Supporting Information

EfficientVisible-Light-DrivenReductionofHexavalentChromiumCatalyzedbyConjugatedOrganicSpeciesModifiedHourglass-typePhosphomolybdateHybrids

Hao-Xue Bi, Xiao-Yu Yin, Xiu-Juan Zhang, Yuan-Yuan Ma*, Zhan-Gang Han*

Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China.

Email: mayy334@hebtu.edu.cn; hanzg116@126.com; hanzg116@hebtu.edu.cn

CONTENTS:

- **1. Experimental Section**
- 2. Supplementary Figures
- 3. Supplementary Tables

1. Experimental Section

1.1 Materials and measurements

All chemical reagents were commercially available. FTIR-8900 infrared spectrometer was used to collect the infrared spectra in the range of 400-4000 cm⁻¹ (KBr pellet); Bruker AXS D8 advance X-ray powder diffractometer was used to measure the X-ray powder diffraction; DTG-60A thermogravimetric analyzer was used to characterize the thermogravimetric spectra in the range of room temperature to 600 °C, and cyclic voltammetry curves were performed at CHI760E electrochemical workstation produced by Shanghai Chenhua. The UV-Vis DRS spectra of crystals were determined by Agilent Cary 5000 UV-Vis spectrophotometer (BaSO₄ as the standard sample); UV-Vis Spectrum was analyzed by UV-2600 UV-Vis spectrophotometer.

1.2 Single-crystal X-ray diffraction

The crystal diffraction data were collected by using a Smart Apex CCD diffractometer with Mo K α monochromated radiation ($\lambda = 0.71073$ Å) at 296(2) K. The crystal structures of **1–4** were resolved by direct methods and refined by the full matrix least-squares methods on F² using the *SHELXTL* crystallographic program package. Except for lattice water, all non-hydrogen atoms were anisotropic. The crystallographic data and structure refinement details for crystals **1–4** (CCDC 2076438, 2076444, 2076445 and 2076446) are summarized in Table S1. Typical bond lengths and angles are also listed in Tables S2-S9.

2. Supplementary Figures

Fig. S1 A simplified diagram of the 3D structure in crystal.

Fig. S2 IR spectra of crystals 1-4 (KBr pellets as background).

Fig. S3 Powder diffraction patterns of crystals 1-4.

Fig. S4 TG curves of crystals 1-4.

Fig. S5 Cyclic voltammograms of 1-GCE, 2-GCE, 3-GCE and 4-GCE in the 0.5 M H_2SO_4 solution at different scan rates (20, 50, 80, 110, and 140 mV·s⁻¹). The insets are plots of peak current of peak (II–II') versus scan rate.

Fig. S6 Solid-state emission spectra of hybrids 1-4.

Fig. S7 Comparison of IR spectra of the fresh 2-4 and after catalysis.

Fig. S8 Comparison of XRD patterns of the fresh 2-4 and after catalysis.

3. Supplementary Tables

Table S1 Crystal data	and structural refinement	details for crystals 1-
	4.	

Crystal	1	2	3	4
Empirical formula	$C_{64}H_{64}Fe_{2}Mo_{12}N_{8}Na_{2}O_{71} \\$	$C_{64}H_{62}Co_2Mo_{12}N_8Na_2O_{70}P_8$	$C_{64}H_{52}Mn_2Mo_{12}N_8Na_2O_{71}P$	$C_{64}H_{54}Zn_2Mo_{12}N_8Na_2O_{70}P_8$
Formula weight	3637.95	3626.09	3654.01	3633.79
Crystal system	Triclinic	Triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1	P-1
a (Å)	11.853(2)	11.8560(10)	11.8092(12)	12.079(2)
b (Å)	14.016(2)	14.0079(12)	14.1430(15)	13.620(2)
c (Å)	16.932(3)	16.8886(14)	17.0587(19)	17.023(3)
α, β, γ (°)	105.883(3),99.311(3),	105.9222(13),99.3799(14),	106.8435(17),100.0004(16)	
	92.164(3)	92.0586(15)	91.8117(16)	75.738(3),80.286(3),89.388(3
Volume (Å ³), Z	2659.9(8), 1	2651.5(4), 1	2675.3(5), 1	2674.0(8), 1
Density(calculated)(Mg	2.271	2.271	2.268	2.257
Absorption	1.870	1.914	1.831	1.894
$F_{(000)}$	1770.0	1762	1770.0	1766.0
Crystal size (mm ³)	$0.2\times0.15\times0.1$	0.2 x 0.18 x 0.16	$0.2\times0.18\times0.16$	$0.2\times0.18\times0.16$
$ heta\left(^{\circ} ight)$	3.36 to 56.516	1.275 to 25.027	3.02 to 56.562	3.086 to 56.414
Reflections collected	16442	13390	16597	15654
Independent reflections	$12017 [R_{(int)} = 0.0355]$	9277 $[R_{(int)} = 0.0238]$	12158 $[R_{(int)} = 0.0230]$	11790 $[R_{(int)} = 0.0269]$
Max. and min.	0.829 and 0.721	0.7452 and 0.6787	0.746 and 0.700	0.739 and 0.692
Data/restraints/paramet	12017/1020/774	9277/750/744	12158/726/752	11790/840/755
Goodness-of-fit on F^2	1.018	1.022	1.025	1.038
Final R indices	$R_1 = 0.0587, wR_2 = 0.1579$	$R_1 = 0.0466, wR_2 = 0.1248$	$R_1 = 0.0483, wR_2 = 0.1311$	$R_1 = 0.0601, wR_2 = 0.1444$
R indices (all data)	$R_1 = 0.0790, wR_2 = 0.1754$	$R_1 = 0.0659, wR_2 = 0.1385$	$R_1 = 0.0681, wR_2 = 0.1451$	$R_1 = 0.0944, wR_2 = 0.1727$

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|; wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}.$

Table S2 Selected bond lengths (Å) and bond angles (°) of compound 1.

