Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Novel co-crystals with π -hole interactions between iodide anions and quinoid rings involving charge transfer

Supplement

Valentina Milašinović and Krešimir Molčanov

Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10000, Croatia

e-mail: kmolcano@irb.hr

Figure S1 ORTEP-3 drawing of asymmetric unit of 1 with the atom numbering scheme. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S2 ORTEP-3 drawing of asymmetric unit of 2 with the atom numbering scheme. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S3 ORTEP drawings of asymmetric unit of 3 with the atom numbering schemes. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S4 ORTEP drawing of asymmetric unit of **4** at: a) 100 K and b) room temperature. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S5 ORTEP drawing of asymmetric unit of 5 with the atom numbering scheme. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S6 Crystal packing of 1. Iodide ions are shown as spheres of arbitrary radii.

Figure S7 Crystal packing of 2. Iodide ions are shown as spheres of arbitrary radii.

Figure S8 Crystal packing of 3. Iodide ions are shown as spheres of arbitrary radii.

a)

b)

Figure S9 The electrostatic potential plotted onto a Hirshfeld surface of Br_4Q for a) 1, b) 2, c) two symmetry-independent quinones in 3, d) 4 at 100 K, e) 4 at RT and f) 5.

Figure S10 Fingerprint plots of intermolecular contacts in 1 for a) C…I, b) Br…I and c) O…H.

c)

Figure S11 Fingerprint plots of intermolecular contacts in 2 for a) C…I, b) Br…I and c) O…H.

Figure S12 Fingerprint plots of intermolecular contacts in **3** (molecule 1) for a) C…I, b) Br…I and c) O…H.

Figure S13 Fingerprint plots of intermolecular contacts in **3** (molecule 2) for a) C…I, b) Br…I and c) O…H.

Figure S14 Fingerprint plots of intermolecular contacts in 4 (at 100 K) for a) C…I, b) Br…I and c) O…H.

Figure S15 Fingerprint plots of intermolecular contacts in 4 (at RT) for a) C…I, b) Br…I and c) O…H.

c)

Figure S16 Fingerprint plots of intermolecular contacts in 5 for a) C…I, b) Br…I and c) O…H.

c)

d)

e)

Figure S17 Theoretical deformation electron density (computed by B3LYP/6-31G(d,p) method) plotted onto a Hirshfeld surface of Br_4Q for a) **1**, b) **2**, c) two symmetry-independent quinones in **3**, d) **4** at 100 K, e) **4** at RT and f) **5**. Positive density is shown in blue, and negative is red. Approximate orientation of the Br_4Q molecule is shown at the top.

a)

b)

c)

d)

f)

Figure S18 Normalised distance (d_{norm}) plotted onto a Hirshfeld surface of Br₄Q for a) 1, b) 2, c) two symmetry-independent quinones in 3, d) 4 at 100 K, e) 4 at RT and f) 5. Red colour represents close contacts, while the more distant ones are shown in blue.

Figure S19 HOMO (left) and LUMO (right) orbitals of Br_4Q moiety in 1. The orbitals were calculated using B3LYP method with 6-31G(d,p) basis set.

Figure S20 HOMO (left) and LUMO (right) orbitals of Br_4Q moiety in 2. The orbitals were calculated using B3LYP method with 6-31G(d,p) basis set.

Figure S21 HOMO (left) and LUMO (right) orbitals of Br_4Q moieties a) 1 and b) 2 in 3. The orbitals were calculated using B3LYP method with 6-31G(d,p) basis set.

Figure S22 HOMO (left) and LUMO (right) orbitals of Br_4Q moiety in 4 at 100 K. The orbitals were calculated using B3LYP method with 6-31G(d,p) basis set.

Figure S23 HOMO (left) and LUMO (right) orbitals of Br_4Q moiety in 4 at room temperature. The orbitals were calculated using B3LYP method with 6-31G(d,p) basis set.

