Supporting Information

Bioinspired self-cleaning surface with microflower-like structures

constructed by electrochemically corrosion mediated self-assembly

Yulan Bao, ^{a, 1} Wenna Fu,^{a, 1} Hui Xu, ^a Yuxin Chen, ^a Hua Zhang, ^{a, *} and Shuiliang Chen ^{a, *}

^{a.} College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi

330022, P.R. China.

¹These authors contributed equally.

*Corresponding authors.

H.Z. Email: hzhang911220@gmail.com; S.C. Email: slchenjxnu@jxnu.edu.cn

Figure S1. Typical EDS pattern of the microflower-like structures. The inset are the relative contents of O, Cu and P elements, respectively. The atom ratio of Cu/P is calculated to be about 1.4:1, close to that of $Cu_3(PO_4)_2$.

Figure S2. Captured photos of water droplet on the surfaces prepared at different pH values. (Phosphate concentration: 50 mM; applied potential: 0.2 V; reaction time: 2 h)

Figure S3. FTIR spectra of microflower-like surfaces before and after DA modification.

Figure S4. SEM images of the microflower-like surfaces after (a) ethanol treatment and (b) DA re-coating.

Figure S5. Photograph of various common liquid droplets in our daily life on the microflowerlike superhydrophobic surface. indicating that the microflower-like surface possesses a strong resistance to the contaminant.