1 abit 52 50	feeted bolid lengths (11) and bolid angles () of eo	
Mo(1)-Mo(4)	2.5932(9)	P(4) -O(30)	1.505(5)
Mo(1)-O(5)	1.974(4)	$P(4)-Na(1)^{i}$	3.417(6)
Mo(1)-O(8)	2.127(5)	P(3)-O(26)	1.529(5)
Mo(1)-O(11)	1.936(5)	$P(3)-O(3)^{i}$	1.518(6)
Mo(1)-O(13) ⁱ	2.290(4)	P(3)-O(4)	1.514(5)
Mo(1)-O(22)	1.681(5)	P(3)-O(32)	1.573(6)
Mo(1)-O(25)	2.077(5)	P(3)-Na(1)	3.409(5)
Mo(2)-Mo(6)	2.5818(9)	P(1) -O(21)	1.542(6)
Mo(2)-O(6)	1.987(4)	P(1) -O(28)	1.530(6)
Mo(2)-O(8) ⁱ	2.146(5)	P(1) -O(2)	1.597(6)
Mo(2)-O(12)	2.067(4)	P(1) -O(31)	1.506(6)
Mo(2)-O(13)	2.267(4)	$O(19)$ -Na $(1)^{i}$	2.600(7)
Mo(2)-O(14)	1.920(5)	O(24)-Na(1) ⁱⁱⁱ	2.490(7)
Mo(2)-O(15)	1.687(5)	O(27)-Na(1) ⁱ	2.643(8)
Mo(3)-Mo(5)	2.5938(9)	O(30)-Na(1) ⁱ	2.681(8)
Mo(3)-O(7)	1.973(5)	O(32)-Na(1)	2.426(8)

Mo(3)-O(10)	2.293(4)	N(2)-C(47)	1.451(10)
Mo(3)-O(17) ⁱ	2.090(5)	N(1)-C(44)	1.396(11)
Mo(3)-O(18)	1.679(5)	C(40)-C(43)	1.477(11)
Mo(3)-O(19)	1.928(5)	C(40)-C(48)	1.375(11)
Mo(3)-O(3)	2.071(5)	C(40)-C(52)	1.394(12)
Mo(4)-O(5)	1.976(4)	C(41)-C(47)	1.352(12)
Mo(4)-O(10) ⁱ	2.297(5)	C(41)-C(48)	1.404(12)
Mo(4)-O(11)	1.946(5)	C(42)-C(43)	1.404(12)
Mo(4)-O(17)	2.105(5)	C(42)-C(60)	1.392(12)
Mo(4)-O(26)	2.065(5)	C(43)-C(50)	1.378(12)
Mo(4)-O(29)	1.668(5)	C(44)-C(55)	1.380(12)
Mo(5)-O(7)	1.975(5)	C(44)-C(60)	1.387(12)
Mo(5)-O(9)	2.104(5)	C(46)-C(47)	1.376(12)
Mo(5)-O(16)	2.250(4)	C(46)-C(52)	1.411(13)
Mo(5)-O(19)	1.942(5)	C(50)-C(55)	1.378(12)
Mo(5)-O(20)	1.668(5)	Na(1)-O(1W)	2.407(11)
Mo(5)-O(21)	2.073(5)	Na(1)-O(4W)	3.00(2)
Mo(6)-O(6)	1.982(5)	N(3)-C(4)	1.378(15)
Mo(6)-O(9)	2.099(4)	N(3)-C(10)	1.337(14)
Mo(6)-O(14)	1.950(5)	C(4) -C(7)	1.402(15)
Mo(6)-O(16)	2.286(4)	C(4) - C(8)	1.424(14)
Mo(6)-O(23)	1.673(5)	C(0AA)-C(6)	1.464(17)
Mo(6)-O(28)	2.037(5)	C(0AA)-C(11)	1.418(15)
Fe(2)-O(27) ⁱⁱ	2.123(5)	C(0AA)-C(12)	1.384(16)
Fe(2)-O(27)	2.123(5)	C(6)-C(15)	1.342(17)
Fe(2)-O(30) ⁱⁱ	2.059(5)	C(6)-C(18)	1.381(16)
Fe(2)-O(30)	2.059(5)	C(7)-C(12)	1.361(16)
Fe(2)-O(1)	2.153(6)	C(8)-C(9)	1.385(15)
Fe(2)-O(1) ⁱⁱ	2.153(6)	C(8)-C(11)	1.386(16)
$Fe(1)-O(5)^{i}$	2.205(4)	C(9)-C(14)	1.357(17)
Fe(1)-O(5)	2.205(4)	C(10)-C(14)	1.437(16)
$Fe(1)-O(6)^{i}$	2.130(4)	C(10)-C(19)	1.475(17)
Fe(1)-O(6)	2.130(4)	N(4)-C(16)	1.410(18)
Fe(1)-O(7)	2.205(4)	N(4)-C(17)	1.130(16)
$Fe(1)-O(7)^{i}$	2.205(4)	C(15)-C(21)	1.439(19)
P(2) -O(12)	1.534(5)	C(16)-C(21)	1.381(19)
P(2) -O(24)	1.585(5)	C(16)-C(22)	1.34(2)
$P(2) - O(25)^{i}$	1.527(5)	C(17)-C(25)	1.33(2)
P(2) -O(27) ⁱⁱ	1.497(5)	C(17)-C(5)	1.69(2)
$P(2) - Na(1)^{iii}$	3.184(5)	C(18)-C(22)	1.379(19)
P(4)-O(10)	1.544(5)	C(21)-C(26)	1.312(19)
P(4)-O(13)	1.543(4)	C(25)-C(26)	1.51(2)
P(4) -O(16)	1.555(5)	O(13)-P(4)-O(10)	107.1(3)