Figure S24 HOMO (left) and LUMO (right) orbitals of Br_4Q moiety in 5. The orbitals were calculated using B3LYP method with 6-31G(d,p) basis set.

Table S1 Geometric parameters of hydrogen bonds (Å, °).

	<i>D</i> –H /	H…A /	0	$D-\mathrm{H}\cdots A$	
	Å	Å	$D \cdots A / A$	/ o	Symm. op. on A
1					
C4–H4…I2	0.93	2.35	3.617(9)	119	1-x, 1-y, 1-z
C9–H9B…I2	0.96	3.17	3.961(8)	140	3/2-x, -1/2+y, 1-z
C9–H9C…I2	0.96	3.09	3.922(9)	146	1-x, 1-y, 1-z
C10–H10…I2	0.93	2.98	3.886(8)	164	3/2-x, -1/2+y, 1-z
C14–H14…O1	0.93	2.49	3.310(12)	147	5/2-x, -1/2+y, 1-z
C15–H15A…I2	0.96	3.22	4.132(9)	159	3/2-x, -1/2+y, -z
C15-H15B…O1	0.96	2.79	3.304(11)	114	5/2-x, -1/2+y, 1-z
2					
C4–H4…I1	0.93	3.00	3.636(11)	127	1-x, 1-y, 1-z
C7–H7…I1	0.93	3.05	3.906(14)	154	1-x, -y, 1-z
C8–H8…O1	0.93	2.35	3.118(15)	140	2+x, y, 1+z
C9–H9A…O1	0.96	2.97	3.479(15)	114	2+x, y, 1+z
C9–H9A…I1	0.96	3.25	4.205(11)	171	1+x, y, 1+z
C9–H9B…Br2	0.96	3.07	3.925(12)	147	1-x, 1-y, 1-z
C10-H10B…O1	0.96	2.76	3.457(15)	130	2+x, y, 1+z
3					
N2–H2A…I1	0.86	3.03	3.860(5)	163	x, y, z
N2–H2B…I2	0.86	3.02	3.856(5)	166	-1+x, y, z
N4–H4A…I1	0.86	2.79	3.635(5)	167	x, y, z
N4–H4B…I2	0.86	2.85	3.666(6)	159	-1+x, y, z
C10–H10…O1	0.93	2.61	3.194(7)	121	1-x, 1-y, 1-z
C11–H11…O1	0.93	2.72	3.261(6)	118	1-x, 1-y, 1-z
C11–H11…Br1	0.93	2.81	3.601(6)	144	1-x, 1-y, 1-z
C14–H14…O2	0.93	2.56	3.354(7)	144	1-x, 1-y, 2-z
C17–H17…O2	0.93	2.61	3.084(7)	112	x, y, z
4 , 100 K					
C7–H7…I1	0.93	3.20	3.727(10)	118	1-x, -1/2+y, 3/2-z
С8–Н8…О1	0.93	2.42	3.248(11)	149	x, 1/2-y, -1/2+z
С9–Н9…І1	0.93	3.06	3.981(10)	170	x, 1/2-y, -1/2+z
C11–H12B…I2	0.93	3.12	3.860(13)	138	-1+x, $3/2-y$, $-1/2+z$
C12–H12B…I1	0.96	3.25	4.044(11)	141	1-x, -1/2+y, 3/2-z
C12-H12C…O1	0.96	2.65	3.284(12)	124	1-x, 1-y, 2-z
C14–H14…I2	0.93	3.19	3.925(13)	137	-1+x, -1+y, z
C16–H16…O2	0.93	2.39	3.249(18)	153	-1+x, -1+y, z
4 , RT					
C4–H4…I1	0.94	3.06	3.926(13)	155	-x, 1-y, 1-z
C6–H6…I1	0.93	3.00	3.905(17)	164	x, y, z
С7–Н7…О1	0.93	2.44	3.36(2)	169	1-x, 1-y, 1-z
C9–H9B…O1	0.96	2.61	3.367(18)	135	x, 3/2-y, 1/2+z
5			. /		-
C6–H6A…O1	0.96	2.92	3.060(16)	90	1-x, 1-y, -z
C6–H6B…O1	0.96	2.80	3.060(16)	96	1-x, 1-y, -z
C7–H7A…O1	0.96	2.69	2.963(17)	97	1-x, 1-y, -1+z
C7–H7B…O1	0.96	2.76	2.963(17)	92	1-x, 1-y, -1+z
C7–H7B…I2	0.96	3.23	4.065(12)	145	1+x, y, z

