.09 for 1c co-crystal

Figure S6. Comparison of experimental PXRD patterns of the cocrystals and the corresponding starting materials

Figure S7. Fluorescence decay curves for solid-state CS-based products

Table S1. QY and life time values of the physical mixture

Code	Ia (1:1)	Ib (1:2)	Ic (1:2)
PLQY $\Phi_{\mathrm{F}}(\%)$ for physical mixture	6.04	4.04	6.42
Fluorescence lifetime $\tau_{\mathrm{F}}(\mathrm{ns})$	10.05	8.26	10.18