O(5)-Mo(1)-O(8)	85.74(18)	O(26)-P(3)-O(32)	107.5(3)
O(8)-Mo(1)-Mo(4)	73.24(16)	O(26)-P(3)-Na(1)	114.5(2)
O(8)-Mo(1)-O(13) ⁱ	48.25(14)	O(4)-P(3)-O(26)	111.2(3)
O(11)-Mo(1)-Mo(4)	95.50(19)	O(4)-P(3)-O(3) ⁱ	109.6(3)
O(11)-Mo(1)-O(5)	156.59(19)	O(4)-P(3)-O(32)	110.7(3)
O(13) ⁱ -Mo(1)-Mo(4)	100.64(17)	O(21)-P(1)-O(2)	106.5(3)
O(22)-Mo(1)-Mo(4)	102.8(2)	O(28)-P(1)-O(21)	111.1(3)
O(6)-Mo(2)-Mo(6)	85.90(18)	O(28)-P(1)-O(2)	107.7(3)
O(8) ⁱ -Mo(2)-Mo(6)	73.37(17)	O(31)-P(1)-O(2)	106.7(4)
O(12)-Mo(2)-O(13)	90.57(11)	Mo(1)-O(5)-Mo(4)	82.05(17)
O(13)-Mo(2)-Mo(6)	48.66(14)	O(23)-Mo(6)-O(6)	102.4(2)
O(14)-Mo(2)-Mo(6)	96.35(19)	O(23)-Mo(6)-O(9)	97.7(2)
O(15)-Mo(2)-Mo(6)	103.4(2)	O(23)-Mo(6)-O(14)	106.2(2)
O(7)-Mo(3)-Mo(5)	81.54(17)	O(23)-Mo(6)-O(16)	170.1(2)
O(10)-Mo(3)-Mo(5)	134.99(13)	O(23)-Mo(6)-O(28)	95.9(2)
O(17) ⁱ -Mo(3)-Mo(5)	73.22(17)	O(28)-Mo(6)-O(9)	83.0(2)
O(18)-Mo(3)-O(3)	48.13(14)	O(28)-Mo(6)-O(16)	81.0(2)
O(19)-Mo(3)-O(7)	81.66(19)	O(27)-Fe(2)-O(27) ⁱⁱ	180.0
O(5)-Mo(4)-O(17)	160.1(2)	O(27) ⁱⁱ -Fe(2)-O(1) ⁱⁱ	93.7(2)
O(5)-Mo(4)-O(26)	88.58(11)	O(27)-Fe(2)-O(1)	93.7(2)
O(17)-Mo(4)-O(10) ⁱ	133.44(14)	O(27)-Fe(2)-O(1) ⁱⁱ	86.3(2)
O(26)-Mo(4)-Mo(1)	79.89(19)	O(30)-Fe(2)-O(27)	83.12(19)
O(29)-Mo(4)-O(11)	98.3(2)	O(30) ⁱⁱ -Fe(2)-O(1) ⁱⁱ	87.5(2)
O(20)-Mo(5)-Mo(3)	103.1(2)	O(30)-Fe(2)-O(1) ⁱⁱ	92.5(2)
O(20)-Mo(5)-O(7)	96.9(2)	O(30)-Fe(2)-O(1)	87.5(2)
O(20)-Mo(5)-O(21)	133.64(16)	$O(30)^{ii}$ -Fe(2)-O(1)	92.5(2)
O(21)-Mo(5)-Mo(3)	85.3(2)	O(1)-Fe(2)-O(1) ⁱⁱ	180.0
O(21)-Mo(5)-O(9)	78.47(19)	$O(5)^{i}$ -Fe(1)-O(5)	180.0
O(21)-Mo(5)-O(16)	49.51(13)	$O(5)^{i}$ -Fe(1)-O(7) ⁱ	83.98(17)
O(6)-Mo(6)-Mo(2)	87.02(18)	$O(5)^{i}$ -Fe(1)-O(7)	96.02(17)
O(6)-Mo(6)-O(9)	79.73(17)	O(5)-Fe(1)-O(7)	83.98(17)
O(9)-Mo(6)-Mo(2)	72.58(17)	$O(5)$ -Fe(1)- $O(7)^{i}$	96.02(17)
O(14)-Mo(6)-O(28)	86.5(2)		

a .	1 .	1	••	<u> </u>		1 .
Symmetry	codes: 1 =	$= -\mathbf{v} + -\mathbf{v} - \mathbf{v}$	11 = -v	J_V _7'	111 = V	1+1/7
Symmetry	coucs. I -	A, I-Y,-Z,	$n = -\Lambda$	$2 - y_{1} - Z_{2}$	ш – л, -	'I'Y, Z.
5 5		, , ,	, ,	, , ,	,	<i>J</i> /

Table S3	Table S3 Selected bond lengths (Å) and bond angles (°) of compound 2.				
Mo(1)-Mo(4)	2.5898(9)	P(2)-Na(1)	3.353(5)		
Mo(1)-O(7)	1.975(5)	P(2)-O(15)	1.553(5)		
Mo(1)-O(8) ⁱ	2.111(5)	P(2)-O(25)	1.500(5)		
Mo(1)-O(11)	2.286(5)	P(3)-Na(1)	3.423(5)		
Mo(1)-O(14)	1.939(5)	P(3)-O(27) ⁱ	1.531(6)		
Mo(1)-O(23)	1.677(5)	P(3)-O(31)	1.508(6)		
Mo(1)-O(32)	2.062(5)	P(3)-O(33)	1.532(6)		
Mo(2)-Mo(3)	2.5769(10	P(3)-O(37)	1.584(6)		
Mo(2)-O(5)	1.977(5)	P(4)-O(21)	1.540(6)		

Mo(2)-O(8)	2.137(5)	P(4)-O(29)	1.534(7)
Mo(2)-O(11) ⁱ	2.262(5)	P(4)-O(34)	1.613(7)
Mo(2)-O(12)	1.920(5)	P(4)-O(36)	1.495(6)
Mo(2)-O(16)	2.059(5)	Na(1)-O(19)	2.625(7)
Mo(2)-O(24)	1.674(5)	Na(1)-O(20)	2.554(7)
Mo(3)-O(5)	1.984(5)	Na(1)-O(25)	2.576(7)
Mo(3)-O(9)	2.094(5)	Na(1)-O(26) ⁱⁱ	2.527(7)
Mo(3)-O(12)	1.932(5)	Na(1)-O(37)	2.419(8)
Mo(3)-O(15)	2.285(5)	Na(1)-O(1W)	2.419(10)
Mo(3)-O(28)	1.673(6)	N(2)-C(52)	1.403(12)
Mo(3)-O(29)	2.035(6)	N(1)-C(47)	1.470(11)
Mo(4)-O(7)	1.984(5)	C(41)-C(43)	1.395(13)
Mo(4)-O(10) ⁱ	2.293(5)	C(41)-C(57)	1.383(14)
Mo(4)-O(14)	1.941(5)	C(42)-C(45)	1.370(14)
Mo(4)-O(18)	2.099(5)	C(42)-C(47)	1.376(13)
Mo(4)-O(27)	2.056(5)	C(43)-C(44)	1.492(13)
Mo(4)-O(30)	1.665(5)	C(43)-C(48)	1.386(13)
Mo(5)-Mo(6)	2.5899(10	C(44)-C(45)	1.383(13)
Mo(5)-O(6)	1.984(5)	C(44)-C(50)	1.383(13)
Mo(5)-O(9)	2.099(5)	C(46)-C(47)	1.385(13)
Mo(5)-O(15)	2.241(5)	C(46)-C(50)	1.390(14)
Mo(5)-O(19)	1.942(5)	C(48)-C(51)	1.368(14)
Mo(5)-O(21)	2.074(6)	C(49)-C(53)	1.406(16)
Mo(5)-O(22)	1.663(6)	C(49)-N(3)	1.385(16)
Mo(6)-O(6)	1.980(5)	C(49)-C(66)	1.397(17)
Mo(6)-O(10)	2.279(5)	C(51)-C(52)	1.384(14)
Mo(6)-O(17)	1.678(6)	C(52)-C(57)	1.397(14)
Mo(6)-O(18) ⁱ	2.086(5)	C(53)-C(61)	1.445(18)
Mo(6)-O(19)	1.931(6)	C(53)-C(70)	1.351(17)
Mo(6)-O(33)	2.062(6)	C(54)-C(65)	1.428(18)
$Co(1)-O(5)^{i}$	2.121(5)	C(54)-C(70)	1.350(19)
Co(1)-O(5)	2.121(5)	C(55)-C(58)	1.408(18)
Co(1)-O(6) ⁱ	2.179(5)	C(55)-C(66)	1.342(19)
Co(1)-O(6)	2.179(5)	N(3)-C(65)	1.326(15)
Co(1)-O(7) ⁱ	2.177(5)	C(58)-C(61)	1.372(16)
Co(1)-O(7)	2.177(5)	C(58)-C(69)	1.458(19)
Co(2)-O(20)	2.153(6)	C(62)-C(67)	1.36(2)
Co(2)-O(20) ⁱⁱ	2.152(6)	C(62)-C(69)	1.406(18)
Co(2)-O(25)	2.074(5)	C(64)-C(69)	1.363(18)
Co(2)-O(25) ⁱⁱ	2.074(5)	C(64)-C(8)	1.419(17)
Co(2)-O(35)	2.113(6)	C(65)-C(75)	1.483(19)
Co(2)-O(35) ⁱⁱ	2.113(6)	C(67)-C(4)	1.301(17)
P(1)-Na(1) ⁱⁱ	3.162(5)	C(5)-C(3)	1.61(2)
P(1)-O(16)	1.538(5)	N(4)-C(4)	1.359(6)