 	$Cg^a \cdots C$	arb	β	Cg…plane(Cg2	Offse	Symm. op.
$\pi^{\dots}\pi$	g / Å	a	с) / Å	t/ Å	on Cg2
 N1→C11…N1→	2, 274(4)	0.0	1	2 176(2)	0.016	1
C11	3.374(4)	(3)	5.7	5.170(5)	0.910	1-x, -y, 1-2
$N3 \rightarrow C17 \cdots N3 \rightarrow$	2 556(1)	0.0	1	2 465(2)	0.800	2
C17	3.330(4)	(3)	3.0	5.405(5)	0.800	2-x, -y, 1-2
$N3 \rightarrow C17 \cdots N3 \rightarrow$	26/2(1)	0.0	2	2 282(2)	1 254	1-x, 1-y,
C17	3.043(4)	(3)	1.8	5.382(5)	1.554	2–z

Table S2 Geometric parameters of π interactions in **3**.

^a Cg = centre of gravity of the aromatic ring.

^b α = angle between planes of two interacting rings.

 $^{c}\beta$ = angle between Cg···Cg line and normal to the plane of the first interacting ring.

Crystal packing of compounds 2 - 4

3D packing of **2** is achieved by insertion of cations between I1…Br₄Q…I1 units (Fig. S25); there are three symmetry-independent halogen and seven hydrogen bonds (Tables 3 and S1).

In **3** planar cations form infinite stacks (Table S2) extending in the direction [100], and the I^{-…}quinone…I⁻ groups are located between these stacks (Fig. S26). There are two symmetry-independent stacks of cations and I⁻…quinone…I⁻ groups. Due to the presence of strong proton-donating amino groups, hydrogen bonding is more extensive than in other structures. There are four symmetry-independent N–H…I hydrogen bonds, four C–H…O and one C–H…Br (Table S1); in addition, four C–Br…I halogen bonds link the I⁻…quinone…I⁻ "sandwiches" (Table 3).

Crystal packing of two phases of **4** is the same, although in the low-temperature polymorph there is obviously lower symmetry (Fig. S27): cations are inserted between I⁻...quinone...I⁻ units. Iodide anions accept two C–Br...I halogen bonds (Table 3), and there are weak hydrogen bonds with carbonyl oxygen atoms and iodide anions (Table S1).

Figure S25 Crystal packing of **2**. Quinone molecules are shown red, iodide anions as blue and cations as pale purple. Iodide ions are shown as spheres of arbitrary radii.

Figure S26 Crystal packing of **3**. Br_4Q molecules are shown as red (molecule 1 C1–C3 light red and molecule 2 C4–C6 as dark red), iodide anions are blue (I1 is dark blue, I2 is light blue) and two cations as purple (cation 1 N1–N2 dark purple, cation 2 N3–N4 pale

Figure S27 Crystal packing of **4**. Left: low-temperature phase (100 K), right: high-temperature phase (RT). Iodide ions are shown as spheres of arbitrary radii.

