Supporting information for

Polymer-directed Crystallization of HMX to Construct Nano-/Microstructured Aggregates with Tunable Polymorph and Microstructure

Xin Zhou^a, Yan Ren^b, Hongzhen Li^{a*}, Xiaoqing Zhou^a, Shilong Hao^a,

Rong Xu^a, Qi Zhang^a

^{*a}Institute of Chemical Materials, CAEP, Mianyang, Sichuan, 621999, China* ^{*b*}Mianyang City College, Mianyang, Sichuan, 621000, China</sup>

Sample	Conformation	Space group	Z	$\rho_{meas.} \left(g/cm^3\right)$
δ-ΗΜΧ	boat-boat	<i>P6</i> ₁	6	1.80 ^a
γ-HMX	boat-boat	Pc	4	1.76 ^{<i>a</i>}

Table S1 Crystal structure information of the HMX polymorphs

Note: ^{*a*} data collected from reference (*Miller, G. R et al, Review of the Crystal Structures of Common Explosives. Part 1: RDX, HMX, TNT, PETN, and Tetryl*)

Figure S1 TG-curves of the sphere aggregates

Sample	PVP (wt.%)	HMX (wt.%)
Flower sphere	6.8	93.2
Spiky spherulite	6.6	93.4
Spiky spherulite	8.1	91.9

Table S2 HPLC results of the aggregates

The critical drop height with 50% explosion probability (H_{50}) was determined according to GJB-772A-97 standard method 601.2. Specifically, the sample (30 mg for each test) was tested 25 times to obtain H_{50} , which represents the height from which dropping a 2.5 kg weight will result in a 50% explosive event of the trials. We found that the spiky spherulite' H_{50} was 90.0 cm. The impact energy was then calculated as 22 J based on equation

E=mgH₅₀

where m is the hammer weight, g is the gravity constant. Then we compared this data with needle γ -HMX in a previous report (*Xiaolan Song et al, Journal of Hazardous Materials 2008, 159, 222-229*) and the results are listed in Table 1.

Sample	Impact energy with 50%	IS	FS
	explosion probability		
Needle γ-HMX	8.4 J	82%	100%
Spiky spherulite	22.1 J	20%	60%

Table S3 Comparison of the mechanical sensitivity

Clearly, spherulitic structuring of the γ -HMX significantly increases the impact energy by almost 3-fold, which demonstrates the excellent desensitizing capability of our strategy.