P(1)-O(20) ⁱⁱ	1.488(6)	N(4)-C(3)	1.359(6)
P(1)-O(26)	1.592(5)	C(4)-C(8)	1.359(6)
P(1)-O(32) ⁱⁱ	1.543(6)	C(8)-C(1)	1.359(6)
P(2)-O(10)	1.548(5)	C(1)-C(2)	1.359(6)
P(2)-O(11) ⁱⁱ	1.548(5)	C(2)-C(3)	1.359(6)
O(7)-Mo(1)-O(8) ⁱⁱ	85.5(2)	O(19)-Mo(6)-Mo(5)	95.7(2)
O(7)-Mo(1)-O(11)	80.31(19)	O(31)-P(3)-O(27)#1	111.5(3)
O(7)-Mo(1)-O(32)	158.8(2)	O(31)-P(3)-O(33)	109.7(4)
O(14)-Mo(1)-O(7)	95.7(2)	O(31)-P(3)-O(37)	110.4(4)
O(14)-Mo(1)-O(8) ⁱⁱ	156.7(2)	O(33)-P(3)-O(37)	105.3(4)
O(14)-Mo(1)-O(11)	83.9(2)	O(21)-P(4)-O(34)	106.2(4)
O(14)-Mo(1)-O(32)	86.9(2)	O(29)-P(4)-O(21)	110.9(3)
O(5)-Mo(2)-Mo(3)	49.54(14)	O(29)-P(4)-O(34)	107.1(4)
O(5)-Mo(2)-O(8)	85.6(2)	O(36)-P(4)-O(21)	113.6(4)
O(5)-Mo(2)-O(11) ⁱ	81.26(19)	O(36)-P(4)-O(29)	111.3(4)
O(5)-Mo(2)-O(16)	159.4(2)	O(36)-P(4)-O(34)	107.3(4)
O(16)-Mo(2)-O(8)	85.1(2)	Mo(2)-O(5)-Mo(3)	81.17(19)
O(16)-Mo(2)-O(11) ⁱ	78.49(19)	$Mo(1)^{i}-O(8)-Mo(2)$	111.5(2)
O(5)-Mo(3)-O(9)	87.4(2)	Mo(3)-O(9)-Mo(5)	112.5(2)
O(5)-Mo(3)-O(15)	79.81(19)	Mo(6)-O(10)-Mo(4) ⁱ	99.69(19)
O(5)-Mo(3)-O(29)	160.2(2)	Mo(2) ⁱ -O(11)-Mo(1)	101.07(18)
O(9)-Mo(3)-Mo(2)	135.45(14)	Mo(2)-O(12)-Mo(3)	84.0(2)
O(9)-Mo(3)-O(15)	72.66(19)	O(5)-Co(1)-O(7) ⁱ	180.0
O(7)-Mo(4)-O(18)	85.9(2)	O(6)-Co(1)-O(6) ⁱ	83.70(19)
O(7)-Mo(4)-O(27)	160.0(2)	O(7)-Co(1)-O(6)	96.30(19)
O(27)-Mo(4)-O(18)	85.2(2)	O(7)-Co(1)-O(6) ⁱ	96.30(19)
O(30)-Mo(4)-O(14)	105.0(3)	O(7) ⁱ -Co(1)-O(6)	83.70(19)
O(30)-Mo(4)-O(18)	98.2(3)	O(7) ⁱ -Co(1)-O(6) ⁱ	180.0
O(30)-Mo(4)-O(27)	97.5(3)	O(7) ⁱ -Co(1)-O(7)	180.0
O(6)-Mo(5)-Mo(6)	49.14(14)	O(25)-Co(2)-O(20)	180.0
O(6)-Mo(5)-O(9)	85.7(2)	O(25)-Co(2)-O(25) ⁱ	87.6(2)
O(9)-Mo(5)-O(15)	73.49(19)	O(25)-Co(2)-O(35)	92.4(2)
O(15)-Mo(5)-Mo(6)	89.75(13)	O(25)-Co(2)-O(35) ⁱ	92.4(2)
O(19)-Mo(5)-Mo(6)	47.86(17)	O(25) ⁱⁱ -Co(2)-O(35)	87.6(2)
O(6)-Mo(6)-O(33)	88.07(13)	O(25) ⁱⁱ -Co(2)-O(35)	87.0(2)
O(10)-Mo(6)-Mo(5)	101.3(2)	O(35)-Co(2)-O(20) ⁱⁱ	87.0(2)
O(17)-Mo(6)-Mo(5)	102.0(2)	O(35) ⁱⁱ -Co(2)-O(20)	93.0(2)
O(17)-Mo(6)-O(6)	170.0(2)	O(35)-Co(2)-O(20)	93.0(2)
O(17)-Mo(6)-O(10)	97.2(3)		
Symmetry codes: $i = 1-x$,	1-y,-z; ii = 1-x, 2-y,	-Z.	
Table S4 Sel	ected bond lengths ((Å) and bond angles (°) of com	pound 3 .
Mo(1)-Mo(5)	2.5919(9)	P(2)-O(20)	1.528(5)
Mo(1)-O(5)	1.981(4)	P(2)-O(27)	1.492(5)
Mo(1)-O(13)	2.243(4)	P(2)-Na(2)	3.207(4)