Compound	1	2	3	4	4	5
Empirical formula	$\begin{array}{c} C_{15}H_{14}Br_2Cl_2I_2N_2\\ O\end{array}$	$C_{20}H_{18}Br_4Cl_2I_2N_2O$	$C_{18}H_{18}Br_4I_2N_4O_2$	$C_{18}H_{16}Br_4I_2N_2O_2$	$C_{18}H_{16}Br_4I_2N_2O_2$	$C_{20}H_{30}Br_4I_2N_4O_2$
Formula wt. / g mol ⁻¹	722.80	962.70	895.76	865.77	865.77	931.88
Colour	black	black	black	black	black	black
Crystal dimensions / mm	0.15 x 0.15 x 0.15	0.25 x 0.08 x 0.06	0.10 x 0.07 x 0.05	0.22 x 0.08 x 0.07	0.18 x 0.08 x 0.07	0.20 x 0.06 x 0.03
Space group	$P 2_1/a$	P1	$_P$ 1	$P 2_1/c$	$P 2_1/c$	P bam
<i>a</i> / Å	10.9816(2)	8.5741(7)	7.0570(4)	15.4807(5)	7.7730(17)	13.9401(2)
b / Å	15.6952(2)	9.1611(7)	12.6851(6)	9.1376(4)	9.519(2)	13.8771(2)
<i>c</i> / Å	13.8514(2)	9.2506(7)	14.8883(9)	17.3524(5)	17.246(4)	7.60550(10)
α / °	90	105.323(7)	80.126(4)	90	90	90
β / °	110.729(2)	94.024(7)	77.986(5)	91.217(3)	91.254(4)	90
γ/°	90	95.605(7)	76.607(5)	90	90	90
Z	4	1	2	4	2	2
V / Å ³	2232.86(6)	693.94(10)	1257.45(13)	2454.05(15)	1276.0(5)	1471.27(4)
$D_{ m calc}$ / g cm $^{-3}$	2.150	2.304	2.366	2.343	2.253	2.103
λ / Å	1.54179 (CuKα)	1.54179 (Cu <i>K</i> α)	1.54179 (CuKα)	1.54179 (CuKα)	1.54179 (CuKα)	1.54179 (CuKα)
μ / mm ⁻¹	28.571	26.493	27.282	27.902	26.831	23.499
Θ range / °	3.41 - 75.99	4.98 - 76.49	3.06 - 76.31	5.10 - 75.89	5.13 - 756	4.50 - 76.10
T/K	293(2)	293(1)	99(2)	100(2)	293(2)	293(2)
Diffractometer type	Xcalibur Nova	Xcalibur Nova	Xcalibur Nova	Xcalibur Nova	Xcalibur Nova	Xcalibur Nova
	-11 < h < 13;	-10 < h < 10;	-8 < h < 8;	-18 < h < 9;	-9 < h < 9;	$-1^{n} < h < 16;$
Range of h, k, l	-19 < k < 17;	-11 < k < 7;	-15 < k < 13;	-9 < k < 11;	-11 < k < 10;	-17 < k < 17;
	-15 < l < 17	-11 < <i>l</i> < 11	-18 < l < 18	-21 < <i>l</i> < 14	-14 < l < 20	_9 < <i>l</i> < 8
Reflections collected	11894	5928	11628	13451	7004	13009
Independent reflections	4599	2857	5191	5063	2525	1651
Observed reflections $(I \ge 2\sigma)$	4397	2632	4916	4451	2305	1613
Absorption correction	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan
T_{\min}, T_{\max}	0.3367; 1.0000	0.0593; 1.0000	0.3269; 1.0000	0.2052; 1.0000	0.3622; 1.0000	0.1039; 1.0000
R _{int}	0.0306	0.0573	0.0499	0.0544	0.0328	0.0471
R (F)	0.0522	0.0635	0.0507	0.0560	0.0579	0.0504
$R_w (F^2)$	0.1591	0.1949	0.1452	0.1565	0.1761	0.1660
Goodness of fit	1.048	1.099	0.928	1.044	1.037	1.163
H atom treatment	Constrained	Constrained	Constrained	Constrained	Constrained	Constrained
No. of parameters	217	145	273	94	127	94

 Table S3 Crystallographic, data collection and refinement data.

No. of restraints	0	0	0	0	0	0
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e}{ m \AA}^{-3})$	2.611; -1.704	1.885; -1.931	1.635; -3.271	2.564; -2.280	1.815; -1.214	2.700; -0.786