Supporting Information for:

High-concentration Er³⁺ ions singly doped GaTaO₄ single crystal for promising all-solid-state green laser and solid-state lighting applications

Shoujun Ding ^{a, b, *}, Hao Ren ^a, Wenpeng Liu ^b, Aifeng He ^c, Xubing Tang ^a, Qingli Zhang ^b

^a School of Science and Engineering of Mathematics and Physics, Anhui University of Technology, Maanshan, Anhui, 243002, PR China

^b Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China

^c Key Laboratory on Applied Physics and Chemistry, Shaanxi Applied Physics and Chemistry Research Institute, Xi'an, Shaanxi, 710061, PR China

- 1. Figure S1
- 2. Figure S2
- 3. Table S1
- 4. Table S2
- 5. Figure S3
- 6. Figure S4
- 7. Effective segregation coefficient (Figure S5)
- 8. Density measurement (Figure S6)

9. Figure S7

10. REFERENCES

^{*} corresponding author e-mail: sjding@ahut.edu.cn (S.J. Ding)

1. Figure S1.

Figure S1. The schematic diagram of crystal growth process.

2. Figure S2

Figure S2. Residual thermal stress observation using a polarized stress meter. (a) No residual thermal stress observed in the as-grown Er:GdTaO₄ crystal; (b) The observed residual thermal stress in Dy:GSAG crystal (as a comparison).

3. Table S1

Table S1 The solved results for single-crystal X-ray diffraction

Structural formula	GdTaO ₄

Space group	C2/c			
Cell parameters	a=7.054 Å, b=11.041 Å, c=5.088 Å; α=γ=90°, β=130.35°			
Ζ	4			
Radiation type	Μο Κα			
μ (mm ⁻¹)	57.66			
F (000)	580.0			
Maximum 20	54.94°			
Total reflections	876			
Unique reflections	359			
R (int)	0.0972			
R (sigma)	0.0875			

4. Table S2

Table S2 Comparison of the cell parameters for GdTaO₄ and Er:GdTaO₄.

Sample		Succe succes					
	a (Å)	b (Å)	c (Å)	α=γ	β	V (Å ³)	- Space group
GdTaO ₄ (ICSD#1	7.054	11.078	5 082	000	120 240	202 15	$C_{2/2}$ (No. 15)
53362)[1]	7.034	11.078	5.082	90	130.24	505.15	$C_{2/C}(100.15)$
Er:GdTaO ₄	7.054	11.041	5.088	90 °	130.35°	302.00	C2/c (No.15)

5. Figure S3

Figure S3. Room-temperature Raman spectrum of Er:GdTaO₄ crystal.

6. Figure S4

Figure S4. Crystal sample free from cleavage crack and cleavage crack along (010) face.

7. Effective segregation coefficient (Figure S5)

A crystal slice was cut from the should part of the as-grown Er:GdTaO₄ crystal and ground carefully into powder to determine the effective segregation coefficient of Er³⁺ in GdTaO₄ host. A JSM—6490LV scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) was employed to determine the elements content. The measured mapping of the elements in Er:GdTaO₄ crystal is shown in Figure S5. The concentration of Er³⁺ was estimated to be 11.0 at%, corresponding to an effective segregation coefficient (K_{eff}) of 1.1, which is comparable to that reported in the Ref.[2] (0.95 for Er³⁺ in 1 at.% Er:GdTaO₄ crystal). Therefore, the concentration of Er³⁺ (N_C) in GdTaO₄ host was calculated to be ~1.45×10²¹ cm⁻³, according to the following equation:

$$N_{C} = \frac{10 \text{ at.}\% \times K_{eff} \times N_{A} \times \rho}{M} = \frac{0.1 \times 1.1 \times 6.02 \times 10^{23} \times 8.8}{403} / cm^{3} = 1.45 \times 10^{21} / cm^{3}$$

Where N_A is the Avogadro's number, M is the molar mass, ρ is the density of the crystal, which was measured to be 8.8 g/cm³ with the Archimedes principle method as shown in Figure S6.

Figure S5. The mapping of the elements in Er:GdTaO₄ crystal.

8. Density measurement (Figure S6)

The density of the crystal was determined to be 8.8 g/cm³ with the Archimedes principle method. Deionized water at room temperature was employed as the immersion liquid. The measurement was repeated five times and an average was taken to ensure the accuracy. The schematic diagram for the density measurement is shown in Figure S6.

Figure S6. The schematic diagram for density measurement.

Figure S7. Emission spectra with color filled under the excitation of 450 nm(a) and 377 nm

Figure S8. The specific heat, thermal diffusion coefficient (a) and thermal conductivity (b) of the crystal.

11. References

[1] Tyitov, Y.O.; Bjelyavyina, N.; Slobodyanik, M.; Timoshenko, M. Peculiarities of the synthesis and polymorphic transformations and the crystalline structure of M-modifications of LnTaO₄. Dopovyidyi Natsyional'noyi Akademyiyi Nauk Ukrayini **2004**, 145-50.

[2] Chen, Y.; Peng, F.; Zhang, Q.; Liu, W.; Dou, R.; Ding, S.; Luo, J.; Sun, D.; Sun, G.; Wang, X. Growth, structure and spectroscopic properties of 1 at.% Er³⁺:GdTaO₄ laser crystal. J. Lumin. **2017**, 192, 555-61.