Mo(1)-O(14)	2.113(5)	P(3)-O(24)	1.522(5)
Mo(1)-O(22)	1.940(5)	$P(3)-O(32)^{i}$	1.536(5)
Mo(1)-O(26)	1.667(5)	P(3)-O(34)	1.507(5)
Mo(1)-O(29)	2.067(5)	P(3)-O(35)	1.580(5)
Mo(2)-Mo(4)	2.5887(8)	$P(4)-O(29)^{i}$	1.539(6)
Mo(2)-O(6)	2.124(4)	P(4)-O(31)	1.523(6)
Mo(2)-O(8)	1.967(4)	P(4)-O(37)	1.594(7)
Mo(2)-O(9)	1.936(4)	P(4)-O(1)	1.498(7)
$Mo(2)-O(12)^{i}$	2.290(4)	O(16)-Na(2)	2.543(6)
Mo(2)-O(15)	2.064(4)	O(18)-Na(2)	2.635(7)
Mo(2)-O(21)	1.675(5)	O(22)-Na(2)	2.634(6)
Mo(3)-Mo(6)	2.5826(8)	O(27)-Na(2)	2.615(6)
Mo(3)-O(6)	2.143(4)	O(35)-Na(2)	2.423(7)
Mo(3)-O(7)	1.974(4)	N(1)-C(46)	1.479(9)
$Mo(3)-O(12)^{i}$	2.272(4)	C(38)-C(46)	1.380(11)
Mo(3)-O(17)	1.915(5)	C(38)-C(56)	1.372(11)
Mo(3)-O(20)	2.065(4)	C(39)-C(49)	1.390(11)
Mo(3)-O(23)	1.669(5)	C(39)-C(51)	1.500(11)
Mo(4)-O(8)	1.980(4)	C(39)-C(56)	1.384(11)
Mo(4)-O(9)	1.938(4)	N(2)-C(43)	1.396(10)
Mo(4)-O(11) ⁱ	2.289(4)	C(41)-C(48)	1.391(12)
Mo(4)-O(19)	2.116(4)	C(41)-C(51)	1.389(11)
Mo(4)-O(24)	2.061(5)	C(42)-C(46)	1.381(11)
Mo(4)-O(28)	1.678(5)	C(42)-C(49)	1.381(11)
Mo(5)-O(5)	1.964(4)	C(43)-C(47)	1.386(11)
Mo(5)-O(11)	2.283(4)	C(43)-C(48)	1.382(12)
Mo(5)-O(19) ⁱ	2.089(5)	C(47)-C(55)	1.393(12)
Mo(5)-O(22)	1.930(5)	C(51)-C(55)	1.365(11)
Mo(5)-O(25)	1.677(5)	Na(2)-O(1W)	2.446(10)
Mo(5)-O(32)	2.068(5)	N(3)-C(0AA)	1.391(14)
Mo(6)-O(7)	1.987(4)	N(3)-C(14)	1.282(14)
Mo(6)-O(13) ⁱ	2.279(4)	C(2AA)-C(8)	1.353(15)
Mo(6)-O(14) ⁱ	2.109(4)	C(2AA)-C(0AA)	1.381(14)
Mo(6)-O(17)	1.941(5)	C(3AA)-C(0AA)	1.414(15)
Mo(6)-O(30)	1.671(5)	C(3AA)-C(13)	1.428(15)
Mo(6)-O(31)	2.040(5)	C(3AA)-C(1AA)	1.402(15)
$Mn(1)-O(5)^{i}$	2.226(4)	C(6)-C(7)	1.450(15)
Mn(1)-O(5)	2.226(4)	C(6)-C(8)	1.420(14)
$Mn(1)-O(7)^{i}$	2.177(4)	C(6)-C(13)	1.359(14)
Mn(1)-O(7)	2.177(4)	C(7)-C(15)	1.405(15)
Mn(1)-O(8)	2.220(4)	C(7)-C(16)	1.378(15)
Mn(1)-O(8) ⁱ	2.220(4)	C(14)-C(19)	1.411(17)
Mn(2)-O(18)	2.146(4)	C(14)-C(1)	1.495(17)
Mn(2)-O(18) ⁱⁱ	2.146(4)	C(15)-C(18)	1.395(16)

Mn(2)-O(27)	2.178(5)	C(16)-C(17)	1.441(15)
Mn(2)-O(27) ⁱⁱ	2.178(5)	C(18)-C(4AA)	1.392(14)
Mn(2)-O(33) ⁱⁱ	2.212(6)	C(19)-C(1AA)	1.359(17)
Mn(2)-O(33)	2.212(6)	O(9W)-N(4)	1.668(9)
P(1)-O(11)	1.556(5)	C(3)-C(4)	1.377(5)
P(1)-O(12)	1.550(4)	C(3)-C(5AA)	1.377(5)
P(1)-O(13)	1.549(5)	C(4)-C(17)	1.377(5)
P(1)-O(18)	1.502(4)	C(17)-C(4AA)	1.377(5)
P(1)-Na(2) ⁱⁱⁱ	3.447(5)	C(4AA)-N(4)	1.377(5)
P(2)-O(15)	1.538(5)	N(4)-C(5AA)	1.377(5)
P(2)-O(16)	1.580(5)	C(5AA)-C(2)	1.554(18)
O(5)-Mo(1)-Mo(5)	48.64(12)	$O(5)^{i}$ -Mn(1)-O(5)	180.0
O(5)-Mo(1)-O(13)	80.99(16)	O(7)-Mn(1)-O(5) ⁱ	96.58(16)
O(5)-Mo(1)-O(14)	86.42(18)	$O(7)^{i}-Mn(1)-O(5)$	96.59(16)
O(5)-Mo(1)-O(29)	159.92(19)	O(7)-Mn(1)-O(8)	96.14(15)
O(13)-Mo(1)-Mo(5)	89.50(11)	O(7)-Mn(1)-O(8) ⁱ	83.86(15)
O(14)-Mo(1)-Mo(5)	134.16(13)	$O(8)^{i}-Mn(1)-O(5)$	96.45(16)
O(14)-Mo(1)-O(13)	72.40(16)	$O(8)-Mn(1)-O(8)^{i}$	180.0
O(6)-Mo(2)-Mo(4)	133.71(12)	O(18)-Mn(2)-O(18) ⁱⁱ	180.0
O(6)-Mo(2)O(12) ⁱ	72.76(15)	$O(18)^{ii}-Mn(2)-O(27)^{ii}$	82.31(17)
O(8)-Mo(2)-Mo(4)	49.22(12)	O(18)-Mn(2)-O(33) ⁱⁱ	90.8(2)
O(8)-Mo(2)-O(6)	85.45(17)	$O(27)^{ii}-Mn(2)-O(33)$	87.6(2)
O(21)-Mo(2)-O(6)	97.8(2)	O(33)-Mn(2)-O(33) ⁱⁱ	180.0
O(21)-Mo(2)-O(8)	102.9(2)	O(12)-P(1)-O(11)	107.0(2)
O(21)-Mo(2)-O(9)	105.0(2)	O(13)-P(1)-O(11)	108.2(2)
O(7)-Mo(3)-O(6)	85.46(17)	O(13)-P(1)-O(12)	107.5(2)
O(7)-Mo(3)-O(12) ⁱ	81.98(16)	O(18)-P(1)-O(11)	111.4(3)
O(7)-Mo(3)-O(20)	159.89(18)	O(18)-P(1)-O(12)	113.8(2)
O(17)-Mo(3)-O(6)	157.62(19)	O(18)-P(1)-O(13)	108.7(3)
O(17)-Mo(3)-O(7)	96.27(18)	O(15)-P(2)-O(16)	107.0(3)
O(17)-Mo(3)-O(20)	86.55(19)	O(20)-P(2)-O(15)	109.1(3)
O(8)-Mo(4)-O(24)	160.1(2)	O(20)-P(2)-O(16)	105.8(3)
O(9)-Mo(4)-O(19)	155.86(19)	O(27)-P(2)-O(15)	113.7(3)
O(9)-Mo(4)-O(24)	85.52(19)	O(27)-P(2)-O(16)	105.0(3)
O(24)-Mo(4)-O(19)	85.51(18)	O(27)-P(2)-O(20)	115.3(3)
O(28)-Mo(4)-O(8)	101.2(2)	$O(24)-P(3)-O(32)^{i}$	111.5(3)
O(28)-Mo(4)-O(9)	105.2(2)	O(24)-P(3)-O(35)	108.4(3)
O(5)-Mo(5)-O(11)	82.48(16)	O(32) ⁱ -P(3)-O(35)	105.7(3)
$O(5)-Mo(5)-O(19)^{i}$	87.10(18)	O(34)-P(3)-O(24)	111.7(3)
O(5)-Mo(5)-O(32)	161.99(19)	$O(34)-P(3)-O(32)^{i}$	110.0(3)
O(22)-Mo(5)-O(5)	95.68(19)	O(34)-P(3)-O(35)	109.4(3)
O(22)-Mo(5)-O(11)	81.77(18)	O(29) ⁱ -P(4)-O(37)	107.5(4)
O(25)-Mo(5)-O(5)	101.6(2)	O(31)-P(4)-O(29) ⁱ	111.2(3)
$O(25) M_{0}(5) O(11)$	160 A(2)	O(21) P(4) O(27)	109 4(2)

O(7)-Mo(6)-Mo(3)	49.10(12)	O(1)-P(4)-O(29) ⁱ	111.8(3)
O(7)-Mo(6)-O(13) ⁱ	79.40(16)	O(1)-P(4)-O(31)	111.3(4)
O(7)-Mo(6)-O(14) ⁱ	87.64(17)	O(1)-P(4)-O(37)	106.4(4)
O(7)-Mo(6)-O(31)	159.6(2)		
Symmetry codes: $i = -x, 1$	-y, 2-z; ii = -x, 2-y, 2	2-z.	
Table S5 Sel	ected bond lengths ((Å) and bond angles (°) of cor	npound 4 .
Mo(1)-Mo(2)	2.5972(10)	P (4)-O(41)	1.565(10)
Mo(1)-O(6)	1.971(5)	P(4)-O(42)	1.493(8)
Mo(1)-O(11)	2.104(6)	O(17)-Na(22)	2.388(8)
Mo(1)-O(141)	2.276(6)	O(30)-Zn(21)	1.950(8)
Mo(1)-O(19)	1.945(6)	O(30)-Zn(23)	2.000(8)
Mo(1)-O(21)	2.065(6)	O(30)-Zn(2A) ⁱⁱⁱ	1.866(7)
Mo(1)-O(29)	1.667(6)	O(30)-Zn(2A) ⁱ	1.964(7)
Mo(2)-O(6)	1.967(5)	O(32)-Na(2)	2.883(10)
Mo(2)-O(81)	2.129(5)	O(33)-Na(2)	2.411(8)
Mo(2)-O(10)	2.282(5)	O(33)-Zn(2)	2.398(10)
Mo (2)-O(19)	1.933(6)	O(33)-Zn(2A)	1.803(9)
Mo(2)-O(25)	2.074(6)	O(34)-Na(22)	2.739(11)
Mo(2)-O(27)	1.673(6)	O(50) ⁱⁱ -Na(22)	2.858(13)
Mo(3)-Mo(5)	2.5856(11)	N(1)-C(4)	1.473(13)
Mo(3)-O(7)	1.962(5)	C(4)-C(10)	1.350(15)
Mo(3)-O(8)	2.134(5)	C(4)-C(11)	1.364(14)
Mo(3)-O(101)	2.265(5)	O(3W)-Na(2)	2.346(11)
Mo(3)-O(13)	1.935(6)	C (6)-C(11)	1.393(16)
Mo(3)-O(18)	2.079(6)	C(6)-C(12)	1.401(15)
Mo(3)-O(26)	1.680(6)	N(2)-C(19)	1.330(15)
Mo(4)-Mo(6)	2.5878(11)	N(2)-C(26)	1.366(16)
Mo(4)-O(9)	2.098(6)	O(2W)-Zn(21)	2.226(12)
Mo (4)-O(12)	1.986(6)	O(2W)-Zn(2A)iii	2.089(12)
Mo(4)-O(17)	1.930(6)	C(9)-C(12)	1.484(15)
Mo(4)-O(23)	2.306(5)	C(9)-C(17)	1.398(14)
Mo(4)-O(24)	1.679(6)	C(9)-C(20)	1.387(15)
Mo (4)-O(28)	2.076(6)	C(10)-C(15)	1.379(16)
Mo(5)-O(7)	1.976(5)	C(12)-C(15)	1.403(14)
Mo(5)-O(9)	2.097(6)	N(3)-C(14)	1.422(14)
Mo(5)-O(13)	1.939(6)	C(14)-C(21)	1.389(15)
Mo(5)-O(20)	2.054(6)	C(14)-C(25)	1.387(16)
Mo(5)-O(23)	2.304(5)	O (4W) -Na(2)	2.455(14)
Mo(5)-O(31)	1.672(7)	C(17)-C(25)	1.378(16)
Mo(6)-O(111)	2.110(6)	C(19)-C(28)	1.380(17)
Mo(6)-O(12)	1.981(6)	C(19)-C(32)	1.487(19)
Mo(6)-O(14)	2.286(5)	C(20)-C(21)	1.393(16)
Mo(6)-O(17)	1.926(6)	C(22)-C(24)	1.411(17)
Mo (6)-O(22)	1.678(6)	C(22)-C(28)	1.345(18)

Mo(6)-O(34)	2.048(7)	C(23)-C(24)	1.388(18)
Mo(6)-Na(22)	3.652(5)	C(23)-C(30)	1.357(17)
Zn(1)-O(61)	2.227(5)	C(24)-C(26)	1.404(17)
Zn(1)-O(6)	2.227(5)	C(26) -C(31)	1.386(16)
Zn(1)-O(7)	2.187(5)	C(27)-C(30)	1.450(19)
Zn(1)-O(71)	2.187(6)	C(27)-C(31)	1.303(19)
Zn(1)-O(121)	2.178(6)	C(29)-C(30)	1.47(2)
Zn(1)-O (12)	2.177(6)	C(29)-C(33)	1.38(2)
P(1)-O(10)	1.562(6)	C(29)-C(37)	1.38(2)
P(1)-O(141)	1.543(6)	C(33)-C (38)	1.39(2)
P (1)-O(231)	1.540(6)	C(37)-C(36)	1.397(19)
P(1)-O(30)	1.496(6)	C(38)-C (35)	1.29(2)
P(2-)O(18)	1.534(6)	C(1)-C(40)	1.341(7)
P(2)-O(251)	1.530(6)	C(1)-C(34)	1.341(7)
P(2)-O(32)	1.540(7)	C(40)-C(36)	1.341(7)
P(2)-O(33)	1.508(7)	C(36)-C(35)	1.340(7)
P(2)-Na(2)	3.257(5)	C(35)-N(4)	1.341(7)
P(3)-O(211)	1.529(7)	N(4)-C(34)	1.340(7)
P (3)-O(34)	1.518(7)	C(34)-C(2)	1.38(3)
P(3)-O(37)	1.514(8)	Na(2)-Zn (2A)	3.571(6)
P(3)-O(50)	1.542(9)	Zn(2)-Zn(22)	2.455(11)
P(3)-Na(22)	3.456(6)	Zn(2)-O(7W)	1.366(16)
P(4)-O(20)	1.521(7)	Zn(2A)- $Zn(2A)$	2.256(8)
P(4)-O(28)	1.524(7)	Zn(2A)-O(7W)	2.309(17)
O(6)-Mo(1)-Mo(2)	48.67(16)	O(9)-Mo(5)-O(23)	74.0(2)
O(6)-Mo(1)-O(11)	85.7(2)	O(13)-Mo(5)-O(7)	95.2(2)
O(6)-Mo(1)-O(21)	160.0(2)	O(13)-Mo(5)-O(9)	156.8(2)
O(11)-Mo(1)-O(141)	73.1(2)	O(20)-Mo(5)-O(23)	79.5(2)
O(19)-Mo(1)-Mo(2)	47.76(17)	O(31)-Mo(5)-O(7)	102.4(3)
O(21)-Mo(1)-O(11)	85.1(2)	O(17)-Mo(6)-O(34)	84.1(3)
O(29)-Mo(1)-O(19)	104.9(3)	O(22)-Mo(6)-O(14)	168.6(3)
O(29)-Mo(1)-O(21)	96.7(3)	O(22)-Mo(6)-O(17)	107.3(3)
O(6)-Mo(2)-O(81)	85.9(2)	O(22)-Mo(6)-O(34)	96.8(3)
O(6)-Mo(2)-O(10)	82.0(2)	O(34)-Mo(6)-O(14)	79.1(3)
O(81)-Mo(2)-O(10)	72.7(2)	O(34)-Mo(6)-Na(22)	47.9(3)
O(10)-Mo(2)-Mo(1)	89.32(13)	O(61)-Zn(1)-O(6)	180.0
O(19)-Mo (2)-Mo(1)	48.15(17)	O(7)-Zn(1)-O(61)	96.8(2)
O(25)-Mo(2)-Mo(1)	135.30(17)	O (12)-Zn(1)-O(61)	96.0(2)
O(27)-Mo(2)-O(6)	103.5(3)	O(121)-Zn(1)-O(7)	85.2(2)
O (7)-Mo(3)-O(8)	86.2(2)	O(121)-Zn(1)-O(71)	94.8(2)
O(8)-Mo(3)-O(101)	73.0(2)	O(12)-Zn(1)-O(7)	94.8(2)
O(13)-Mo(3)-O(7)	95.8(2)	O(30)-P (1)-O(10)	109.7(3)
O(18)-Mo(3)-O(8)	84.0(2)	O(30)-P(1)-O(141)	110.4(3)
O(18)-Mo(3)-O(101)	80.2(2)	O(18)-P(2)-O(32)	108.3(4)

O(26)-Mo(3)-O(8)	95.4(3)	O(33)-P(2)-O(32)	105.5(4)
O(9)-Mo(4)-Mo(6)	134.12(16)	O(33)-P(2)-Na(2)	44.0(3)
O(9)-Mo(4)-O(23)	73.9(2)	O(211)-P(3)-O(50)	110.1(4)
O(12)-Mo(4)-O(9)	85.8(2)	O(37)-P(3)-O(211)	111.4(4)
O(12)-Mo(4)-O(23)	81.9(2)	O(37)-P(3)-O34	108.3(5)
O(12)-Mo(4)-O(28)	160.1(2)	O(37)-P(3)-O(50)	109.5(6)
O(17)-Mo(4)-O(28)	86.5(3)	O(20)-P(4)-O(28)	112.6(4)
O(23)-Mo(4)-Mo(6)	89.19(14)	O(20)-P(4)-O(41)	105.9(5)
O(24)-Mo(4)-O(17)	105.1(3)	O(28)-P(4)-O(41)	105.6(5)
O(24)-Mo(4)-O(23)	170.4(3)	O(42)-P(4)-O(20)	113.9(5)
O(24)-Mo(4)-O(28)	96.4(3)	O(42)-P(4)-O(28)	112.3(5)
O(28)-Mo(4)-O(9)	84.9(2)	O(42)-P(4)-O(41)	105.7(6)
O(7)-Mo(5)-O (9)	85.7(2)		

Symmetry codes: i = 1-x, 2-y, 1-z; ii = 1-x, 3-y, 1-z; iii = x, 1+y, z.

Table S6 The hydrogen bond lengths (Å) and angles (°) in compound 1.

Donor-H…Acceptor	D-H [Å]	H…A [Å]	D…A [Å]	D-H…A [°]
N(1)-H(1B)O(1W)	0.86	2.13	2.877(13)	145
N(2)-H(2A)O(18)	0.89	2.55	3.370(8)	154
N(3)-H(3)····O(31)	0.86	1.88	2.732(11)	170
N(4)-H(4)···O(2W)	0.86	1.77	2.63(2)	172
C(5)-H(5C)O(2W)	0.96	2.48	3.27(2)	139
C(7)-H(7)····O(28)	0.93	2.41	3.317(14)	164
C(12)-H(12)····O(29)	0.93	2.53	3.367(12)	150
C(14)-H(14)····O(3W)	0.93	2.59	3.400(19)	146
C(18)-H(18)····O(29)	0.93	2.41	3.190(14)	142
C(19)-H(19A)····O(31)	0.96	2.55	3.363(12)	143
C(41)-H(41)····O(15)	0.93	2.55	3.432(10)	158

Table S7 The hydrogen bond lengths (Å) and angles (°) in compound 2.

Donor-H···Acceptor	D-H [Å]	H…A [Å]	D…A [Å]	D-H…A [°]
N(1)-H(1A)····O(17)	0.89	2.60	3.387(10)	149
N(2)-H(2A)····O(34)	0.86	2.27	2.982(12)	140
N(3)-H(3)····O(36)	0.86	1.89	2.737(13)	170
N(4)-H(4)O(2W)	0.86	1.75	2.606(19)	173
C(2)-H(2)···O(21)	0.93	2.38	3.115(13)	136
C(42)-H(42)···O(24)	0.93	2.55	3.430(13)	158
C(55)-H(55)····O(30)	0.93	2.54	3.357(15)	146
C(62)-H(62)····O(30)	0.93	2.45	3.219(15)	140
C(64)-H(64)····O(23)	0.93	2.56	3.391(15)	149
C(66)-H(66)O(29)	0.93	2.41	3.317(15)	164
C(75)-H(75B)····O(36)	0.96	2.55	3.361(14)	143

		• • •	• • •	
Donor-H···Acceptor	D-H [Å]	H…A [Å]	D…A [Å]	D-H…A [°]
N(1)-H(1D)····O(32)	0.89	2.24	2.968(8)	139
N(2)-H(2A)····O(37)	0.87	2.23	2.997(11)	146
N(3)-H(3A)O(3W)	0.93	2.54	3.351(18)	146
C(3)-H(6)O(4W)	0.93	2.38	3.292(14)	168
C(8)-H(8)O(28)	0.93	2.44	3.187(13)	137
C(19)-H(19)····O(29)	0.93	2.46	3.257(15)	143
C(38)-H(38)····O(23)	0.93	2.54	3.435(10)	161
C(48)-H(48)····O(1)	0.93	2.43	3.350(12)	171

Table S8 The hydrogen bond lengths (Å) and angles (°) of compound 3.

Table S9 The hydrogen bond lengths (Å) and angles (°) of compound 4.

Donor-HAcceptor	D-H [Å]	H…A [Å]	D…A [Å]	D-HA [°]
N(1)-H(1A)····O(22)	0.89	2.42	2.982(12)	121
N(2)-H(2)····O(42)	0.86	1.78	2.631(14)	168
N(3)-H(3A)····O(25)	0.88	2.17	2.986(13)	156
C(1)-H(1)····O(28)	0.93	2.57	3.283(16)	134
C(10)-H(10)O(26)	0.93	2.54	3.419(14)	158
C(22)-H(22)····O(19)	0.93	2.53	3.444(14)	167
C(27)-H(27)····O(29)	0.93	2.53	3.310(15)	142
C(32)-H(32A)····O(42)	0.96	2.60	3.372(16)	138
C(37)-H(37)····O(27)	0.93	2.56	3.394(19)	149

 Table S10 BVS results of Mo atoms and M centers in 1-4.

	compound 1	compound 2 compound 3		compound 4
Mo1	5.144	5.198	5.264	5.266
Mo2	5.135	5.249	5.207	5.221
Mo3	5.236	5.302	5.297	5.179
Mo4	5.224	5.259	5.186	5.177
Mo5	5.263	5.298	5.281	5.248
Mo6	5.249	5.255	5.250	5.242
M(Fe, Co, Mn, Zn)	1.806	1.703	1.947	1.583

Table S11 Peak potential data	(mV) for 1-4 at a sweep	rate of 140 mV \cdot s ⁻¹ .
-------------------------------	-------------------------	--

Scan rate	<i>E</i> a/ <i>E</i> c (I) / mV	Ea/Ec (II) / mV	<i>E</i> a/ <i>E</i> c (III) / mV	<i>E</i> a/ <i>E</i> c (III) / mV
140 mV s ⁻¹	<i>E</i> _{1/2}	E _{1/2}	<i>E</i> _{1/2}	<i>E</i> _{1/2}
compound 1	30 / -50	260 / 190	430 / 350	720 / 590
	-10	225	390	655
compound 2	19 / -43	250 / 190	430 / 360	710 / 600
	-12	220	395	655

compound 3	34 / -66	280 / 167	453 / 316	729 / 581
	-16	223.5	384.5	655
compound 4	17 / -43	257 / 180	435 / 345	691 / 608
	-13	218.5	390	649.5

Table S12 Performance comparison of typical photocatalysts for Cr(VI) reduction. light dose V С time R Κ Ref photocatalysts

photocatarysts	source	(mg)	(mL)	(mg/L)	(min)	(%)	(\min^{-1})	Kel.
GO/g-C-N/MoSa	300 W Xe	20	50	10	60	88	0.0123	1
00/g 0314/10052	lamp	20	50	10	00	00	0.0125	1
carbon/SnSe/MCS	300 W Xe	50	100	50	120	63.2	0.00656	2
	lamp	50	100	50	120	03.2	0.00050	2
CdS/D Ma W	500 W Xe	20	20	40	100	61	0.0102	2
$CuS/P_2WO_x W_{18-x}$	lamp	30	30 30 40		40 100		0.0102	3
Ag/AgCl/NH ₂ -	300 W Xe	25	100	20	150	02	0.0177	4
UiO-66	lamp	25	100	20	150	93	0.0177	4
[Zn(mbpy)]	10 W	20	15	110	190	047	0.01(2	5
${Zn[P_4Mo_6O_{31}]_2}$	LED	20	15	118	180	94./	0.0103	3
amustal 1	10 W	20	15	110	120	96	0.016	This
crystal I	LED	20	15	118	120	80	0.010	work
	10 W	20	15	110	120	02	0.014	This
crystal Z	LED	20	15	118	120	82	0.014	work
10 W	10 W	20	15	110	120	7(0.011	This
crystal 3	LED	20	13	118	120	120 /6	6 0.011	work
amustal 4	10 W	20	15	110	120	100 70	0.010	This
crystal 4	LED	20	13	118	120	12	0.010	work

Reference:

- M. H. Wu, L. Li, Y. C. Xue, G. Xu, L. Tang, N. Liu and W. Y. Huang, Appl. 1 Catal., B, 2018, 228, 103-112.
- L. Han, Y. L. Zhong, Y. Su, L. T. Wang, L. S. Zhu, X. F. Fei, Y. Z. Dong, G. 2 Hong, Y. T. Zhou and D. Fang, Chem. Eng. J., 2019, 369, 1138-1149.
- C. X. Liu, W. C. Fang, Y. T. Song, F. Y. Li, Z. X. Sun and L. Xu, Mater. Sci. 3 Semicond. Process., 2020, 120, 105276.
- Z. G. Zhang, S. Q. Wang, M. Bao, J. Ren, S. Pei, S. Yu and J. Ke, J. Colloid 4 Interface Sci., 2019, 555, 342-351.
- 5 L. Hou, Y. Zhang, Y. Ma, Y. Wang, Z. Hu, Y. Gao and Z. Han, Inorg. Chem., 2019, 58, 16667-16675.